1
|
Ali AM, Alanazi MM, Attwa MW, Darwish IA, Darwish HW. Comprehensive chromatographic analysis of Belumosudil and its degradation products: Development, validation, and In silico toxicity assessment. Heliyon 2024; 10:e38369. [PMID: 39391480 PMCID: PMC11466582 DOI: 10.1016/j.heliyon.2024.e38369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Following ICH guidelines, the stability of Belumosudil, a novel protein kinase inhibitor, was tested under different stress conditions (hydrolytic, oxidative, photolytic, and thermal). A selective and efficient separation of Belumosudil and its degradation products was achieved using a Quality by Design approach. In-silico predictions using Zeneth Nexus® software were employed to assess the compound's degradation under various stress scenarios. The methodology developed through experimental design analyzed crucial process parameters connected with chromatographic systems. Reversed-phase high-performance liquid chromatography with a C18 column and a gradient mobile phase of acetonitrile and 25 mM ammonium hydrogen carbonate buffer (pH 5.6) were utilized. For structural characterization and identification of degradation products, UPLC-quadrupole tandem mass spectrometry was employed. Four distinct degradation products were identified under different stress settings. The method was thoroughly validated, assessing accuracy, selectivity, repeatability, system suitability, and linearity range (5.0-120.0 μg/mL). To predict mutagenicity and toxicity, DEREK Nexus® software was used. Two degradation products were predicted to induce skin sensitization, irritation, and hepatotoxicity in humans.
Collapse
Affiliation(s)
- Awadh M. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Attwa MW, AlRabiah H, Abdelhameed AS, Kadi AA. Assessment of the in vitro metabolic stability of CEP-37440, a selective FAK/ALK inhibitor, in HLMs using fast UPLC-MS/MS method: in silico metabolic lability and DEREK alerts screening. Front Chem 2024; 12:1323738. [PMID: 39391832 PMCID: PMC11464430 DOI: 10.3389/fchem.2024.1323738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction CEP-37440 was synthesized and supplied by the research and development division of Teva Branded Pharmaceutical Products (West Chester, PA, United States). CEP-37440 represents a newly developed compound that exhibits selectivity inhibition of Focal Adhesion Kinase and Anaplastic Lymphoma Kinase FAK/ALK receptors, demonstrating novel characteristics as an orally active inhibitor. The simultaneous inhibition of ALK and FAK can effectively address resistance and enhance the therapeutic efficacy against tumors through a synergistic mechanism. Methods The objective of this research was to create an LC-MS/MS method that is precise, efficient, environmentally friendly, and possesses a high level of sensitivity for the quantification of CEP-37440 in human liver microsomes (HLMs). The aforementioned approach was subsequently employed to evaluate the metabolic stability of CEP-37440 in HLMs in an in vitro setting. The validation procedures for the LC-MS/MS analytical method in the HLMs were performed following the bio-analytical method validation guidelines set out by the US-FDA. The AGREE program was utilized to assess the ecological impacts of the current LC-MS/MS methodology. Results and Discussion The calibration curve linearity was seen in the range of 1-3000 ng/mL. The inter-day accuracy (% RE) exhibited a range of -2.33% to 3.22%, whilst the intra-day accuracy demonstrated a range of -4.33% to 1.39%. The inter-day precision (% RSD) exhibited a range of 0.38% to 3.60%, whilst the intra-day precision demonstrated a range of 0.16% to 6.28%. The determination of the in vitro half-life (t1/2) and moderate intrinsic clearance (Clint) of CEP-37440 yielded values of 23.24 min and 34.74 mL/min/kg, respectively. The current manuscript is considered the first analytical study for CEP-37440 quantification with the application to metabolic stability assessment. These results suggest that CEP-37440 can be categorized as a pharmaceutical agent with a moderate extraction ratio. Consequently, it is postulated that the administration of CEP-37440 to patients may not lead to the accrual of dosages within the human organs. According to in silico P450 metabolic and DEREK software, minor structural alterations to the ethanolamine moiety or substitution of the group in drug design have the potential to enhance the metabolic stability and safety profile of novel derivatives in comparison to CEP-37440.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
3
|
Chen G, Sun Y, Yushan D, Shaerbayi N, Zhang H, He H, Jin Y, Chen L. Identification and Characterization of Chemical Constituents from Ammopiptanthus nanus Stem and Their Metabolites in Rats by UHPLC-Q-TOF-MS/MS. PLANTA MEDICA 2024; 90:138-153. [PMID: 37774754 DOI: 10.1055/a-2184-1134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Ammopiptanthus nanus as a Kirgiz medicine is widely used for the treatment of frostbite and chronic rheumatoid arthritis. However, due to a lack of systematic research on the chemical components of A. nanus and their metabolites, the bioactive components in it remain unclear. Herein, a reliable strategy based on UHPLC-Q-TOF-MS/MS was established to comprehensively analyze the chemical components and their metabolites in vivo. In total, 59 compounds were identified from A. nanus stem extract, among which 14 isoflavones, 10 isoprenylated isoflavones, 4 polyhydroxy flavonoids, 9 alkaloids and 1 polyol were characterized for the first time. After oral administration of A. nanus stem extract, 30 prototype constituents and 28 metabolites (12 phase I and 16 phase II metabolites) were speculated on and identified in rat serum, urine and feces. Furthermore, the metabolic pathways of the chemical components were systematically analyzed and proposed. In conclusion, the chemical components from A. nanus stem and their metabolites in vivo were first studied, which may provide useful chemical information for further study on the effective material basis and pharmacological mechanism of A. nanus.
