1
|
Zhi-Xiong C. Single-cell RNA sequencing in ovarian cancer: Current progress and future prospects. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:100-129. [PMID: 39778630 DOI: 10.1016/j.pbiomolbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Ovarian cancer is one of the most prevalent gynaecological malignancies. The rapid development of single-cell RNA sequencing (scRNA-seq) has allowed scientists to use this technique to study ovarian cancer development, heterogeneity, and tumour environment. Although multiple original research articles have reported the use of scRNA-seq in understanding ovarian cancer and how therapy resistance occurs, there is a lack of a comprehensive review that could summarize the findings from multiple studies. Therefore, this review aimed to fill this gap by comparing and summarizing the results from different studies that have used scRNA-seq in understanding ovarian cancer development, heterogeneity, tumour microenvironment, and treatment resistance. This review will begin with an overview of scRNA-seq workflow, followed by a discussion of various applications of scRNA-seq in studying ovarian cancer. Next, the limitations and future directions of scRNA-seq in ovarian cancer research will be presented.
Collapse
Affiliation(s)
- Chong Zhi-Xiong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500 Selangor, Malaysia; Victor Biotech, 81200 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
2
|
Zhang Y, Wang H, Dai F, He K, Tuo Z, Wang J, Bi L, Chen X. A pan-cancer analysis of the oncogenic and immunological roles of RGS5 in clear cell renal cell carcinomas based on in vitro experiment validation. Hum Genomics 2025; 19:14. [PMID: 39985100 PMCID: PMC11846387 DOI: 10.1186/s40246-025-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/15/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND RGS5, the first gene identified in tumor-resident pericytes, plays a crucial role in angiogenesis. However, its effects on immunology and prognosis in human cancer are still mostly unknown. This study investigates the carcinogenic and immunological roles of RGS5 through a comprehensive pan-cancer analysis. METHODS A standardized pan-cancer dataset for RGS5 was obtained from the public database. R software and relevant packages were utilized to analyze the oncogenic and immunological roles. Clinical samples and cellular experiments were conducted to validate RGS5 expression and its biological function in renal cancer. RESULTS Bioinformatics analysis revealed that RGS5 is dysregulated in a variety of human malignancies and is significantly associated with patient prognosis. Additionally, RGS5 expression is closely linked to tumor heterogeneity and stemness indicators across different cancer types. Co-expression of RGS5 with genes involved in MHC, immune activation, immunosuppressive proteins, chemokines, and chemokine receptors was observed in various tumors. High expression of RGS5 predicts a good prognosis in patients with renal cancer. In the renal cancer cohort, RGS5 expression strongly correlated with the distribution of tumor-associated fibroblasts. Silencing RGS5 expression can affect the proliferation, migration, and invasion of renal carcinoma cells. CONCLUSIONS RGS5 expression in tumors is intricately associated with various clinical features, particularly concerning tumor progression and patient prognosis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Huming Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Fang Dai
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ke He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Zhouting Tuo
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jinyou Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
| | - Liangkuan Bi
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China.
| | - Xin Chen
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
3
|
Filipovich E, Gorodkova E, Shcherbakova A, Asaad W, Popov S, Melnichenko G, Mokrysheva N, Utkina M. The role of cell cycle-related genes in the tumorigenesis of adrenal and thyroid neuroendocrine tumors. Heliyon 2025; 11:e41457. [PMID: 39834406 PMCID: PMC11742855 DOI: 10.1016/j.heliyon.2024.e41457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
The molecular mechanisms underlying adrenal and thyroid neuroendocrine tumors, including their tumorigenesis, progression, and metastasis, involve unique pathways regulating cell cycle progression. To better understand these mechanisms and pathways, extensive in-depth research on cell cycle-related genes is necessary. This review aims to describe and interpret current single-cell RNA sequencing studies on neuroblastoma, medullary thyroid cancer, and pheochromocytoma tumors. Our review summarizes differentially expressed cell cycle-related genes with distinct functions, highlighting their potential as therapeutic targets and components of panels used to determine tumor type or aggressiveness. Although some insights have been gained, there is still limited information on these topics, and further research is required to explore the regulatory mechanisms of these tumors.
