1
|
Bowyer FT, Wood RA, Yilales M. Sea level controls on Ediacaran-Cambrian animal radiations. SCIENCE ADVANCES 2024; 10:eado6462. [PMID: 39083611 PMCID: PMC11290527 DOI: 10.1126/sciadv.ado6462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The drivers of Ediacaran-Cambrian metazoan radiations remain unclear, as does the fidelity of the record. We use a global age framework [580-510 million years (Ma) ago] to estimate changes in marine sedimentary rock volume and area, reconstructed biodiversity (mean genus richness), and sampling intensity, integrated with carbonate carbon isotopes (δ13Ccarb) and global redox data [carbonate Uranium isotopes (δ238Ucarb)]. Sampling intensity correlates with overall mean reconstructed biodiversity >535 Ma ago, while second-order (~10-80 Ma) global transgressive-regressive cycles controlled the distribution of different marine sedimentary rocks. The temporal distribution of the Avalon assemblage is partly controlled by the temporally and spatially limited record of deep-marine siliciclastic rocks. Each successive rise of metazoan morphogroups that define the Avalon, White Sea, and Cambrian assemblages appears to coincide with global shallow marine oxygenation events at δ13Ccarb maxima, which precede major sea level transgressions. While the record of biodiversity is biased, early metazoan radiations and oxygenation events are linked to major sea level cycles.
Collapse
|
2
|
Stephenson NP, Delahooke KM, Barnes N, Rideout BWT, Kenchington CG, Manica A, Mitchell EG. Morphology shapes community dynamics in early animal ecosystems. Nat Ecol Evol 2024; 8:1238-1247. [PMID: 38867093 PMCID: PMC11239517 DOI: 10.1038/s41559-024-02422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/24/2024] [Indexed: 06/14/2024]
Abstract
The driving forces behind the evolution of early metazoans are not well understood, but key insights into their ecology and evolution can be gained through ecological analyses of the in situ, sessile communities of the Avalon assemblage in the Ediacaran (~565 million years ago). Community structure in the Avalon is thought to be underpinned by epifaunal tiering and ecological succession, which we investigate in this study in 18 Avalon communities. Here we found that Avalon communities form four distinctive Community Types irrespective of succession processes, which are instead based on the dominance of morphologically distinct taxa, and that tiering is prevalent in three of these Community Types. Our results are consistent with emergent neutrality, whereby ecologically specialized morphologies evolve as a consequence of neutral (stochastic or reproductive) processes within niches, leading to generalization within the frond-dominated Community Type. Our results provide an ecological signature of the first origination and subsequent loss of disparate morphologies, probably as a consequence of community restructuring in response to ecological innovation. This restructuring led to the survival of non-tiered frondose generalists over tiered specialists, even into the youngest Ediacaran assemblages. Such frondose body plans also survive beyond the Ediacaran-Cambrian transition, perhaps due to the greater resilience afforded to them by their alternative ecological strategies.
Collapse
Affiliation(s)
- Nile P Stephenson
- Department of Zoology, University of Cambridge, Cambridge, UK.
- University Museum of Zoology, University of Cambridge, Cambridge, UK.
| | - Katie M Delahooke
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | | | | | | | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Emily G Mitchell
- Department of Zoology, University of Cambridge, Cambridge, UK
- University Museum of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Mussini G, Dunn FS. Decline and fall of the Ediacarans: late-Neoproterozoic extinctions and the rise of the modern biosphere. Biol Rev Camb Philos Soc 2024; 99:110-130. [PMID: 37667585 DOI: 10.1111/brv.13014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The end-Neoproterozoic transition marked a gradual but permanent shift between distinct configurations of Earth's biosphere. This interval witnessed the demise of the enigmatic Ediacaran Biota, ushering in the structured trophic webs and disparate animal body plans of Phanerozoic ecosystems. However, little consensus exists on the reality, drivers, and macroevolutionary implications of end-Neoproterozoic extinctions. Here we evaluate potential drivers of late-Neoproterozoic turnover by addressing recent findings on Ediacaran geochronology, the persistence of classical Ediacaran macrobionts into the Cambrian, and the existence of Ediacaran crown-group eumetazoans. Despite renewed interest in the possibility of Phanerozoic-style 'mass extinctions' in the latest Neoproterozoic, our synthesis of the available evidence does not support extinction models based on episodic geochemical triggers, nor does it validate simple ecological interpretations centred on direct competitive displacement. Instead, we argue that the protracted and indirect effects of early bilaterian innovations, including escalations in sediment engineering, predation, and the largely understudied impacts of reef-building, may best account for the temporal structure and possible selectivity of late-Neoproterozoic extinctions. We integrate these processes into a generalised model of early eumetazoan-dominated ecologies, charting the disruption of spatial and temporal isotropy on the Ediacaran benthos as a consequence of diversifying macrofaunal interactions. Given the nature of resource distribution in Ediacaran ecologies, the continuities among Ediacaran and Cambrian faunas, and the convergent origins of ecologically disruptive innovations among bilaterians we suggest that the rise of Phanerozoic-type biotas may have been unstoppable.
