1
|
Harrison BR, Partida-Aguilar M, Marye A, Djukovic D, Kauffman M, Dunbar MD, Mariner BL, McCoy BM, Algavi YM, Muller E, Baum S, Bamberger T, Raftery D, Creevy KE, Avery A, Borenstein E, Snyder-Mackler N, Promislow DE. Protein catabolites as blood-based biomarkers of aging physiology: Findings from the Dog Aging Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618956. [PMID: 39484426 PMCID: PMC11526923 DOI: 10.1101/2024.10.17.618956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Our understanding of age-related physiology and metabolism has grown through the study of systems biology, including transcriptomics, single-cell analysis, proteomics and metabolomics. Studies in lab organisms in controlled environments, while powerful and complex, fall short of capturing the breadth of genetic and environmental variation in nature. Thus, there is now a major effort in geroscience to identify aging biomarkers and to develop aging interventions that might be applied across the diversity of humans and other free-living species. To meet this challenge, the Dog Aging Project (DAP) is designed to identify cross-sectional and longitudinal patterns of aging in complex systems, and how these are shaped by the diversity of genetic and environmental variation among companion dogs. Here we surveyed the plasma metabolome from the first year of sampling of the Precision Cohort of the DAP. By incorporating extensive metadata and whole genome sequencing information, we were able to overcome the limitations inherent in breed-based estimates of genetic and physiological effects, and to probe the physiological and dietary basis of the age-related metabolome. We identified a significant effect of age on approximately 40% of measured metabolites. Among other insights, we discovered a potentially novel biomarker of age in the post-translationally modified amino acids (ptmAAs). The ptmAAs, which can only be generated by protein hydrolysis, covaried both with age and with other biomarkers of amino acid metabolism, and in a way that was robust to diet. Clinical measures of kidney function mediated about half of the higher ptmAA levels in older dogs. This work identifies ptmAAs as robust indicators of age in dogs, and points to kidney function as a physiological mediator of age-associated variation in the plasma metabolome.
Collapse
Affiliation(s)
- Benjamin R. Harrison
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maria Partida-Aguilar
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Abbey Marye
- University of Utah, Department of Microbiology and Immunology, Salt Lake City, UT, USA
| | - Danijel Djukovic
- Center for Studies in Ecology and Demography, University of Washington, Seattle, WA, USA
| | - Mandy Kauffman
- Center for Studies in Ecology and Demography, University of Washington, Seattle, WA, USA
| | - Matthew D. Dunbar
- Center for Studies in Ecology and Demography, University of Washington, Seattle, WA, USA
| | | | - Brianah M. McCoy
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Yadid M. Algavi
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Muller
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Shiri Baum
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Tal Bamberger
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Dan Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Kate E. Creevy
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Anne Avery
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, CO, USA
| | - Elhanan Borenstein
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Daniel E. Promislow
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| |
Collapse
|
2
|
Janjić F, Spariosu K, Radaković M, Francuski Andrić J, Beletić A, Kovačević Filipović M. Age, sex and breed effect on laboratory parameters in natural Babesia canis infection. Vet Parasitol 2024; 329:110197. [PMID: 38735268 DOI: 10.1016/j.vetpar.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
We tested the hypothesis that age, breed, and sex are related to hematology, biochemistry, acute phase proteins (APPs), seroreactivity and level of parasitemia in dogs with an acute phase response (APR) due to Babesia canis infection. The study enrolled 61 privately owned dogs that naturally acquired B. canis infection. Groups were formed according to the age: young dogs less than one year, and adult dogs more than one year old. Moreover, the group of males was compared to females and purebred to mixed breed dogs. Seroreactivity was tested with immunofluorescence antibody test, level of parasitemia with real-time polymerase chain reaction (real-time PCR), hematology, and biochemistry with automatic analyzers, serum amyloid A with enzyme-linked immunosorbent assay, fibrinogen with heat precipitation and ceruloplasmin and paraoxonase-1 with manual spectrophotometric methods. For protein separation agarose gel electrophoresis was used. The main changes in the whole population of B. canis-infected dogs were fever, pancytopenia, and change in APPs level. One-third of young, and 96% of adult dogs were seropositive (P < 0.001). The level of parasitemia was higher in the young dogs (P < 0.001). Erythroid lineage parameters (P < 0.01), and leukocytes (P < 0.05) were lower in the young, when compared to the adult dogs. Young dogs had lower total globulins (P < 0.001), β- and γ-globulins (P < 0.001), and higher α-globulins (P = 0.022) than adult dogs. Young dogs had higher concentrations of phosphate (P = 0.003) and cholesterol (P < 0.001) and lower amylase (P = 0.014) and lipase activity (P = 0.020) than adult ones. Male dogs had lower neutrophil count than females (P = 0.035), and purebred dogs had more band neutrophils than mixed breed dogs (P = 0.004). In conclusion, dogs with natural Babesia canis infection at a young age have more severe anemia and APR including leukopenia than adults. Male and purebred dogs might also have more severe APR than females and mix-breeds, as they have more pronounced changes related to the myeloid lineage.
