1
|
Brzyska A, Majewski S, Ponikiewski Ł, Zubik-Duda M, Lipke A, Gładysz-Płaska A, Sowa S. Benzophosphol-3-yl Triflates as Precursors of 1,3-Diarylbenzophosphole Oxides. J Org Chem 2023. [PMID: 37276533 DOI: 10.1021/acs.joc.2c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A simple method for the synthesis of 3-arylbenzophosphole oxides under Suzuki-Miyaura coupling conditions has been presented. It employs benzophosphol-3-yl triflate starting materials which, prior to our work, had not been used for the synthesis of 3-arylbenzophosphole oxides. The reactions proceed over 24 h and provide a library of 3-arylbenzophosphole oxides. The synthetic access to the benzophosphol-3-yl triflates has been improved. The preliminary photophysical properties of some 3-arylbenzophosphole oxides have been investigated by absorption and emission measurements. The theoretical calculations were performed to establish structure-property relationships.
Collapse
Affiliation(s)
- Agnieszka Brzyska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek St., Krakow PL-30-239, Poland
| | - Sebastian Majewski
- Department of Organic Chemistry and Crystallochemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, 33 Gliniana St., Lublin PL-20-614, Poland
| | - Łukasz Ponikiewski
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., Gdańsk PL-80-233, Poland
| | - Monika Zubik-Duda
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University in Lublin, PL-20-031 Lublin, Poland
| | - Agnieszka Lipke
- Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, 2/9 M. Curie-Sklodowska sq., Lublin PL-20-031, Poland
| | - Agnieszka Gładysz-Płaska
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, 2/13-15A M. Curie-Sklodowska sq., Lublin PL-20-031, Poland
| | - Sylwia Sowa
- Department of Organic Chemistry and Crystallochemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, 33 Gliniana St., Lublin PL-20-614, Poland
| |
Collapse
|
2
|
Zhu Q, Ge Y, Li W, Ma J. Treating Polarization Effects in Charged and Polar Bio-Molecules Through Variable Electrostatic Parameters. J Chem Theory Comput 2023; 19:396-411. [PMID: 36592097 DOI: 10.1021/acs.jctc.2c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polarization plays important roles in charged and hydrogen bonding containing systems. Much effort ranging from the construction of physics-based models to quantum mechanism (QM)-based and machine learning (ML)-assisted models have been devoted to incorporating the polarization effect into the conventional force fields at different levels, such as atomic and coarse grained (CG). The application of polarizable force fields or polarization models was limited by two aspects, namely, computational cost and transferability. Different from physics-based models, no predetermining parameters were required in the QM-based approaches. Taking advantage of both the accuracy of QM calculations and efficiency of molecular mechanism (MM) and ML, polarization effects could be treated more efficiently while maintaining the QM accuracy. The computational cost could be reduced with variable electrostatic parameters, such as the charge, dipole, and electronic dielectric constant with the help of linear scaling fragmentation-based QM calculations and ML models. Polarization and entropy effects on the prediction of partition coefficient of druglike molecules are demonstrated by using both explicit or implicit all-atom molecular dynamics simulations and machine learning-assisted models. Directions and challenges for future development are also envisioned.
Collapse
Affiliation(s)
- Qiang Zhu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Yang Ge
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Wei Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| |
Collapse
|
3
|
Chen Z, Bononi FC, Sievers CA, Kong WY, Donadio D. UV-Visible Absorption Spectra of Solvated Molecules by Quantum Chemical Machine Learning. J Chem Theory Comput 2022; 18:4891-4902. [PMID: 35913220 DOI: 10.1021/acs.jctc.1c01181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Predicting UV-visible absorption spectra is essential to understand photochemical processes and design energy materials. Quantum chemical methods can deliver accurate calculations of UV-visible absorption spectra, but they are computationally expensive, especially for large systems or when one computes line shapes from thermal averages. Here, we present an approach to predict UV-visible absorption spectra of solvated aromatic molecules by quantum chemistry (QC) and machine learning (ML). We show that a ML model, trained on the high-level QC calculation of the excitation energy of a set of aromatic molecules, can accurately predict the line shape of the lowest-energy UV-visible absorption band of several related molecules with less than 0.1 eV deviation with respect to reference experimental spectra. Applying linear decomposition analysis on the excitation energies, we unveil that our ML models probe vertical excitations of these aromatic molecules primarily by learning the atomic environment of their phenyl rings, which align with the physical origin of the π →π* electronic transition. Our study provides an effective workflow that combines ML with quantum chemical methods to accelerate the calculations of UV-visible absorption spectra for various molecular systems.
