1
|
Millán-Ramos B, Morquecho-Marín D, Silva-Bermudez P, Ramírez-Ortega D, Depablos-Rivera O, García-López J, Fernández-Lizárraga M, Almaguer-Flores A, Victoria-Hernández J, Letzig D, Rodil SE. Degradation Behavior and Mechanical Integrity of a Mg-0.7Zn-0.6Ca (wt.%) Alloy: Effect of Grain Sizes and Crystallographic Texture. MATERIALS 2022; 15:ma15093142. [PMID: 35591473 PMCID: PMC9102660 DOI: 10.3390/ma15093142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023]
Abstract
The microstructural characteristics of biodegradable Mg alloys determine their performance and appropriateness for orthopedic fixation applications. In this work, the effect of the annealing treatment of a Mg-0.7Zn-0.6Ca (ZX11) alloy on the mechanical integrity, corrosive behavior, and biocompatibility-osteoinduction was studied considering two annealing temperatures, 350 and 450 °C. The microstructure showed a recrystallized structure, with a lower number of precipitates, grain size, and stronger basal texture for the ZX11-350 condition than the ZX11-450. The characteristics mentioned above induce a higher long-term degradation rate for the ZX11-450 than the ZX11-350 on days 7th and 15th of immersion. In consequence, the mechanical integrity changes within this period. The increased degradation rate of the ZX11-450 condition reduces 40% the elongation at failure, in contrast with the 16% reduction for the ZX11-350 condition. After that period, the mechanical integrity remained unchanged. No cytotoxic effects were observed for both treatments and significant differentiation of mesenchymal stem cells into the osteoblast phenotype was observed.
Collapse
Affiliation(s)
- Benjamin Millán-Ramos
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (D.R.-O.); (O.D.-R.); (S.E.R.)
- Posgrado en Ciencia e Ingeniería de Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence: (B.M.-R.); (J.V.-H.)
| | - Daniela Morquecho-Marín
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (D.M.-M.); (P.S.-B.); (J.G.-L.); (M.F.-L.)
- Posgrado en Ciencias Médicas, Odontológicas y de la Salud, Ciencias Odontológicas, Universidad Nacional Autónoma de México, Mexico City 14389, Mexico
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (D.M.-M.); (P.S.-B.); (J.G.-L.); (M.F.-L.)
| | - David Ramírez-Ortega
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (D.R.-O.); (O.D.-R.); (S.E.R.)
| | - Osmary Depablos-Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (D.R.-O.); (O.D.-R.); (S.E.R.)
- Departamento de Ingeniería Metalúrgica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Julieta García-López
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (D.M.-M.); (P.S.-B.); (J.G.-L.); (M.F.-L.)
| | - Mariana Fernández-Lizárraga
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (D.M.-M.); (P.S.-B.); (J.G.-L.); (M.F.-L.)
- Posgrado de Doctorado en Ciencias en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Argelia Almaguer-Flores
- Laboratorio de Biointerfaces, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - José Victoria-Hernández
- Institute of Material and Process Design, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany;
- Correspondence: (B.M.-R.); (J.V.-H.)
| | - Dietmar Letzig
- Institute of Material and Process Design, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany;
| | - Sandra E. Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (D.R.-O.); (O.D.-R.); (S.E.R.)
