Solid state structure of sodium β-1-thiophenyl glucuronate identifies 5-coordinate sodium with three independent glucoronates.
Carbohydr Res 2021;
502:108281. [PMID:
33770633 DOI:
10.1016/j.carres.2021.108281]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022]
Abstract
Glucuronic acid is a key component of the glycosaminoglycans (GAGs) Chrondroitin Sulfate (CS), Heparin/Heparan sulfate (HS) and Hyaluronic Acid (HA), as well an important metabolite derivative. In biological systems the carboxylate of uronic acids in GAGs is involved in important H-binding interactions, and the role of metal coordination, such as sodiated systems, has indications associated with a number of biological effects, and physiological GAG-related processes. In synthetic approaches to GAG fragments, thioglycoside intermediates, or derivatives from these, are commonly employed. Of the reported examples of sodium coordination in carbohydrates, 6-coordinate systems are usually observed often with water ligands involved, Herein we report an unexpected 5-coordinate sodiated GlcA crystal structure of the parent GlcA, but as a thioglycoside derivative, whose crystal coordination differs from previous examples, with no involvement of water as a ligand and containing a distorted trigonal bypramidal sodium with each GlcA having five of 6 oxygens sodium-coordinated.
Collapse