Collapse
Affiliation(s)
- Giovanni Mussini
- Department of Earth Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Frances S Dunn
- Oxford University Museum of Natural History, Parks Road, University of Oxford, Oxford, OX1 3PW, UK
| |
Collapse
|
4
|
Cribb AT, van de Velde SJ, Berelson WM, Bottjer DJ, Corsetti FA. Ediacaran-Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems. GEOBIOLOGY 2023; 21:435-453. [PMID: 36815223 DOI: 10.1111/gbi.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 01/03/2023] [Accepted: 01/27/2023] [Indexed: 06/13/2023]
Abstract
The radiation of bioturbation during the Ediacaran-Cambrian transition has long been hypothesized to have oxygenated sediments, triggering an expansion of the habitable benthic zone and promoting increased infaunal tiering in early Paleozoic benthic communities. However, the effects of bioturbation on sediment oxygen are underexplored with respect to the importance of biomixing and bioirrigation, two bioturbation processes which can have opposite effects on sediment redox chemistry. We categorized trace fossils from the Ediacaran and Terreneuvian as biomixing or bioirrigation fossils and integrated sedimentological proxies for bioturbation intensity with biogeochemical modeling to simulate oxygen penetration depths through the Ediacaran-Cambrian transition. Ultimately, we find that despite dramatic increases in ichnodiversity in the Terreneuvian, biomixing remains the dominant bioturbation behavior, and in contrast to traditional assumptions, Ediacaran-Cambrian bioturbation was unlikely to have resulted in extensive oxygenation of shallow marine sediments globally.
Collapse
Affiliation(s)
- Alison T Cribb
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Sebastiaan J van de Velde
- Department of Geosciences, Environment and Society, Universté Libre de Bruxelles, Brussels, Belgium
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - William M Berelson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - David J Bottjer
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Frank A Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Eden R, Manica A, Mitchell EG. Metacommunity analyses show an increase in ecological specialisation throughout the Ediacaran period. PLoS Biol 2022; 20:e3001289. [PMID: 35580078 PMCID: PMC9113585 DOI: 10.1371/journal.pbio.3001289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
The first animals appear during the late Ediacaran (572 to 541 Ma); an initial diversity increase was followed reduction in diversity, often interpreted as catastrophic mass extinction. We investigate Ediacaran ecosystem structure changes over this time period using the “Elements of Metacommunity Structure” framework to assess whether this diversity reduction in the Nama was likely caused by an external mass extinction, or internal metacommunity restructuring. The oldest metacommunity was characterised by taxa with wide environmental tolerances, and limited specialisation or intertaxa associations. Structuring increased in the second oldest metacommunity, with groups of taxa sharing synchronous responses to environmental gradients, aggregating into distinct communities. This pattern strengthened in the youngest metacommunity, with communities showing strong environmental segregation and depth structure. Thus, metacommunity structure increased in complexity, with increased specialisation and resulting in competitive exclusion, not a catastrophic environmental disaster, leading to diversity loss in the terminal Ediacaran. These results reveal that the complex eco-evolutionary dynamics associated with Cambrian diversification were established in the Ediacaran. This study shows that the eco-evolutionary dynamics of metazoan diversification known from the Cambrian Period started earlier in the Ediacaran Period with the Avalon assemblage and increased in complexity towards the Phanerozoic as new anatomical innovations appeared, culminating in the “Cambrian Explosion."