Collapse
Affiliation(s)
- Ekaterina Filipovich
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Ekaterina Gorodkova
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Anastasia Shcherbakova
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Walaa Asaad
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Sergey Popov
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Galina Melnichenko
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Natalya Mokrysheva
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Marina Utkina
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| |
Collapse
|
4
|
Qiu J, Fu Y, Liu T, Wang J, Liu Y, Zhang Z, Ye Z, Cao Z, Su D, Luo W, Tao J, Weng G, Ye L, Zhang F, Liang Z, Zhang T. Single-cell RNA-seq reveals heterogeneity in metastatic renal cell carcinoma and effect of anti-angiogenesis therapy in the pancreas metastatic lesion. Cancer Lett 2024; 601:217193. [PMID: 39159881 DOI: 10.1016/j.canlet.2024.217193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Metastatic clear cell renal cell carcinoma has heterogenous tumor microenvironment (TME). Among the metastatic lesions, pancreas metastasis is rare and controversy in treatment approaches. Here, extensive primary and metastatic lesion samples were included by single-cell RNA-seq to decipher the distinct metastasis TME. The hypoxic and inflammatory TME of pancreas metastasis was decoded in this study, and the activation of PAX8-myc signaling, and metabolic reprogramming were observed. The active components including endothelial cells, fibroblasts and T cells were profiled. Meanwhile, we also evaluated the effect of anti-angiogenesis treatment in the pancreas metastasis patient. The potential mechanisms of pancreatic tropism, instability of genome, and the response of immunotherapy were also discussed in this work. Taken together, our findings suggest a clue to the heterogeneity in metastasis TME and provide evidence for the treatment of pancreas metastasis in renal cell carcinoma patients.
Collapse
Affiliation(s)
- Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yifan Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Tao Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jun Wang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zeyu Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Ziwen Ye
- Department of Urology, The Fist Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Guihu Weng
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Liyuan Ye
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Feifan Zhang
- Department of Computer Science, University College London, UK.
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Agraz M, Goksuluk D, Zhang P, Choi BR, Clements RT, Choudhary G, Karniadakis GE. ML-GAP: machine learning-enhanced genomic analysis pipeline using autoencoders and data augmentation. Front Genet 2024; 15:1442759. [PMID: 39399219 PMCID: PMC11467662 DOI: 10.3389/fgene.2024.1442759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction The advent of RNA sequencing (RNA-Seq) has significantly advanced our understanding of the transcriptomic landscape, revealing intricate gene expression patterns across biological states and conditions. However, the complexity and volume of RNA-Seq data pose challenges in identifying differentially expressed genes (DEGs), critical for understanding the molecular basis of diseases like cancer. Methods We introduce a novel Machine Learning-Enhanced Genomic Data Analysis Pipeline (ML-GAP) that incorporates autoencoders and innovative data augmentation strategies, notably the MixUp method, to overcome these challenges. By creating synthetic training examples through a linear combination of input pairs and their labels, MixUp significantly enhances the model's ability to generalize from the training data to unseen examples. Results Our results demonstrate the ML-GAP's superiority in accuracy, efficiency, and insights, particularly crediting the MixUp method for its substantial contribution to the pipeline's effectiveness, advancing greatly genomic data analysis and setting a new standard in the field. Discussion This, in turn, suggests that ML-GAP has the potential to perform more accurate detection of DEGs but also offers new avenues for therapeutic intervention and research. By integrating explainable artificial intelligence (XAI) techniques, ML-GAP ensures a transparent and interpretable analysis, highlighting the significance of identified genetic markers.