| |
Collapse
|
2
|
Bahatibieke A, Qin H, Cui T, Liu Y, Wang Z. In vivo and in simulated body fluid degradation behavior and biocompatibility evaluation of anodic oxidation-silane-chitosan-coated Mg-4.0Zn-0.8Sr alloy for bone application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111771. [PMID: 33545903 DOI: 10.1016/j.msec.2020.111771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/14/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
With the development and progress of science and technology, magnesium and magnesium alloys have attracted more and more researchers' attention because of their excellent biocompatibility. However, rapid degradation rate of magnesium alloy in vivo seriously limits its application (Arthanari et al., n.d.; Cui et al., 2013 [1,2]). In order to solve this problem, the surface modification of Mg-4.0Zn-0.8Sr alloy was adopted in this paper. According to the requirements of orthopedic materials, anodizing coating (AO), silane coating (SA) and chitosan coating (CS) coating were prepared on its surface, and magnesium alloy was prepared into intramedullary nail, and the corrosion resistance and biocompatibility of the corresponding samples was evaluated. The experimental results show that the AO-SA-CS coating sample has higher corrosion resistance, in addition, it also shows good biocompatibility, such as lower hemolysis rate and normal platelet adhesion morphology. After implantation into the femur, the femur of rats recovered well and the kidney tissue was normal.
Collapse
Affiliation(s)
- Abudureheman Bahatibieke
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Laser Application Technology and Equipment of Liaoning Province, School of Materials and Engineering, Northeastern University, 110819, China.
| | | | - Tong Cui
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Laser Application Technology and Equipment of Liaoning Province, School of Materials and Engineering, Northeastern University, 110819, China.
| | - Yan Liu
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Laser Application Technology and Equipment of Liaoning Province, School of Materials and Engineering, Northeastern University, 110819, China.
| | - Zixuan Wang
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Laser Application Technology and Equipment of Liaoning Province, School of Materials and Engineering, Northeastern University, 110819, China.
| |
Collapse
|
3
|
Effect of V2O5 Additive on Micro-Arc Oxidation Coatings Fabricated on Magnesium Alloys with Different Loading Voltages. METALS 2020. [DOI: 10.3390/met10091146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Effect of V2O5 additive in silicate-containing electrolyte on AZ91D magnesium alloys treated by micro-arc oxidation (MAO) technology under different loading voltages was investigated. The results showed that vanadium was well up-taken into the coating chemically. Moreover, a new phase of MgV2O4 with spinel structure was obtained in MAO coatings due to V2O5 added into the electrolyte. The MgV2O4 phase was responsible for the coatings exhibiting brown color and also was beneficial to improving the anti-corrosion property. In spotting tests, the corrosion resistances of coatings prepared under the high voltage are about 6–9 times higher than those of the low voltage because of the thicker coatings of the former. In potentiodynamic polarization tests, the coatings’ corrosion resistances were improved with the addition of V2O5, which was more significant under the low voltage than that under the high voltage. When the concentration of V2O5 was 0.2 g/L, the corrosion current density of the coating was the lowest, which means that the coating’s corrosion resistance under the low voltage is the best. Hence, it is necessary to carry out targeted design of the coating’s microstructure according to the different applications.
Collapse
|
4
|
Abstract
This study demonstrates a significant improvement of the corrosion resistance of an AZ31B magnesium alloy achieved by the application of 1 μm-thin coatings generated by an environmentally friendly flash plasma electrolytic oxidation (FPEO) process in Ca-containing electrolytes. Two compounds with different solubility, calcium oxide (CaO) or calcium glycerophosphate (CaGlyP), were used as sources of Ca in the electrolyte. Very short durations (20–45 s) of the FPEO process were employed with the aim of limiting the energy consumption. The corrosion performance of the developed coatings was compared with that of a commercial conversion coating (CC) of similar thickness. The viability of the coatings in a full system protection approach, consisting of FPEO combined with an inhibitor-free epoxy primer, was verified in neutral salt spray and paint adhesion tests. The superior corrosion performance of the FPEO_CaGlyP coating, both as a stand-alone coating and as a full system, was attributed to the formation of a greater complexity of Ca2+ bonds with SiO2 and PO43− species within the MgO ceramic network during the in situ incorporation of Ca into the coating from a double chelated electrolyte and the resultant difficulties with the hydrolysis of such a network. The deterioration of the FPEO_CaGlyP coating during immersion was found over ten times slower compared with Ca-free flash-PEO coating.