Collapse
Affiliation(s)
- Rebecca Eden
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Emily G. Mitchell
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Bayet-Goll A, Buatois LA, Mángano MG, Daraei M. The interplay of environmental constraints and bioturbation on matground development along the marine depositional profile during the Ordovician Radiation. GEOBIOLOGY 2022; 20:233-270. [PMID: 34672404 DOI: 10.1111/gbi.12473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
This study documents the distribution of matgrounds in a wide variety of environments recorded in the Ordovician Lashkerak and Ghelli Formations in the Alborz Mountains of northern Iran in order to evaluate controls on their distribution along the marine depositional profile. Detailed facies analysis allowed differentiating three groups of facies associations in the Lower to Upper Ordovician deposits of the Lashkerak formation: (i) estuarine system; (ii) wave-dominated shoreface-offshore complex; and (iii) mixed river- and wave-influenced deltaic system. The Middle to Upper Ordovician deposits of the Ghelli formation are divided into two groups of facies associations: (i) tide-influenced deltaic succession and (ii) deep-water fan system. Microbially induced sedimentary structures (MISS) are present in deposits formed in the central estuarine basin (Lashkerak formation) and in proximal lobes and lobe fringes of deep-water turbidite fans (Ghelli formation). On the contrary, MISS are absent in deposits from the wave-dominated shoreface-offshore complex, river- and tide-dominated deltas, and various subenvironments of the incised wave-dominated estuary (i.e., bayhead delta and estuary mouth) and the deep-marine turbidite fan system (i.e., turbidite channel, slope, and outer lobe). The lack of evidence of mat-building microorganisms in the deltaic systems may have resulted from two factors: (1) high physico-chemical stressors caused by river-induced processes, and (2) increase in degree of sediment disturbance, biodiffusion, and bioirrigation by burrowing organisms. Formation of microbial mats in the wave-dominated shoreface-offshore complex was inhibited by the activity of an abundant and diverse infauna capable of reworking the sediment. Our analysis shows that the spatial distribution of microbial mats was controlled by an interplay of environmental factors and innovations in animal-substrate interactions, mostly expressed by secular changes in bioturbation. This study supports the notion that the agronomic revolution was diachronic, with marginal-marine and deep-sea ecosystems lagging behind shallow-marine settings.
Collapse
Affiliation(s)
- Aram Bayet-Goll
- Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Mehdi Daraei
- Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
7
|
Cracknell K, García-Bellido DC, Gehling JG, Ankor MJ, Darroch SAF, Rahman IA. Pentaradial eukaryote suggests expansion of suspension feeding in White Sea-aged Ediacaran communities. Sci Rep 2021; 11:4121. [PMID: 33602958 PMCID: PMC7893023 DOI: 10.1038/s41598-021-83452-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Suspension feeding is a key ecological strategy in modern oceans that provides a link between pelagic and benthic systems. Establishing when suspension feeding first became widespread is thus a crucial research area in ecology and evolution, with implications for understanding the origins of the modern marine biosphere. Here, we use three-dimensional modelling and computational fluid dynamics to establish the feeding mode of the enigmatic Ediacaran pentaradial eukaryote Arkarua. Through comparisons with two Cambrian echinoderms, Cambraster and Stromatocystites, we show that flow patterns around Arkarua strongly support its interpretation as a passive suspension feeder. Arkarua is added to the growing number of Ediacaran benthic suspension feeders, suggesting that the energy link between pelagic and benthic ecosystems was likely expanding in the White Sea assemblage (~ 558-550 Ma). The advent of widespread suspension feeding could therefore have played an important role in the subsequent waves of ecological innovation and escalation that culminated with the Cambrian explosion.
Collapse
Affiliation(s)
- Kelsie Cracknell
- grid.5337.20000 0004 1936 7603School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ UK
| | - Diego C. García-Bellido
- grid.1010.00000 0004 1936 7304School of Biological Sciences, University of Adelaide, North Terrace Campus, Adelaide, South Australia 5005 Australia ,grid.437963.c0000 0001 1349 5098South Australian Museum, Adelaide, South Australia 5000 Australia
| | - James G. Gehling
- grid.437963.c0000 0001 1349 5098South Australian Museum, Adelaide, South Australia 5000 Australia
| | - Martin J. Ankor
- grid.1010.00000 0004 1936 7304Department of Earth Sciences and Sprigg Geobiology Centre, University of Adelaide, North Terrace Campus, Adelaide, South Australia 5005 Australia
| | - Simon A. F. Darroch
- grid.152326.10000 0001 2264 7217Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37235-1805 USA ,grid.462628.c0000 0001 2184 5457Senckenberg Museum of Natural History, 60325 Frankfurt, Germany
| | - Imran A. Rahman
- grid.440504.10000 0000 8693 4250Oxford University Museum of Natural History, Oxford, OX1 3PW UK
| |
Collapse
|
8
|
Buatois LA, Mángano MG, Minter NJ, Zhou K, Wisshak M, Wilson MA, Olea RA. Quantifying ecospace utilization and ecosystem engineering during the early Phanerozoic-The role of bioturbation and bioerosion. SCIENCE ADVANCES 2020; 6:eabb0618. [PMID: 32851171 PMCID: PMC7428343 DOI: 10.1126/sciadv.abb0618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
The Cambrian explosion (CE) and the great Ordovician biodiversification event (GOBE) are the two most important radiations in Paleozoic oceans. We quantify the role of bioturbation and bioerosion in ecospace utilization and ecosystem engineering using information from 1367 stratigraphic units. An increase in all diversity metrics is demonstrated for the Ediacaran-Cambrian transition, followed by a decrease in most values during the middle to late Cambrian, and by a more modest increase during the Ordovician. A marked increase in ichnodiversity and ichnodisparity of bioturbation is shown during the CE and of bioerosion during the GOBE. Innovations took place first in offshore settings and later expanded into marginal-marine, nearshore, deep-water, and carbonate environments. This study highlights the importance of the CE, despite its Ediacaran roots. Differences in infaunalization in offshore and shelf paleoenvironments favor the hypothesis of early Cambrian wedge-shaped oxygen minimum zones instead of a horizontally stratified ocean.