Collapse
Affiliation(s)
- Melih Agraz
- Division of Applied Mathematics, Brown University, Providence, RI, United States
- Department of Statistics, Giresun University, Giresun, Türkiye
| | - Dincer Goksuluk
- Department of Biostatistics, Erciyes University, Kayseri, Türkiye
| | - Peng Zhang
- Vascular Research Laboratory, VA Providence Healthcare System, Providence, RI, United States
- Division of Cardiology, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, United States
| | - Bum-Rak Choi
- Division of Cardiology, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, United States
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - Richard T. Clements
- Vascular Research Laboratory, VA Providence Healthcare System, Providence, RI, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island College of Pharmacy, South Kingston, RI, United States
| | - Gaurav Choudhary
- Vascular Research Laboratory, VA Providence Healthcare System, Providence, RI, United States
- Division of Cardiology, Department of Medicine, Alpert Medical School of Brown University, Providence, RI, United States
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, United States
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI, United States
- School of Engineering, Brown University, Providence, RI, United States
| |
Collapse
|
6
|
Lu L, Feng H, Dai G, Liu S, Feng Y, Tan H, Zhang X, Hong G, Lai X. A novel cancer-associated fibroblast signature for kidney renal clear cell carcinoma via integrated analysis of single-cell and bulk RNA-sequencing. Discov Oncol 2024; 15:309. [PMID: 39060620 PMCID: PMC11282037 DOI: 10.1007/s12672-024-01175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), integral components of the tumor microenvironment, play a pivotal role in tumor proliferation, metastasis, and clinical outcomes. However, its specific roles in Kidney Renal Clear Cell Carcinoma (KIRC) remain poorly understood. Employing the established Seurat single-cell analysis pipeline, we identified 21 CAFs marker genes. Subsequently, a prognostic signature consisting of 6 CAFs marker genes (RGS5, PGF, TPM2, GJA4, SEPT4, and PLXDC1) was developed in a cohort through univariate and LASSO Cox regression analyses. The model's efficacy was then validated in an external cohort, with a remarkable predictive performance in 1-, 3-, and 5-year. Patients in the high-risk group exhibited significantly inferior survival outcomes (p < 0.001), and the risk score was an independent prognostic factor (p < 0.05). Distinct differences in immune cell profiles and drug susceptibility were observed between the two risk groups. In KIRC, the PGF-VEGFR1 signaling pathway displayed a notable increase. PGF expression was significantly elevated in tumor tissues, as demonstrated by quantitative real-time polymerase chain reaction. In vitro, transwell assays and CCK8 revealed that recombinant-PGF could enhance the capability of cell proliferation, migration, and invasion in 769P and 786-O cells. This study firstly developed a novel predictive model based on 6 CAFs genes for KIRC. Additionally, PGF may present a potential therapeutic target to enhance KIRC treatment.
Collapse
Affiliation(s)
- Ling Lu
- Department of Renal Rheumatology Immunology, School of Medicine, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Huaguo Feng
- Department of Hepatobiliary Surgery, School of Medicine, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Guohua Dai
- Department of Hepatobiliary Surgery, School of Medicine, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Shuangquan Liu
- Department of Hepatobiliary Surgery, School of Medicine, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Yi Feng
- Department of Hepatobiliary Surgery, Jiangjin District Maternal and Child Health Hospital, Chongqing, China
| | - Haoyang Tan
- Department of Hepatobiliary Surgery, School of Medicine, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Xian Zhang
- Department of Hepatobiliary Surgery, Tongnan District People's Hospital, No. 189, Jianshe Road, Dafo Street, Tongnan District, Chongqing, China
| | - Guoqing Hong
- Department of Hepatobiliary Surgery, Tongnan District People's Hospital, No. 189, Jianshe Road, Dafo Street, Tongnan District, Chongqing, China.
| | - Xing Lai
- Department of Hepatobiliary Surgery, Tongnan District People's Hospital, No. 189, Jianshe Road, Dafo Street, Tongnan District, Chongqing, China.
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| |
Collapse
|
7
|
Fu S, Wu S, Liu J, Wang J, Tian S, Zhang G, Yin F, Sun Y, Zhang P, Yang Q. A quinoline derivative-based supramolecular gel for fluorescence 'turn-off' detection of Fe 3+and Cu 2. Methods Appl Fluoresc 2024; 12:035006. [PMID: 38702877 DOI: 10.1088/2050-6120/ad4232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
In this research, we synthesized and constructed a novel gelator (namedQN) combining quinoline and naphthalene that self-assembled in N, N-dimethylformamide (DMF) to form a stable supramolecular gel (namedOQN). Under UV light, gelOQNexhibited extremely bright yellow fluorescence. The gelOQNshowed excellent sensing performance for both Fe3+and Cu2+, with a fluorescence 'turn-off' detection mechanism and the lowest detection limit of 7.58 × 10-8M and 1.51 × 10-8M, respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, x-ray powder diffraction (XRD), rheological measurements, x-ray photoelectron spectroscopy (XPS), and fluorescence spectroscopy were used to characterize the gelOQN. TheOQNion-responsive membrane created is an excellent fluorescent writing material.