Collapse
Affiliation(s)
- Guanru Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yanpei Sun
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dilnur Yushan
- People's Hospital of Kizilsu Kirgiz Autonomous Prefecture, Atushi, Xinjiang, China
| | | | - Hongjuan Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hongliang He
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Kathar N, Rajput N, Jadav T, Sengupta P. Potential degradation products of abemaciclib: Identification and structural characterization employing LC-Q/TOF-MS and NMR including mechanistic explanation. J Pharm Biomed Anal 2024; 237:115762. [PMID: 37844364 DOI: 10.1016/j.jpba.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Degradation products are the potential drug impurities that can be generated during transport and storage of pharmaceuticals. Before this study, degradation chemistry and potential degradation products of abemaciclib (ABM) were unknown. Moreover, no stability-indicating analytical method was available that can be used to analyse ABM in presence of its degradation products. In this study, stress testing on ABM was carried out under oxidative, thermal, photolytic (UV & visible), and hydrolytic (acid, alkaline, and neutral) degradation conditions. The study revealed that ABM is susceptible to photolytic, oxidative, and thermal stress leading to the formation of five degradation products (DPs). ABM and its degradation products were chromatographically separated employing a developed RP-HPLC-based stability-indicating analytical method. The method was transferred to an LC-Q-TOF system for further analysis. To elucidate the structure of degradation products, fragmentation pathway of ABM was initially established through high-resolution mass spectrometry (HRMS). Subsequently, mass fragmentation pathways of all the DPs have been established through HRMS and MSn based analysis. The major degradation product was isolated and fully characterized using atmospheric chemical ionization-mass spectrometry and nuclear magnetic resonance techniques. ABM showed extensive degradation under oxidative and photolytic systems. Therefore, special care may be sought during storage and transport of ABM or its formulations to avoid photolytic and oxidative stress exposure to the drug. Lastly, in silico toxicity of the characterized degradation products was assessed employing ProTox ІІ online web predictor freeware in which some of them were found to have the potential of hepatotoxicity, immunogenicity and mutagenicity.
Collapse
Affiliation(s)
- Nachiket Kathar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Niraj Rajput
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
5
|
Marzouk HM, El-Hanboushy S, Obaydo RH, Fayez YM, Abdelkawy M, Lotfy HM. Sustainable chromatographic quantitation of multi-antihypertensive medications: application on diverse combinations containing hydrochlorothiazide along with LC-MS/MS profiling of potential impurities: greenness and whiteness evaluation. BMC Chem 2023; 17:101. [PMID: 37598182 PMCID: PMC10439576 DOI: 10.1186/s13065-023-01015-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/07/2023] [Indexed: 08/21/2023] Open
Abstract
Cardiovascular disorders are among the leading causes of death worldwide, especially hypertension, a silent killer syndrome requiring multiple drug therapy for appropriate management. Hydrochlorothiazide is an extensively utilized thiazide diuretic that combines with several antihypertensive drugs for effective treatment of hypertension. In this study, sustainable, innovative and accurate high performance liquid chromatographic methods with diode array and tandem mass detectors (HPLC-DAD and LC-MS/MS) were developed, optimized and validated for the concurrent determination of Hydrochlorothiazide (HCT) along with five antihypertensive drugs, namely; Valsartan (VAL), Amlodipine besylate (AML), Atenolol (ATN), Amiloride hydrochloride (AMI), and Candesartan cilextil (CAN) in their diverse pharmaceutical dosage forms and in the presence of Chlorothiazide (CT) and Salamide (DSA) as HCT officially identified impurities. The HPLC-DAD separation was achieved utilizing Inertsil ODS-3 C18 column (250 × 4.6 mm, 5 μm) attached with photodiode array detection at 225.0 nm. Gradient elution was performed utilizing a mixture of solvent A (20.0 mM potassium dihydrogen phosphate, pH 3.0 ± 0.2, adjusted with phosphoric acid) and solvent B (acetonitrile) at ambient temperature. Linearity ranges were 0.1-100.0 µg/mL for HCT, VAL, AML and CAN, 0.05 -100.0 µg/mL for both ATN and AMI and 0.05-8.0 µg/mL for both CT and DSA. Additionally, this work describes the use of liquid chromatography-electrospray-tandem mass spectrometry for the accurate detection and quantification of the impurities; CT and DSA in the negative mode utilizing triple quadrupole mass spectrometry. The linearity ranges for those impurities were 1.0-200.0 ng/mL and 5.0-200.0 ng/mL for CT and DSA, respectively. Developed methods' validation was achieved in accordance with International Conference on Harmonization (ICH) guidelines. Upon applying liquid chromatographic techniques for the drug analysis, a green and sustainable assessment have to be handled due to the consumption of energy and many solvents. Through the use of the HEXAGON, Analytical Greenness (AGREE) and White Analytical Chemistry (WAC) tools, greenness and sustainability have been statistically assessed. The optimized HPLC-DAD and LC-MS/MS methods were fast, accurate, precise, and sensitive, and consequently could be applied for conventional analysis and quality control of the proposed drugs in their miscellaneous dosage forms for the purpose of reducing laboratory wastes, time of the analysis time, effort, and cost.