Collapse
Affiliation(s)
- Luis A. Buatois
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
- Corresponding author.
| | - M. Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Nicholas J. Minter
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, Hampshire PO1 3QL, UK
| | - Kai Zhou
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Max Wisshak
- Marine Research Department, Senckenberg am Meer, Südstrand 40, 26382 Wilhelmshaven, Germany
| | - Mark A. Wilson
- Department of Earth Sciences, The College of Wooster, Wooster, OH 44691, USA
| | - Ricardo A. Olea
- Eastern Energy Resources, United States Geological Survey, 12201 Sunrise Valley Dr., Reston, VA 20192, USA
| |
Collapse
|
9
|
Mángano MG, Buatois LA. The rise and early evolution of animals: where do we stand from a trace-fossil perspective? Interface Focus 2020; 10:20190103. [PMID: 32642049 DOI: 10.1098/rsfs.2019.0103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
The trace-fossil record provides a wealth of information to track the rise and early evolution of animals. It comprises the activity of both hard- and soft-bodied organisms, is continuous through the Ediacaran (635-539 Ma)- Cambrian (539-485 Ma) transition, yields insights into animal behaviour and their role as ecosystem engineers, and allows for a more refined characterization of palaeoenvironmental context. In order to unravel macroevolutionary signals from the trace-fossil record, a variety of approaches is available, including not only estimation of degree of bioturbation, but also analysis of ichnodiversity and ichnodisparity trajectories, and evaluation of the occupation of infaunal ecospace and styles of ecosystem engineering. Analysis of the trace-fossil record demonstrates the presence of motile benthic bilaterians in the Ediacaran, mostly feeding from biofilms. Although Ediacaran trace fossils are simple and emplaced at or immediately below the sediment surface, an increase in ichnofossil complexity, predation pressure, sediment disturbance and penetration depth is apparent during the terminal Ediacaran. Regardless of this increase, a dramatic rise in trace fossil diversity and disparity took place during the earliest Cambrian, underscoring that the novelty of the Fortunian (539-529 Ma) cannot be underestimated. The Fortunian still shows the persistence of an Ediacaran-style matground ecology, but is fundamentally characterized by the appearance of new trace-fossil architectural plans reflecting novel ways of interacting with the substrate. The appearance of Phanerozoic-style benthic ecosystems attests to an increased length and connectivity of the food web and improved efficiency in organic carbon transfer and nutrient recycling. A profound reorganization of the infaunal ecospace is recorded in both high-energy sand-dominated nearshore areas and low-energy mud-dominated offshore environments, during the early Cambrian, starting approximately during Cambrian Age 2 (529-521 Ma), but continuing during the rest of the early Cambrian. A model comprising four evolutionary phases is proposed to synthetize information from the Ediacaran-Cambrian trace-fossil record. The use of a rich ichnological toolbox; critical, systematic and comprehensive evaluation of the Ediacaran-Cambrian trace-fossil record; and high-resolution integration of the ichnological dataset and sedimentological information show that the advent of biogenic mixing was an important factor in fully marine environments at the dawn of the Phanerozoic.