Collapse
Affiliation(s)
- Shuaishuai Fu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Shang Wu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Jutao Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Jiajia Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Shuo Tian
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Guangwu Zhang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Beimiantan 400, Lanzhou, Gansu 730000, People's Republic of China
| | - Fenping Yin
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Yuzhi Sun
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Ping Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730124, People's Republic of China
| | - Quanlu Yang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Beimiantan 400, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
8
|
Pant A, Moar K, Arora TK, Maurya PK. Implication of biosignatures in the progression of endometriosis. Pathol Res Pract 2024; 254:155103. [PMID: 38237401 DOI: 10.1016/j.prp.2024.155103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
Endometriosis is an estrogen-dependent chronic inflammatory disorder involving the placement and growth of endometrial tissue outside the uterine cavity. It is the most common multifactorial disease that affects the life quality of women in reproductive age. Due to its multicomponent nature, early diagnosis of the disease is challenging. Since many genetic, epigenetic alterations and non-genetic factors contribute to the pathology of endometriosis, devising a drug therapy that directly acts on the ectopic tissue is extremely difficult. Endometriosis is a hormone-driven disease with estrogen considered as a primary driver for the development of endometriotic lesions. This study aims to identify biosignatures involved in endometriosis with and without gonadotropin releasing hormone agonists (GnRHa). GnRHa is a short peptide analog of GnRH that causes inhibition of estrogen and androgen synthesis. Microarray based-gene expression profiling was performed on total RNA extracted from endometriotic tissue samples with and without GnRHa-treated patients already published in our previous paper. The untreated group were considered as the control. Genes were then selected for validation by quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR analysis confirmed significant downregulation in(p < 0.05) expression of DARC (p = 0.0042), CDH1 (p = 0.0027), CDH5 (p = 0.0283), ATP2A3 (p < 0.001), RGS5 (p = 0.0032), and CD36 (p = 0.0162) in endometriosis patients treated with GnRHa analogs. Although, CTNNAL1 (p = 0.0136) also showed significant results but there was upregulation in their expression levels after GnRHa treatment. Thus, an altered expression of these genes makes them a possible candidate determinant of endometriosis treated with GnRHa.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Taruna K Arora
- Reproductive Biology and Maternal Child Health Division, Indian Council of Medical Research, New Delhi 110029, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
9
|
Li L, Xu Q, Tang C. RGS proteins and their roles in cancer: friend or foe? Cancer Cell Int 2023; 23:81. [PMID: 37118788 PMCID: PMC10148553 DOI: 10.1186/s12935-023-02932-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
As negative modulators of G-protein-coupled receptors (GPCRs) signaling, regulators of G protein signaling (RGS) proteins facilitate various downstream cellular signalings through regulating kinds of heterotrimeric G proteins by stimulating the guanosine triphosphatase (GTPase) activity of G-protein α (Gα) subunits. The expression of RGS proteins is dynamically and precisely mediated by several different mechanisms including epigenetic regulation, transcriptional regulation -and post-translational regulation. Emerging evidence has shown that RGS proteins act as important mediators in controlling essential cellular processes including cell proliferation, survival -and death via regulating downstream cellular signaling activities, indicating that RGS proteins are fundamentally involved in sustaining normal physiological functions and dysregulation of RGS proteins (such as aberrant expression of RGS proteins) is closely associated with pathologies of many diseases such as cancer. In this review, we summarize the molecular mechanisms governing the expression of RGS proteins, and further discuss the relationship of RGS proteins and cancer.
