1
|
Zhang C, Liu Y, Ortega-Hernández J, Wolfe JM, Jin C, Mai H, Hou X, Guo J, Zhai D. Three-dimensional morphology of the biramous appendages in Isoxys from the early Cambrian of South China, and its implications for early euarthropod evolution. Proc Biol Sci 2023; 290:20230335. [PMID: 37072042 PMCID: PMC10113025 DOI: 10.1098/rspb.2023.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Early euarthropod evolution involved a major transition from lobopodian-like taxa to organisms featuring a segmented, well-sclerotized trunk (arthrodization) and limbs (arthropodization). However, the precise origin of a completely arthrodized trunk and arthropodized ventral biramous appendages remain controversial, as well as the early onset of anterior-posterior limb differentiation in stem-group euarthropods. New fossil material and micro-computed tomography inform the detailed morphology of the arthropodized biramous appendages in the carapace-bearing euarthropod Isoxys curvirostratus from the early Cambrian Chengjiang biota. In addition to well-developed grasping frontal appendages, I. curvirostratus possesses two batches of morphologically and functionally distinct biramous limbs. The first batch consists of four pairs of short cephalic appendages with robust endites with a feeding function, whereas the second batch has more elongate trunk appendages for locomotion. Critically, our new material shows that the trunk of I. curvirostratus was not arthrodized. The results of our phylogenetic analyses recover isoxyids as some of the earliest branching sclerotized euarthropods, and strengthens the hypothesis that arthropodized biramous appendages evolved before full body arthrodization.
Collapse
Affiliation(s)
- Caixia Zhang
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| | - Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
- Management Committee of the Chengjiang Fossil Site World Heritage, Chengjiang 652599, People's Republic of China
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Changfei Jin
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| | - Huijuan Mai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| | - Jin Guo
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
- Management Committee of the Chengjiang Fossil Site World Heritage, Chengjiang 652599, People's Republic of China
| | - Dayou Zhai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| |
Collapse
|
2
|
Zhang M, Wu Y, Lin W, Ma J, Wu Y, Fu D. Amplectobeluid Radiodont Guanshancaris gen. nov. from the Lower Cambrian (Stage 4) Guanshan Lagerstätte of South China: Biostratigraphic and Paleobiogeographic Implications. BIOLOGY 2023; 12:583. [PMID: 37106783 PMCID: PMC10136193 DOI: 10.3390/biology12040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Radiodonta, an extinct stem-euarthropod group, has been considered as the largest predator of Cambrian marine ecosystems. As one of the radiodont-bearing Konservat-Lagerstätten, the Guanshan biota (South China, Cambrian Stage 4) has yielded a diverse assemblage of soft-bodied and biomineralized taxa that are exclusive to this exceptional deposit. "Anomalocaris" kunmingensis, the most abundant radiodont in the Guanshan biota, was originally assigned to Anomalocaris within the Anomalocarididae. Despite this taxon being formally assigned to the family Amplectobeluidae more recently, its generic assignment remains uncertain. Here, we present new materials of "Anomalocaris" kunmingensis from the Guanshan biota, and reveal that the frontal appendages possess two enlarged endites; all endites bear one posterior auxiliary spine and up to four anterior auxiliary spines; three robust dorsal spines and one terminal spine protrude from the distal part. These new observations, allied with anatomical features illustrated by previous studies, allow us to assign this taxon to a new genus, Guanshancaris gen. nov. Brachiopod shell bearing embayed injury and incomplete trilobites, associated with frontal appendages in our specimens, to some extent confirm Guanshancaris as a possible durophagous predator. The distribution of amplectobeluids demonstrates that this group is restricted to Cambrian Stage 3 to Drumian, and occurs across South China and Laurentia within the tropics/subtropics belt. Moreover, the amount and abundance of amplectobeluids evidently decreases after the Early-Middle Cambrian boundary, which indicates its possible preference for shallow water, referring to its paleoenvironmental distribution and may be influenced by geochemical, tectonic, and climatic variation.
Collapse
Affiliation(s)
- Mingjing Zhang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi’an 710069, China
| | - Yu Wu
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi’an 710069, China
| | - Weiliang Lin
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi’an 710069, China
| | - Jiaxin Ma
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi’an 710069, China
| | - Yuheng Wu
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi’an 710069, China
| | - Dongjing Fu
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi’an 710069, China
| |
Collapse
|
3
|
Pates S, Botting JP, Muir LA, Wolfe JM. Ordovician opabiniid-like animals and the role of the proboscis in euarthropod head evolution. Nat Commun 2022; 13:6969. [PMID: 36379946 PMCID: PMC9666559 DOI: 10.1038/s41467-022-34204-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
A crucial step in the evolution of Euarthropoda (chelicerates, myriapods, pancrustaceans) was the transition between fossil groups that possessed frontal appendages innervated by the first segment of the brain (protocerebrum), and living groups with a protocerebral labrum and paired appendages innervated by the second brain segment (deutocerebrum). Appendage homologies between the groups are controversial. Here we describe two specimens of opabiniid-like euarthropods, each bearing an anterior proboscis (a fused protocerebral appendage), from the Middle Ordovician Castle Bank Biota, Wales, UK. Phylogenetic analyses support a paraphyletic grade of stem-group euarthropods with fused protocerebral appendages and a posterior-facing mouth, as in the iconic Cambrian panarthropod Opabinia. These results suggest that the labrum may have reduced from an already-fused proboscis, rather than a pair of arthropodized appendages. If some shared features between the Castle Bank specimens and radiodonts are considered convergent rather than homologous, phylogenetic analyses retrieve them as opabiniids, substantially extending the geographic and temporal range of Opabiniidae.
Collapse
Affiliation(s)
- Stephen Pates
- grid.5335.00000000121885934Department of Zoology, University of Cambridge, Cambridge, UK
| | - Joseph P. Botting
- grid.9227.e0000000119573309Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China ,grid.422296.90000 0001 2293 9551Department of Natural Sciences, Amgueddfa Cymru—National Museum Wales, Cardiff, UK
| | - Lucy A. Muir
- grid.422296.90000 0001 2293 9551Department of Natural Sciences, Amgueddfa Cymru—National Museum Wales, Cardiff, UK
| | - Joanna M. Wolfe
- grid.38142.3c000000041936754XMuseum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|
4
|
Functional importance of the mandibular skeleto-muscular system in the bivalved arthropod Heterocypris incongruens (Crustacea, Ostracoda, Cyprididae). Naturwissenschaften 2022; 109:37. [DOI: 10.1007/s00114-022-01806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
|