Collapse
Affiliation(s)
- Zekun Chen
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Fernanda C Bononi
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Charles A Sievers
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California Davis 95616, California, United States
| | - Davide Donadio
- Department of Chemistry, University of California Davis 95616, California, United States
| |
Collapse
|
4
|
Jauja-Ccana V, Cordova-Huaman AV, Feliciano GT, La Rosa-Toro Gómez A. Experimental and molecular dynamics study of graphene oxide quantum dots interaction with solvents and its aggregation mechanism. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Castillo A, Ceballos P, Santos P, Cerón M, Venkatesan P, Pérez-Gutiérrez E, Sosa-Rivadeneyra M, Thamotharan S, Siegler MA, Percino MJ. Solution and Solid-State Photophysical Properties of Positional Isomeric Acrylonitrile Derivatives with Core Pyridine and Phenyl Moieties: Experimental and DFT Studies. Molecules 2021; 26:1500. [PMID: 33801942 PMCID: PMC8001298 DOI: 10.3390/molecules26061500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
The compounds I (Z)-2-(phenyl)-3-(2,4,5-trimethoxyphenyl)acrylonitrile with one side (2,4,5-MeO-), one symmetrical (2Z,2'Z)-2,2'-(1,4-phenylene)bis(3-(2,4,5-trimethoxyphenyl)acrylonitrile), II (both sides with (2,4,5-MeO-), and three positional isomers with pyridine (Z)-2-(pyridin-2- 3, or 4-yl)-3-(2,4,5-trimethoxyphenyl)acrylonitrile, III-V were synthetized and characterized by UV-Vis, fluorescence, IR, H1-NMR, and EI mass spectrometry as well as single crystal X-ray diffraction (SCXRD). The optical properties were strongly influenced by the solvent (hyperchromic and hypochromic shift), which were compared with the solid state. According to the solvatochromism theory, the excited-state (μe) and ground-state (μg) dipole moments were calculated based on the variation of Stokes shift with the solvent's relative permittivity, refractive index, and polarity parameters. SCXRD analyses revealed that the compounds I and II crystallized in the monoclinic system with the space group, P21/n and P21/c, respectively, and with Z = 4 and 2. III, IV, and V crystallized in space groups: orthorhombic, Pbca; triclinic, P-1; and monoclinic, P21 with Z = 1, 2, and 2, respectively. The intermolecular interactions for compounds I-V were investigated using the CCDC Mercury software and their energies were quantified using PIXEL. The density of states (DOS), molecular electrostatic potential surfaces (MEPS), and natural bond orbitals (NBO) of the compounds were determined to evaluate the photophysical properties.
Collapse
Affiliation(s)
- Armando Castillo
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Paulina Ceballos
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Pilar Santos
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Margarita Cerón
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Perumal Venkatesan
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Enrique Pérez-Gutiérrez
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| | - Martha Sosa-Rivadeneyra
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esquina San Claudio, San Manuel, Puebla 72570, Mexico;
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, School of Chemical & Biotechnology, Department of Bioinformatics, SASTRA Deemed University, Thanjavur 613401, India;
| | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, New Chemistry Building, 3400 N. Charles St., Baltimore, MD 21218, USA;
| | - María Judith Percino
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa 72960, Mexico; (A.C.); (P.C.); (P.S.); (M.C.); (P.V.); (E.P.-G.)
| |
Collapse
|
6
|
Zhu Q, Gu Y, Hu L, Gaudin T, Fan M, Ma J. Shear viscosity prediction of alcohols, hydrocarbons, halogenated, carbonyl, nitrogen-containing, and sulfur compounds using the variable force fields. J Chem Phys 2021; 154:074502. [PMID: 33607909 DOI: 10.1063/5.0038267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Viscosity of organic liquids is an important physical property in applications of printing, pharmaceuticals, oil extracting, engineering, and chemical processes. Experimental measurement is a direct but time-consuming process. Accurately predicting the viscosity with a broad range of chemical diversity is still a great challenge. In this work, a protocol named Variable Force Field (VaFF) was implemented to efficiently vary the force field parameters, especially λvdW, for the van der Waals term for the shear viscosity prediction of 75 organic liquid molecules with viscosity ranging from -9 to 0 in their nature logarithm and containing diverse chemical functional groups, such as alcoholic hydroxyl, carbonyl, and halogenated groups. Feature learning was applied for the viscosity prediction, and the selected features indicated that the hydrogen bonding interactions and the number of atoms and rings play important roles in the property of viscosity. The shear viscosity prediction of alcohols is very difficult owing to the existence of relative strong intermolecular hydrogen bonding interaction as reflected by density functional theory binding energies. From radial and spatial distribution functions of methanol, we found that the van der Waals related parameters λvdW are more crucial to the viscosity prediction than the rotation related parameters, λtor. With the variable λvdW-based all-atom optimized potentials for liquid simulations force field, a great improvement was observed in the viscosity prediction for alcohols. The simplicity and uniformity of VaFF make it an efficient tool for the prediction of viscosity and other related properties in the rational design of materials with the specific properties.