Collapse
Affiliation(s)
- M Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, Canada S7N 5E2
| |
Collapse
|
10
|
Bowyer FT, Shore AJ, Wood RA, Alcott LJ, Thomas AL, Butler IB, Curtis A, Hainanan S, Curtis-Walcott S, Penny AM, Poulton SW. Regional nutrient decrease drove redox stabilisation and metazoan diversification in the late Ediacaran Nama Group, Namibia. Sci Rep 2020; 10:2240. [PMID: 32042140 PMCID: PMC7010733 DOI: 10.1038/s41598-020-59335-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/30/2019] [Indexed: 12/01/2022] Open
Abstract
The late Ediacaran witnessed an increase in metazoan diversity and ecological complexity, marking the inception of the Cambrian Explosion. To constrain the drivers of this diversification, we combine redox and nutrient data for two shelf transects, with an inventory of biotic diversity and distribution from the Nama Group, Namibia (~550 to ~538 Million years ago; Ma). Unstable marine redox conditions characterised all water depths in inner to outer ramp settings from ~550 to 547 Ma, when the first skeletal metazoans appeared. However, a marked deepening of the redoxcline and a reduced frequency of anoxic incursions onto the inner to mid-ramp is recorded from ~547 Ma onwards, with full ventilation of the outer ramp by ~542 Ma. Phosphorus speciation data show that, whilst anoxic ferruginous conditions were initially conducive to the drawdown of bioavailable phosphorus, they also permitted a limited degree of phosphorus recycling back to the water column. A long-term decrease in nutrient delivery from continental weathering, coupled with a possible decrease in upwelling, led to the gradual ventilation of the Nama Group basins. This, in turn, further decreased anoxic recycling of bioavailable phosphorus to the water column, promoting the development of stable oxic conditions and the radiation of new mobile taxa.
Collapse
Affiliation(s)
- F T Bowyer
- University of Edinburgh, School of GeoSciences, James Hutton Road, Edinburgh, EH9 3FE, UK. .,University of Leeds, School of Earth and Environment, Leeds, LS2 9JT, UK.
| | - A J Shore
- University of Edinburgh, School of GeoSciences, James Hutton Road, Edinburgh, EH9 3FE, UK
| | - R A Wood
- University of Edinburgh, School of GeoSciences, James Hutton Road, Edinburgh, EH9 3FE, UK
| | - L J Alcott
- University of Leeds, School of Earth and Environment, Leeds, LS2 9JT, UK
| | - A L Thomas
- University of Edinburgh, School of GeoSciences, James Hutton Road, Edinburgh, EH9 3FE, UK
| | - I B Butler
- University of Edinburgh, School of GeoSciences, James Hutton Road, Edinburgh, EH9 3FE, UK
| | - A Curtis
- University of Edinburgh, School of GeoSciences, James Hutton Road, Edinburgh, EH9 3FE, UK
| | - S Hainanan
- Ministry of Mines and Energy, 6 Aviation Road, Private Bag, 13297, Windhoek, Namibia
| | | | - A M Penny
- Finnish Museum of Natural History, University of Helsinki, Jyrängöntie 2, 00560, Helsinki, Finland
| | - S W Poulton
- University of Leeds, School of Earth and Environment, Leeds, LS2 9JT, UK
| |
Collapse
|
11
|
Complex marine bioturbation ecosystem engineering behaviors persisted in the wake of the end-Permian mass extinction. Sci Rep 2020; 10:203. [PMID: 31937801 PMCID: PMC6959249 DOI: 10.1038/s41598-019-56740-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/04/2019] [Indexed: 11/08/2022] Open
Abstract
The end-Permian mass extinction was the most severe mass extinction event of the Phanerozoic and was followed by a several million-year delay in benthic ecosystem recovery. While much work has been done to understand biotic recovery in both the body and trace fossil records of the Early Triassic, almost no focus has previously been given to analyzing patterns in ecosystem engineering complexity as a result of the extinction drivers. Bioturbation is a key ecosystem engineering behavior in marine environments, as it results in changes to resource flows and the physical environment. Thus, the trace fossil record can be used to examine the effect of the end-Permian mass extinction on bioturbating ecosystem engineers. We present a dataset compiled from previously published literature to analyze burrowing ecosystem engineering behaviors through the Permian-Triassic boundary. We report two key observations: first, that there is no loss in bioturbation ecosystem engineering behaviors after the mass extinction, and second, that these persisting behaviors include deep tier, high-impact, complex ecosystem engineering. These findings suggest that while environmental conditions may have limited deeper burrowing, complex ecosystem engineering behaviors were able to persist in the Early Triassic. Furthermore, the persistence of deep tier bioirrigated three-dimensional network burrows implies that benthic biogeochemical cycling could have been maintained at pre-extinction states in some local environments, stimulating ecosystem productivity and promoting biotic recovery in the Early Triassic.
Collapse
|