Collapse
Affiliation(s)
- Hoda M Marzouk
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Sara El-Hanboushy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 12311, Egypt
| | - Reem H Obaydo
- Analytical and Food Chemistry Department, Faculty of Pharmacy, Ebla Private University, 22743, Idlib, Syria
| | - Yasmin M Fayez
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Mohamed Abdelkawy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Hayam M Lotfy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 12311, Egypt
| |
Collapse
|
6
|
Alsibaee AM, Aljohar HI, Attwa MW, Abdelhameed AS, Kadi AA. Investigation of Fenebrutinib Metabolism and Bioactivation Using MS 3 Methodology in Ion Trap LC/MS. Molecules 2023; 28:molecules28104225. [PMID: 37241965 DOI: 10.3390/molecules28104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Fenebrutinib is an orally available Bruton tyrosine kinase inhibitor. It is currently in multiple phase III clinical trials for the management of B-cell tumors and autoimmune disorders. Elementary in-silico studies were first performed to predict susceptible sites of metabolism and structural alerts for toxicities by StarDrop WhichP450™ module and DEREK software; respectively. Fenebrutinib metabolites and adducts were characterized in-vitro in rat liver microsomes (RLM) using MS3 method in Ion Trap LC-MS/MS. Formation of reactive and unstable intermediates was explored using potassium cyanide (KCN), glutathione (GSH) and methoxylamine as trapping nucleophiles to capture the transient and unstable iminium, 6-iminopyridin-3(6H)-one and aldehyde intermediates, respectively, to generate a stable adducts that can be investigated and analyzed using mass spectrometry. Ten phase I metabolites, four cyanide adducts, five GSH adducts and six methoxylamine adducts of fenebrutinib were identified. The proposed metabolic reactions involved in formation of these metabolites are hydroxylation, oxidation of primary alcohol to aldehyde, n-oxidation, and n-dealkylation. The mechanism of reactive intermediate formation of fenebrutinib can provide a justification of the cause of its adverse effects. Formation of iminium, iminoquinone and aldehyde intermediates of fenebrutinib was characterized. N-dealkylation followed by hydroxylation of the piperazine ring is proposed to cause the bioactivation to iminium intermediates captured by cyanide. Oxidation of the hydroxymethyl group on the pyridine moiety is proposed to cause the generation of reactive aldehyde intermediates captures by methoxylamine. N-dealkylation and hydroxylation of the pyridine ring is proposed to cause formation of iminoquinone reactive intermediates captured by glutathione. FBB and several phase I metabolites are bioactivated to fifteen reactive intermediates which might be the cause of adverse effects. In the future, drug discovery experiments utilizing this information could be performed, permitting the synthesis of new drugs with better safety profile. Overall, in silico software and in vitro metabolic incubation experiments were able to characterize the FBB metabolites and reactive intermediates using the multistep fragmentation capability of ion trap mass spectrometry.