Collapse
Affiliation(s)
- Lin Li
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd., Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
10
|
Zhong J, Han C, Wang Y, Chen P, Liu R. Identifying the critical state of complex biological systems by the directed-network rank score method. Bioinformatics 2022; 38:5398-5405. [PMID: 36282843 PMCID: PMC9750123 DOI: 10.1093/bioinformatics/btac707] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/21/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Catastrophic transitions are ubiquitous in the dynamic progression of complex biological systems; that is, a critical transition at which complex systems suddenly shift from one stable state to another occurs. Identifying such a critical point or tipping point is essential for revealing the underlying mechanism of complex biological systems. However, it is difficult to identify the tipping point since few significant differences in the critical state are detected in terms of traditional static measurements. RESULTS In this study, by exploring the dynamic changes in gene cooperative effects between the before-transition and critical states, we presented a model-free approach, the directed-network rank score (DNRS), to detect the early-warning signal of critical transition in complex biological systems. The proposed method is applicable to both bulk and single-cell RNA-sequencing (scRNA-seq) data. This computational method was validated by the successful identification of the critical or pre-transition state for both simulated and six real datasets, including three scRNA-seq datasets of embryonic development and three tumor datasets. In addition, the functional and pathway enrichment analyses suggested that the corresponding DNRS signaling biomarkers were involved in key biological processes. AVAILABILITY AND IMPLEMENTATION The source code is freely available at https://github.com/zhongjiayuan/DNRS. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jiayuan Zhong
- School of Mathematics and Big Data, Foshan University, Foshan 528000, China
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Chongyin Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yangkai Wang
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Pei Chen
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
- Pazhou Lab, Guangzhou 510330, China
| |
Collapse
|
11
|
Chen C, Sheng Y. Prognostic Impact of MITD1 and Associates With Immune Infiltration in Kidney Renal Clear Cell Carcinoma. Technol Cancer Res Treat 2021; 20:15330338211036233. [PMID: 34346239 PMCID: PMC8351032 DOI: 10.1177/15330338211036233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most malignant diseases with poor survival rate over the world. The tumor microenvironment (TME) is highly related to the oncogenesis, development, and prognosis of KIRC. Thus, making the identification of KIRC biomarkers and immune infiltrates critically important. Microtubule Interacting and Trafficking Domain containing 1(MITD1) was reported to participate in cytokinesis of cell division. In the present study, multiple bioinformatics tools and databases were applied to investigate the expression level and clinical value of MITD1 in KIRC. We found that the expression of MITD1 was significantly increased in KIRC tissues. Further, the KIRC patients with high MITD1 levels showed a worse overall survival (OS) rate and disease free survival (DFS) rate. Otherwise, we found a significant correlation MITD1 expression and the abundance of CD8+ T cells. Functional enrichment analyses revealed that immune response and cytokine-cytokine receptor are very critical signaling pathways which associated with MITD1 in KIRC. In conclusion, our findings indicated that MITD1 may be a potential biomarker and associated with immune infiltration in KIRC.
Collapse
Affiliation(s)
- Chujie Chen
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Guangming District, Shenzhen, People's Republic of China
| | - Yiyu Sheng
- Department of Urology, Seventh Affiliated Hospital, Sun Yat-sen University, Guangming District, Shenzhen, People's Republic of China
| |
Collapse
|
12
|
Su S, Akbarinejad S, Shahriyari L. Immune classification of clear cell renal cell carcinoma. Sci Rep 2021; 11:4338. [PMID: 33619294 PMCID: PMC7900197 DOI: 10.1038/s41598-021-83767-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Since the outcome of treatments, particularly immunotherapeutic interventions, depends on the tumor immune micro-environment (TIM), several experimental and computational tools such as flow cytometry, immunohistochemistry, and digital cytometry have been developed and utilized to classify TIM variations. In this project, we identify immune pattern of clear cell renal cell carcinomas (ccRCC) by estimating the percentage of each immune cell type in 526 renal tumors using the new powerful technique of digital cytometry. The results, which are in agreement with the results of a large-scale mass cytometry analysis, show that the most frequent immune cell types in ccRCC tumors are CD8+ T-cells, macrophages, and CD4+ T-cells. Saliently, unsupervised clustering of ccRCC primary tumors based on their relative number of immune cells indicates the existence of four distinct groups of ccRCC tumors. Tumors in the first group consist of approximately the same numbers of macrophages and CD8+ T-cells and and a slightly smaller number of CD4+ T cells than CD8+ T cells, while tumors in the second group have a significantly high number of macrophages compared to any other immune cell type (P-value \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$<0.01$$\end{document}<0.01). The third group of ccRCC tumors have a significantly higher number of CD8+ T-cells than any other immune cell type (P-value \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$<0.01$$\end{document}<0.01), while tumors in the group 4 have approximately the same numbers of macrophages and CD4+ T-cells and a significantly smaller number of CD8+ T-cells than CD4+ T-cells (P-value \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$<0.01$$\end{document}<0.01). Moreover, there is a high positive correlation between the expression levels of IFNG and PDCD1 and the percentage of CD8+ T-cells, and higher stage and grade of tumors have a substantially higher percentage of CD8+ T-cells. Furthermore, the primary tumors of patients, who are tumor free at the last time of follow up, have a significantly higher percentage of mast cells (P-value \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$<0.01$$\end{document}<0.01) compared to the patients with tumors for all groups of tumors except group 3.