Collapse
Affiliation(s)
- Qiang Zhu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yuming Gu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Limu Hu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Théophile Gaudin
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Mengting Fan
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
7
|
Abstract
Colorimetric measurements by image analysis, giving RGB or HSV data, have become commonplace with optical indicator-based assays and as a readout for paper-based analytical devices (PADs). Yet, most works on PADs tend to ignore the quantitative relationship between color data and concentration, which may hamper their establishment as analytical devices and make it difficult to properly understand chemical or biological reactions on the paper substrate. This Perspective Article discusses how image color data are computed into colorimetric absorbance values that correlate linearly to dye concentration and compare well to traditional spectrophotometry. Thioflavin T (ThT), Neutral Red (NR), and Orange IV are used here as model systems. Absorbance measurements in solution correlate well to image data (and Beer's law) from the color channel of relevance if the gamma correction normally used to render the picture more natural to the human eye is removed. This approach also allows one to correct for color cast and variable background color, which may otherwise limit quantitation in field measurements. Reflectance measurements on paper color spots are equally found to correlate quantitatively between spectroscopy and imaging devices. In this way, deviations from Beer's law are identified that are explained with dye interactions on the paper substrate.
Collapse
Affiliation(s)
- Yoshiki Soda
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
8
|
Al-Omair MA. Biochemical activities and electronic spectra of different cobalt phenanthroline complexes. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Abstract
A novel pro-dye approach for the acid-selective staining of the subcellular compartments for better permeability and selectivity was applied. The designed sensor has suitable physicochemical properties such as a large Stokes shift and a long-lived intracellular fluorescence. The Schiff base fragment was used for the acid-sensitive release of a fluorophore without affecting the overall stability of the biological systems. Due to the presence of an imine bond in its structure and its unique fluorescent properties, it can be presented as a “pro-dye” for acidic structures such as lysosomes. As a result of an imine bond cleavage, a new fluorescent compound is released, whose substantially shifted excitation and emission wavelengths enable a more selective and effective imaging of lysosomes and endosomes. The presented report provides the chemical, physicochemical and optical profiles as well as biological assays and theoretical calculations.
Collapse
|
10
|
Lai W, Zhang L, Hua W, Indris S, Yan Z, Hu Z, Zhang B, Liu Y, Wang L, Liu M, Liu R, Wang Y, Wang J, Hu Z, Liu H, Chou S, Dou S. General π‐Electron‐Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Single‐Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904614] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei‐Hong Lai
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Li‐Fu Zhang
- School of Physics Nankai University Tianjin 300071 China
| | - Wei‐Bo Hua
- Institute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Sylvio Indris
- Institute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Zi‐Chao Yan
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Zhe Hu
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Binwei Zhang
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Yani Liu
- BUAA-UOW Joint Centre School of Physics Beihang University Beijing 100191 China
| | - Li Wang
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Min Liu
- College of Material and Science Beijing University of Technology Beijing 100124 China
| | - Rong Liu
- SIMS Facility Western Sydney University Locked Bag 1797 Penrith NSW 2751 Australia
| | - Yun‐Xiao Wang
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Jia‐Zhao Wang
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Zhenpeng Hu
- School of Physics Nankai University Tianjin 300071 China
| | - Hua‐Kun Liu
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Shu‐Lei Chou
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Shi‐Xue Dou
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| |
Collapse
|
11
|
Lai W, Zhang L, Hua W, Indris S, Yan Z, Hu Z, Zhang B, Liu Y, Wang L, Liu M, Liu R, Wang Y, Wang J, Hu Z, Liu H, Chou S, Dou S. General π‐Electron‐Assisted Strategy for Ir, Pt, Ru, Pd, Fe, Ni Single‐Atom Electrocatalysts with Bifunctional Active Sites for Highly Efficient Water Splitting. Angew Chem Int Ed Engl 2019; 58:11868-11873. [DOI: 10.1002/anie.201904614] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Wei‐Hong Lai
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Li‐Fu Zhang
- School of Physics Nankai University Tianjin 300071 China
| | - Wei‐Bo Hua
- Institute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Sylvio Indris
- Institute for Applied Materials (IAM) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Zi‐Chao Yan
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Zhe Hu
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Binwei Zhang
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Yani Liu
- BUAA-UOW Joint Centre School of Physics Beihang University Beijing 100191 China
| | - Li Wang
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Min Liu
- College of Material and Science Beijing University of Technology Beijing 100124 China
| | - Rong Liu
- SIMS Facility Western Sydney University Locked Bag 1797 Penrith NSW 2751 Australia
| | - Yun‐Xiao Wang
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Jia‐Zhao Wang
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Zhenpeng Hu
- School of Physics Nankai University Tianjin 300071 China
| | - Hua‐Kun Liu
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Shu‐Lei Chou
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| | - Shi‐Xue Dou
- Institute for Superconducting & Electronic Materials University of Wollongong Innovation Campus Wollongong NSW 2500 Australia
| |
Collapse
|