Collapse
Affiliation(s)
- Aishah M Alsibaee
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haya I Aljohar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Assessment of In Silico and In Vitro Selpercatinib Metabolic Stability in Human Liver Microsomes Using a Validated LC-MS/MS Method. Molecules 2023; 28:molecules28062618. [PMID: 36985590 PMCID: PMC10054762 DOI: 10.3390/molecules28062618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Selpercatinib (SLP; brand name Retevmo®) is a selective and potent RE arranged during transfection (RET) inhibitor. On 21 September 2022, the FDA granted regular approval to SLP (Retevmo, Eli Lilly, and Company). It is considered the only and first RET inhibitor for adults with metastatic or locally advanced solid tumors with RET gene fusion. In the current experiment, a highly specific, sensitive, and fast liquid chromatography tandem mass spectrometry (LC-MS/MS) method for quantifying SLP in human liver microsomes (HLMs) was developed and applied to the metabolic stability evaluation of SLP. The LC-MS/MS method was validated following the bioanalytical methodology validation guidelines outlined by the FDA (linearity, selectivity, matrix effect, accuracy, precision, carryover, and extraction recovery). SLP was detected by a triple quadrupole detector (TQD) using a positive ESI source and multiple reaction monitoring (MRM) mode for mass spectrometric analysis and estimation of analytes ions. The IS-normalized matrix effect and extraction recovery were acceptable according to the FDA guidelines for the bioanalysis of SLP. The SLP calibration standards were linear from 1 to 3000 ng/mL HLMs matrix, with a regression equation (y = 1.7298x + 3.62941) and coefficient of variation (r2 = 0.9949). The intra-batch and inter-batch precision and accuracy of the developed LC-MS/MS method were −6.56–5.22% and 5.08–3.15%, respectively. SLP and filgotinib (FLG) (internal standard; IS) were chromatographically separated using a Luna 3 µm PFP (2) stationary phase (150 × 4.6 mm) with an isocratic mobile phase at 23 ± 1 °C. The limit of quantification (LOQ) was 0.78 ng/mL, revealing the LC-MS/MS method sensitivity. The intrinsic clearance and in vitro t1/2 (metabolic stability) of SLP in the HLMs matrix were 34 mL/min/kg and 23.82 min, respectively, which proposed an intermediate metabolic clearance rate of SLP, confirming the great value of this type of kinetic experiment for more accurate metabolic stability predictions. The literature review approved that the established LC-MS/MS method is the first developed and reported method for quantifying SLP metabolic stability.
Collapse
|
8
|
Development of an LC-MS/MS Method for Quantification of Sapitinib in Human Liver Microsomes: In Silico and In Vitro Metabolic Stability Evaluation. Molecules 2023; 28:molecules28052322. [PMID: 36903565 PMCID: PMC10005647 DOI: 10.3390/molecules28052322] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Sapitinib (AZD8931, SPT) is a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR) family (pan-erbB). In multiple tumor cell lines, STP has been shown to be a much more potent inhibitor of EGF-driven cellular proliferation than gefitinib. In the current study, a highly sensitive, rapid, and specific LC-MS/MS analytical method for the estimation of SPT in human liver microsomes (HLMs) was established with application to metabolic stability assessment. The LC-MS/MS analytical method was validated in terms of linearity, selectivity, precision, accuracy, matrix effect, extraction recovery, carryover, and stability following the FDA guidelines for bioanalytical method validation. SPT was detected using electrospray ionization (ESI) as an ionization source under multiple reaction monitoring (MRM) in the positive ion mode. The IS-normalized matrix factor and extraction recovery were acceptable for the bioanalysis of SPT. The SPT calibration curve was linear, from 1 ng/mL to 3000 ng/mL HLM matrix samples, with a linear regression equation of y = 1.7298x + 3.62941 (r2 = 0.9949). The intraday and interday accuracy and precision values of the LC-MS/MS method were -1.45-7.25% and 0.29-6.31%, respectively. SPT and filgotinib (FGT) (internal standard; IS) were separated through the use of an isocratic mobile phase system with a Luna 3 µm PFP(2) column (150 × 4.6 mm) stationary phase column. The limit of quantification (LOQ) was 0.88 ng/mL, confirming the LC-MS/MS method sensitivity. The intrinsic clearance and in vitro half-life of STP were 38.48 mL/min/kg and 21.07 min, respectively. STP exhibited a moderate extraction ratio that revealed good bioavailability. The literature review demonstrated that the current analytical method is the first developed LC-MS/MS method for the quantification of SPT in an HLM matrix with application to SPT metabolic stability evaluation.
Collapse
|
9
|
Yan M, Li W, Li WB, Huang Q, Li J, Cai HL, Gong H, Zhang BK, Wang YK. Metabolic activation of tyrosine kinase inhibitors: recent advance and further clinical practice. Drug Metab Rev 2023; 55:94-106. [PMID: 36453523 DOI: 10.1080/03602532.2022.2149775] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
At present, receptor tyrosine kinase signaling-related pathways have been successfully mediated to inhibit tumor proliferation and promote anti-angiogenesis effects for cancer therapy. Tyrosine kinase inhibitors (TKIs), a group of novel chemotherapeutic agents, have been applied to treat diverse malignant tumors effectively. However, the latent toxic and side effects of TKIs, such as hepatotoxicity and cardiotoxicity, limit their use in clinical practice. Metabolic activation has the potential to lead to toxic effects. Numerous TKIs have been demonstrated to be transformed into chemically reactive/potentially toxic metabolites following cytochrome P450-catalyzed activation, which causes severe adverse reactions, including hepatotoxicity, cardiotoxicity, skin toxicity, immune injury, mitochondria injury, and cytochrome P450 inactivation. However, the precise mechanisms of how these chemically reactive/potentially toxic species induce toxicity remain poorly understood. In addition, we present our viewpoints that regulating the production of reactive metabolites may decrease the toxicity of TKIs. Exploring this topic will improve understanding of metabolic activation and its underlying mechanisms, promoting the rational use of TKIs. This review summarizes the updated evidence concerning the reactive metabolites of TKIs and the associated toxicities. This paper provides novel insight into the safe use of TKIs and the prevention and treatment of multiple TKIs adverse effects in clinical practice.