Collapse
|
5
|
Comparative Study of the Structure, Properties, and Corrosion Behavior of Sr-Containing Biocoatings on Mg0.8Ca. MATERIALS 2020; 13:ma13081942. [PMID: 32326091 PMCID: PMC7215743 DOI: 10.3390/ma13081942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
A comparative analysis of the structure, properties and the corrosion behavior of the micro-arc coatings based on Sr-substituted hydroxyapatite (Sr-HA) and Sr-substituted tricalcium phosphate (Sr-TCP) deposited on Mg0.8Ca alloy substrates was performed. The current density during the formation of the Sr-HA coatings was higher than that for the Sr-TCP coatings. As a result, the Sr-HA coatings were thicker and had a greater surface roughness Ra than the Sr-TCP coatings. In addition, pore sizes of the Sr-HA were almost two times larger. The ratio (Ca + Sr + Mg)/P were equal 1.64 and 1.47 for Sr-HA and Sr-TCP coatings, respectively. Thus, it can be assumed that the composition of Sr-HA and Sr-TCP coatings was predominantly presented by (Sr,Mg)-substituted hydroxyapatite and (Sr,Mg)-substituted tricalcium phosphate. However, the average content of Sr was approximately the same for both types of the coatings and was equal to 1.8 at.%. The Sr-HA coatings were less soluble and had higher corrosion resistance than the Sr-TCP coatings. Cytotoxic tests in vitro demonstrated a higher cell viability after cultivation with extracts of the Sr-HA coatings.
Collapse
|
6
|
Hou R, Victoria-Hernandez J, Jiang P, Willumeit-Römer R, Luthringer-Feyerabend B, Yi S, Letzig D, Feyerabend F. In vitro evaluation of the ZX11 magnesium alloy as potential bone plate: Degradability and mechanical integrity. Acta Biomater 2019; 97:608-622. [PMID: 31365881 DOI: 10.1016/j.actbio.2019.07.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/26/2019] [Indexed: 02/08/2023]
Abstract
Considering the excellent biocompatibility of magnesium (Mg) alloys and their better mechanical properties compared to polymer materials, a wrought MgZnCa alloy with low contents of Zn (0.7 wt%) and Ca (0.6 wt%) (ZX11) was developed by twin roll casting (TRC) technology as potential biodegradable bone plates. The degradability and cell response of the ZX11 alloy were evaluated in vitro, as well as the mechanical integrity according to tensile tests after immersion. The results revealed a slightly higher degradation rate for the rolled ZX11, in comparison to that of the annealed one. It was mainly caused by the deformation twins and residual strain stored in the rolled alloy, which also seemed to promote localized degradation, thereby leading to a relatively fast deterioration in mechanical properties, especially the fracture strain/elongation. In contrast, after the annealing treatment, the alloy showed relatively lower strength, yet a lower degradation rate and quite stable elongation during the initial weeks of immersion were observed. More importantly, the ZX11 alloy, regardless of the annealing treatment, showed good in vitro cytocomopatibility regarding human primary osteoblasts. The assessment indicates the rolled alloy as a good choice for implantation sites where relatively high mechanical strength is needed during the early implantation, while the annealed alloy is a potential candidate for the sites which demand stable mechanical integrity during service. STATEMENT OF SIGNIFICANCE: The development of magnesium alloys as bone implants demands low degradation rate to gain not only a slow hydrogen evolution, but also a stable mechanical integrity during service. The present study develops a micro-alloyed MgZnCa alloy via twin roll casting (TRC) technology. It exhibited limited cytotoxicity, fairly low degradation rate and comparable strength to the reported Mg-1Zn-5Ca alloy which has been used as bone screws in clinical trials, indicating the great potential application as biodegradable bone implants. Furthermore, it showed good mechanical integrity during immersion to support the defect healing. Our results can aid other researchers to evaluate the mechanical integrity of biodegradable materials and to pay more attention to the effect of degradation behaviour on mechanical integrity of materials.
Collapse
|