Collapse
Affiliation(s)
- Sumeyye Su
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, USA
| | - Shaya Akbarinejad
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
13
|
Abstract
Since the outcome of treatments, particularly immunotherapeutic interventions, depends on the tumor immune micro-environment (TIM), several experimental and computational tools such as flow cytometry, immunohistochemistry, and digital cytometry have been developed and utilized to classify TIM variations. In this project, we identify immune pattern of clear cell renal cell carcinomas (ccRCC) by estimating the percentage of each immune cell type in 526 renal tumors using the new powerful technique of digital cytometry. The results, which are in agreement with the results of a large-scale mass cytometry analysis, show that the most frequent immune cell types in ccRCC tumors are CD8+ T-cells, macrophages, and CD4+ T-cells. Saliently, unsupervised clustering of ccRCC primary tumors based on their relative number of immune cells indicates the existence of four distinct groups of ccRCC tumors. Tumors in the first group consist of approximately the same numbers of macrophages and CD8+ T-cells and and a slightly smaller number of CD4+ T cells than CD8+ T cells, while tumors in the second group have a significantly high number of macrophages compared to any other immune cell type (P-value [Formula: see text]). The third group of ccRCC tumors have a significantly higher number of CD8+ T-cells than any other immune cell type (P-value [Formula: see text]), while tumors in the group 4 have approximately the same numbers of macrophages and CD4+ T-cells and a significantly smaller number of CD8+ T-cells than CD4+ T-cells (P-value [Formula: see text]). Moreover, there is a high positive correlation between the expression levels of IFNG and PDCD1 and the percentage of CD8+ T-cells, and higher stage and grade of tumors have a substantially higher percentage of CD8+ T-cells. Furthermore, the primary tumors of patients, who are tumor free at the last time of follow up, have a significantly higher percentage of mast cells (P-value [Formula: see text]) compared to the patients with tumors for all groups of tumors except group 3.
Collapse
Affiliation(s)
- Sumeyye Su
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, USA
| | - Shaya Akbarinejad
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, USA
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
14
|
Sima C, Iordache P, Poenaru E, Manolescu A, Poenaru C, Jinga V. Genome-wide association study of nephrolithiasis in an Eastern European population. Int Urol Nephrol 2020; 53:309-313. [PMID: 32865774 DOI: 10.1007/s11255-020-02606-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Nephrolithiasis is a urological pathology that occurs at high rates and carries a great burden in terms of costs. The probability of recurrence is significant, necessitating improvements in prophylaxis and understanding of the disease mechanism. Despite the high heritability of this disease, only five genome-wide association studies (GWAS) of nephrolithiasis have been published. METHODS We selected 335 unrelated confirmed nephrolithiasis cases from two major sample collection projects (blood and buccal swabs) in Romania. DNA was extracted from whole blood and buccal swabs at deCODE Genetics (Reykjavik, Iceland) and genotyped. RESULTS Single-nucleotide polymorphisms identified from this GWAS implicated biological pathways and gene ontologies involving solute transport, renal physiology, and calcium homeostasis. Three loci especially emerged as candidates with a highly significant association with nephrolithiasis: RS10917682 in Regulator of G protein signaling 5, which has crucial roles in mRNA regulation and has been linked to renal cell carcinoma; RS1118528 in Solute carrier family 25 member 24, which encodes a mitochondrial ATP-Mg/phosphate carrier protein that likely influences a variety of important cellular pathways; and the TOX2-associated locus rs4437026, because TOX2 is upregulated in several tumor types and linked to tumor progression. CONCLUSION This study is the largest kidney stone-related GWAS reported in an Eastern European population and the first GWAS performed in a Romanian population to investigate the genetic risk factors for nephrolithiasis. We identified several loci that warrant further investigation for a better understanding of this highly heritable condition.
Collapse
Affiliation(s)
- C Sima
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- "Prof. Dr. Th. Burghele" Clinical Hospital, Bucharest, Romania
| | - P Iordache
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Exigia Medical, Bucharest, Romania
| | - E Poenaru
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | | | | | - V Jinga
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- "Prof. Dr. Th. Burghele" Clinical Hospital, Bucharest, Romania
| |
Collapse
|