Collapse
Affiliation(s)
- Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Wen-Bo Li
- Department of Plastic and Aesthetic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hua-Lin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Yi-Kun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| |
Collapse
|
10
|
Soledad Poetto A, Posocco B, Zanchetta M, Gagno S, Orleni M, Canil G, Alberti M, Puglisi F, Toffoli G. "A new LC-MS/MS method for the simultaneous quantification of abemaciclib, its main active metabolites M2 and M20, and letrozole for therapeutic drug monitoring". J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1207:123403. [PMID: 35940043 DOI: 10.1016/j.jchromb.2022.123403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022]
Abstract
Abemaciclib (ABEMA) is the last CDKi approved for the treatment of breast cancer. Adverse reactions to this drug are not experienced in the same manner by the entire patient population but in case of severe toxicity dose reductions and therapy discontinuation are required, suggesting that a TDM-guided treatment could be beneficial for these patients. ABEMA is extensively metabolized by the liver. The most abundant active metabolites are M2 and M20. This CDKi is administered together with anti-estrogen drugs, such as letrozole (LETRO). The aim of this work was to develop and validate a LC-MS/MS method for the simultaneous quantification of ABEMA, M2, M20, and LETRO. The chromatographic separation of the analytes was obtained using a SIL-20AC XR auto-sampler coupled to LC-20AD UFLC Prominence XR pumps (Shimadzu, Tokyo, Japan). The chromatographic column employed was an XTerra MS C18, (3,5 µm, 125 Å, 50x2.1 mm) coupled with a Security Guard Cartridge (MS C18, 125 Å, 3.9x5 mm) provided by Waters. Detection was performed by an API 4000 QTrap (SCIEX) mass spectrometer. The presented analytical method was fully validated according to EMA and FDA guidelines on bioanalytical method validation. Linearity was confirmed on 10 independent tests (R2 within 0.997-1.000) over the concentration ranges of 40-800 ng/mL for ABEMA, 10-200 ng/mL for M2 and M20, 20-400 ng/mL for LETRO. The method was applied to analyze plasma samples from patients enrolled in a clinical trial, collected at Cmin. Incurred sample reanalysis was performed on a set of 30 samples, confirming the reproducibility of the analytical method.
Collapse
Affiliation(s)
- Ariana Soledad Poetto
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Doctoral School in Pharmacological Sciences, University of Padua, Lgo Meneghetti 2, 35131 Padova, Italy
| | - Bianca Posocco
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy.
| | - Martina Zanchetta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Sara Gagno
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Marco Orleni
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Doctoral School in Pharmacological Sciences, University of Padua, Lgo Meneghetti 2, 35131 Padova, Italy
| | - Giovanni Canil
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Martina Alberti
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
11
|
Habler K, Vogeser M, Teupser D. An UHPLC-MS/MS method for quantification of the CDK4/6 inhibitor abemaciclib in human serum. J Mass Spectrom Adv Clin Lab 2022; 24:15-21. [PMID: 35199096 PMCID: PMC8851261 DOI: 10.1016/j.jmsacl.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Abemaciclib is a new oral targeted treatment option for patients with advanced breast cancer. The emerging field of oral antitumor therapeutics presents challenges for both patients and healthcare teams; non-adherence and high inter-individual pharmacokinetic variability can influence response rates. METHODS For monitoring abemaciclib in human sera, a rapid novel ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed and fully validated. Sample preparation was based on a protein precipitation step followed by on-line solid phase extraction. Chromatographic separation was achieved using a biphenyl column and the isotope labeled standard abemaciclib-d8 was used for quantification. RESULTS The method showed linearity over a wide calibration range from 20.0 to 2500 ng/mL. With accuracies and precisions of ≤13.9% and ≤4.42%, respectively, the validation results were within the criteria of acceptance. The fitness of the method was tested by monitoring abemaciclib levels under compassionate use for a single individual. CONCLUSIONS The novelty of the presented two dimensional isotope dilution UHPLC-MS/MS method is in the semi-automated sample preparation, which results in negligible matrix effects, thereby allowing the introduction of abemaciclib into robust routine therapeutic drug monitoring (TDM). This method provides an efficient tool to verify the usefulness of personalized anticancer therapy in clinical practice.
Collapse
Affiliation(s)
- Katharina Habler
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| |
Collapse
|
12
|
Miao Y, Xu W, Li J. Assessing the pharmacokinetics of acalabrutinib in the treatment of chronic lymphocytic leukemia. Expert Opin Drug Metab Toxicol 2021; 17:1023-1030. [PMID: 34275396 DOI: 10.1080/17425255.2021.1955855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The first-in-class BTK inhibitor ibrutinib has substantially changed the therapeutic landscape of chronic lymphocytic leukemia (CLL). The next-generation BTK inhibitor acalabrutinib is more selective and may have less off-target toxicities as compared to ibrutinib. Acalabrutinib has demonstrated safety and efficacy in CLL and has been approved to treat CLL. AREAS COVERED Current clinical trials investigated acalabrutinib monotherapy or acalabrutinib-based combination therapies in relapsed/refractory and treatment-naive CLL. Data on the efficacy and safety of acalabrutinib in clinical trials were summarized in this review. The pharmacokinetic and pharmacodynamic data of acalabrutinib were also discussed. EXPERT OPINION Acalabrutinib selectively inhibits BTK by covalent binding and shows rapid absorption and elimination. Acalabrutinib does not inhibit EGFR, TEC, or ITK and shows fewer off-target toxicities. Completed phase 3 trials have demonstrated that acalabrutinib improves the outcomes of patients with relapsed/refractory CLL and patients with treatment-naive CLL. The phase 3 trial that evaluates acalabrutinib versus ibrutinib has met its primary endpoint. Early phase studies suggested the combinations of acalabrutinib with a CD20 antibody and venetoclax led to high rates of undetectable minimal residual disease in the bone marrow in CLL patients and might provide a fixed-duration therapeutic option for patients with CLL.
Collapse
Affiliation(s)
- Yi Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Pukou CLL Center, Nanjing, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Pukou CLL Center, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China.,Pukou CLL Center, Nanjing, China
| |
Collapse
|
13
|
Martínez-Chávez A, Tibben MM, de Jong KAM, Rosing H, Schinkel AH, Beijnen JH. Simultaneous quantification of abemaciclib and its active metabolites in human and mouse plasma by UHPLC-MS/MS. J Pharm Biomed Anal 2021; 203:114225. [PMID: 34242947 DOI: 10.1016/j.jpba.2021.114225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/13/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022]
Abstract
Abemaciclib is the third cyclin-dependent kinase 4 and 6 inhibitor approved for the treatment of advanced or metastatic breast cancer. In humans, abemaciclib is extensively metabolized by CYP3A4 with the formation of three active metabolites: N-desethylabemaciclib (M2), hydroxyabemaciclib (M20) and hydroxy-N-desethylabemaciclib (M18). These metabolites showed similar potency compared to the parent drug and were significantly abundant in plasma circulation. Thus, M2, M20, and M18 may contribute to the clinical activity of abemaciclib. For this reason, an UHPLC-MS/MS method for the simultaneous quantification of abemaciclib and its active metabolites in human and mouse plasma was developed and validated to support further clinical or preclinical investigations on this drug. Samples were processed by protein precipitation with acetonitrile, followed by supernatant dilution and filtration. Chromatographic separation was performed on a Kinetex C18 column (150 × 2.1 mm ID, 2.6 μm) using gradient elution with 10 mM ammonium bicarbonate in water (eluent A) and in methanol-water (9:1, v/v, eluent B). This method was selective, linear, accurate and precise within the range of 1-600 ng/mL for abemaciclib, 0.5-300 ng/mL for M2 and M20, and 0.2-120 ng/mL for M18. Furthermore, stability of the analytes in human and mouse plasma samples in several conditions was demonstrated. Finally, this assay was successfully used in a preclinical pharmacokinetic study, where abemaciclib and its active metabolites were identified and quantified. Inter-species differences between human and mouse samples were encountered, especially in the formation of M20, where isomers of this compound were detected in mouse plasma, but not in human plasma. This was confirmed by high resolution-mass spectrometry (HR-MS) measurements.
Collapse
Affiliation(s)
- Alejandra Martínez-Chávez
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Matthijs M Tibben
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Karen A M de Jong
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
14
|
Al-Shakliah NS, Attwa MW, AlRabiah H, Kadi AA. Identification and characterization of in vitro, in vivo, and reactive metabolites of tandutinib using liquid chromatography ion trap mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:399-410. [PMID: 33410830 DOI: 10.1039/d0ay02106g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tandutinib (TND) is a novel, oral small molecule designed for treating acute myeloid leukemia (AML) by inhibiting type III receptor tyrosine kinases. This study reports the use of in silico, in vivo, and in vitro methods to investigate the metabolism and possible metabolic bioactivation of TND. First, in silico metabolism of TND was assessed using the WhichP450™ module of the StarDrop® software to determine labile sites of metabolism in the TND chemical structure. Second, the XenoSite reactivity model, a web-based metabolism prediction software, was used to determine probable bioactive centers. Based on the in silico outcomes, a list of predicted metabolites and reactive intermediates were prepared. Third, in vitro and in vivo experiments were performed. In vitro TND metabolites were generated through incubation of TND with rat liver microsomes (RLMs). Another incubation of TND with RLMs was separately performed in the presence of GSH and KCN to check for the generation of reactive intermediates (soft and hard electrophiles). In vitro phase II metabolism was assessed by incubation of TND with isolated perfused rat hepatocytes. In vivo metabolism was investigated by oral gavage of TND (37 mg kg-1) in Sprague Dawley rats. Five in vitro phase I metabolites, one in vitro phase II and five reactive iminium intermediates (cyano adducts), six in vivo phase I, and one in vivo phase II metabolites of TND were characterized. The in vitro and in vivo metabolic pathways involved were O-dealkylation, α-hydroxylation, α-carbonyl formation, reduction, glucuronide, and sulfate conjugation. No GSH conjugate or its catabolic products were detected either in vitro or in vivo. Two cyclic tertiary rings of TND (piperazine and piperidine) were metabolically bioactivated to generate reactive iminium intermediates forming cyano adducts with KCN. The formed reactive intermediates may be the reason behind TND toxicity. In silico toxicological studies were performed for TND and its related (in vitro and in vivo) metabolites were evaluated using the DEREK software tool.
Collapse
Affiliation(s)
- Nasser S Al-Shakliah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | | | | | | |
Collapse
|
15
|
Yu M, Lendor S, Roszkowska A, Olkowicz M, Bragg L, Servos M, Pawliszyn J. Metabolic profile of fish muscle tissue changes with sampling method, storage strategy and time. Anal Chim Acta 2020; 1136:42-50. [DOI: 10.1016/j.aca.2020.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/11/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
|
16
|
Shi Q, Yang X, Ren L, Mattes WB. Recent advances in understanding the hepatotoxicity associated with protein kinase inhibitors. Expert Opin Drug Metab Toxicol 2020; 16:217-226. [DOI: 10.1080/17425255.2020.1727886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiang Shi
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Xi Yang
- Division of Cardiovascular and Renal Products, Office of New Drugs I, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Lijun Ren
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - William B. Mattes
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
17
|
Thakkar D, Kate AS. Update on metabolism of abemaciclib: In silico, in vitro, and in vivo metabolite identification and characterization using high resolution mass spectrometry. Drug Test Anal 2020; 12:331-342. [PMID: 31697023 DOI: 10.1002/dta.2725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
Abstract
Abemaciclib was approved by the US Food and Drug Administration in 2015 as an advanced treatment for metastatic breast cancer. Identification and characterization of limited numbers of abemaciclib metabolites have been reported in the literature. Therefore, the current study focused on the investigation of the in vitro and in vivo metabolic fate of abemaciclib using high resolution mass spectrometry. Initially, a vulnerable site of metabolism was predicted by the Xenosite web predictor tool. Later, in vitro metabolites were identified from pooled rat liver microsomes, rat S9 fractions, and human liver microsomes. Finally, in vivo metabolites have been detected in plasma, urine, and feces matrix of male Sprague-Dawley rats. A total of 12 putative metabolites (11 phase I and 1 phase II) of abemaciclib and their metabolic pathways were proposed by considering accurate mass, mass fragmentation pattern, nitrogen rule, and ring double bonds of the detected metabolites. Abemaciclib was metabolized via hydroxylation, N-oxidation, N-dealkylation, oxidative deamination followed by reduction and sulfate conjugation. In the human liver microsomes, maximum numbers of metabolites (11 metabolites) were observed, from which M7, M8, M9, and M11 were human specific.
Collapse
Affiliation(s)
- Disha Thakkar
- National Institute of Pharmaceutical Education and Research-Ahmedabad, Palaj Gandhinagar Gujarat, India
| | - Abhijeet S Kate
- National Institute of Pharmaceutical Education and Research-Ahmedabad, Palaj Gandhinagar Gujarat, India
| |
Collapse
|
18
|
Is there enough evidence to classify cycloalkyl amine substituents as structural alerts? Biochem Pharmacol 2020; 174:113796. [PMID: 31926938 DOI: 10.1016/j.bcp.2020.113796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Basic amine substituents provide several pharmacokinetic benefits relative to acidic and neutral functional groups, and have been extensively utilized as substituents of choice in drug design. On occasions, basic amines have been associated with off-target pharmacology via interactions with aminergic G-protein coupled receptors, ion-channels, kinases, etc. Structural features associated with the promiscuous nature of basic amines have been well-studied, and can be mitigated in a preclinical drug discovery environment. In addition to the undesirable secondary pharmacology, α-carbon oxidation of certain secondary or tertiary cycloalkyl amines can generate electrophilic iminium and aldehyde metabolites, potentially capable of covalent adduction to proteins or DNA. Consequently, cycloalkyl amines have been viewed as structural alerts (SAs), analogous to functional groups such as anilines, furans, thiophenes, etc., which are oxidized to reactive metabolites that generate immunogenic haptens by covalently binding to host proteins. Detailed survey of the literature, however, suggests that cases where preclinical or clinical toxicity has been explicitly linked to the metabolic activation of a cycloalkyl amine group are extremely rare. Moreover, there is a distinct possibility for the formation of electrophilic iminium/amino-aldehyde metabolites with numerous cycloalkyl amine-containing marketed drugs, since stable ring cleavage products have been characterized as metabolites in human mass balance studies. In the present work, a critical analysis of the evidence for and against the role of iminium ions/aldehydes as mediators of toxicity is discussed with a special emphasis on often time overlooked detoxication pathways of these reactive species to innocuous metabolites.
Collapse
|
19
|
Alsubi TA, Attwa MW, Bakheit AH, Darwish HW, Abuelizz HA, Kadi AA. In silico and in vitro metabolism of ribociclib: a mass spectrometric approach to bioactivation pathway elucidation and metabolite profiling. RSC Adv 2020; 10:22668-22683. [PMID: 35514564 PMCID: PMC9054585 DOI: 10.1039/d0ra01624a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/23/2020] [Accepted: 05/31/2020] [Indexed: 11/21/2022] Open
Abstract
Ribociclib (RBC, Kisqali®) is a highly selective CDK4/6 inhibitor that has been approved for breast cancer therapy. Initially, prediction of susceptible sites of metabolism and reactivity pathways were performed by the StarDrop WhichP450™ module and the Xenosite web predictor tool, respectively. Later, in vitro metabolites and adducts of RBC were characterized from rat liver microsomes using LC-MS/MS. Subsequently, in silico data was used as a guide for the in vitro work. Finally, in silico toxicity assessment of RBC metabolites was carried out using DEREK software and structural modification was proposed to reduce their side effects and to validate the bioactivation pathway theory using the StarDrop DEREK module. In vitro phase I metabolic profiling of RBC was performed utilizing rat liver microsomes (RLMs). Generation of reactive metabolites was investigated using potassium cyanide (KCN) as a trapping nucleophile for the transient and reactive iminium intermediates to form a stable cyano adduct that can be identified and characterized using mass spectrometry. Nine phase I metabolites and one cyano adduct of RBC were characterized. The proposed metabolic pathways involved in generation of these metabolites are hydroxylation, oxidation and reduction. The reactive intermediate generation mechanism of RBC may provide an explanation of its adverse reactions. Aryl piperazine is considered a structural alert for toxicity as proposed by the DEREK report. We propose that the generation of only one reactive metabolite of RBC in a very small concentration is due to the decreased reactivity of the piperazine ring compared to previous reports of similar drugs. Docking analysis was performed for RBC and its proposed derivatives at the active site of the human CDK6 enzyme. Methyl-RBC exhibited the best ADMET and docking analysis and fewer side effects compared to RBC and fluoro-RBC. Further drug discovery studies can be conducted taking into account this concept allowing the development of new drugs with enhanced safety profiles that were confirmed by using StarDrop software. To the best of our knowledge, this is the first literature report of RBCin vitro metabolic profiling and structural characterization and toxicological properties of the generated metabolites. Nine phase I metabolites and one product of KCN trapping of RBC were characterized. Aryl piperazine is considered a structural alert for toxicity as proposed by the DEREK report. Methyl-RBC exhibited less toxicity and more binding affinity to CDK6.![]()
Collapse
Affiliation(s)
- Thamer A. Alsubi
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Mohamed W. Attwa
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Adnan A. Kadi
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| |
Collapse
|
20
|
AlRabiah H, Kadi AA, Attwa M, Abdelhameed AS, Mostafa GAE. Reactive intermediates in copanlisib metabolism identified by LC-MS/MS: phase I metabolic profiling. RSC Adv 2019; 9:6409-6418. [PMID: 35517257 PMCID: PMC9060959 DOI: 10.1039/c8ra10322d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Copanlisib (CNB; Aliqopa™) is a novel, intravenous phosphoinositide 3-kinase inhibitor used to treat various solid and hematological malignancies. CNB was recently approved by the U.S. FDA to treat adults that relapsed after two preceding systemic therapies. Using LC-MS/MS, we screened for the in vitro metabolites of CNB formed in human liver microsomes (HLMs) and probed for the generation of reactive electrophiles using methoxyamine and potassium cyanide as nucleophiles to capture reactive electrophiles by forming stable adducts that are suitable for identification by LC-MS/MS. Seven CNB phase I metabolites generated by oxidation, hydroxylation, oxidative dealkylation, reduction, and N-oxidation were identified. In addition, four reactive electrophiles, 2 aldehydes and 2 iminium ions, were identified, and a prediction of the corresponding bioactivation mechanism is presented. The formation of reactive metabolites may be associated with the side effects reported for CNB. To our knowledge, this is the first report on the detailed structural characterization of reactive intermediates generated in CNB metabolism. Copanlisib (CNB; Aliqopa™) is a novel, intravenous phosphoinositide 3-kinase inhibitor used to treat various solid and hematological malignancies.![]()
Collapse
Affiliation(s)
- Haitham AlRabiah
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Adnan A. Kadi
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Mohamed W. Attwa
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Gamal A. E. Mostafa
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| |
Collapse
|