Collapse
Affiliation(s)
- Filip Janjić
- Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, Zemun 11080, Serbia
| | - Kristina Spariosu
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobođenja 18, Belgrade 11000, Serbia
| | - Milena Radaković
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobođenja 18, Belgrade 11000, Serbia
| | - Jelena Francuski Andrić
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobođenja 18, Belgrade 11000, Serbia
| | - Anđelo Beletić
- Genos Ltd., Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | | |
Collapse
|
3
|
Hiney K, Sypniewski L, DeSilva U, Pezeshki A, Rudra P, Goodarzi P, Willis E, McFarlane D. Fecal microbiota composition, serum metabolomics, and markers of inflammation in dogs fed a raw meat-based diet compared to those on a kibble diet. Front Vet Sci 2024; 11:1328513. [PMID: 38694479 PMCID: PMC11061498 DOI: 10.3389/fvets.2024.1328513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/13/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Despite the potential health risks associated with feeding raw and non-traditional diets, the use of these diets in dogs is increasing, yet the health outcomes associated with these diets is not well understood. This study investigates the effect of feeding dogs a kibble or raw meat-based diets on fecal microbiota composition, serum metabolomics and inflammatory markers. Methods Clinically healthy dogs with a history of consuming either kibble (KD, n = 27) or raw meat-based diets (RMBD, n = 28) for more than 1 year were enrolled. Dogs were fed a standardized diet of either a single brand of KD or RMBD for 28 days. Serum and fecal samples were collected for analysis of microbiota, metabolomics, and inflammatory markers. Multiple regression analysis was performed for each of the metabolites and inflammatory markers, with feed group, age and BCS included as independent variables. Results The fecal microbiota composition differed between the KD and RMBD groups. Beta-diversity and some indices of alpha-diversity (i.e., Shannon and Simpson) were different between the two diet groups. Sixty- three serum metabolites differed between KD and RMBD-fed dogs with the majority reflecting the differences in macronutrient composition of the two diets.Fecal IAP, IgG and IgA were significantly higher in RMBD dogs compared to KD dogs, while systemic markers of inflammation, including serum c-reactive protein (CRP), galectin, secretory receptor of advanced glycation end-products (sRAGE), haptoglobin, and serum IgG were similar in dogs fed either diet. Discussion Diet composition significantly affected fecal microbiota composition and metabolome. Although it had a potentially beneficial effect on local inflammatory markers, feeding RMBD had no impact on systemic inflammation. The influence of these changes on long term health outcomes provides an area for future study.
Collapse
Affiliation(s)
- Kris Hiney
- Department of Animal and Food Sciences, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK, United States
| | - Lara Sypniewski
- Department of Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
| | - Udaya DeSilva
- Department of Animal and Food Sciences, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK, United States
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK, United States
| | - Pratyaydipta Rudra
- Department of Statistics, College of Arts and Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Parniyan Goodarzi
- Department of Animal and Food Sciences, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK, United States
| | - Erin Willis
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
| | - Dianne McFarlane
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Murgiano L, Niggel JK, Benedicenti L, Cortellari M, Bionda A, Crepaldi P, Liotta L, Aguirre GK, Beltran WA, Aguirre GD. Frameshift Variant in AMPD2 in Cirneco dell'Etna Dogs with Retinopathy and Tremors. Genes (Basel) 2024; 15:238. [PMID: 38397227 PMCID: PMC10887799 DOI: 10.3390/genes15020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
While the manifestations of many inherited retinal disorders are limited to loss of vision, others are part of a syndrome that affects multiple tissues, particularly the nervous system. Most syndromic retinal disorders are thought to be recessively inherited. Two dogs out of a litter of Cirneco dell' Etna dogs, both males, showed signs of retinal degeneration, along with tremors and signs described as either atypical seizures or paroxysmal dyskinesias, while the other two male littermates were normal. We named this oculo-neurological syndrome CONS (Cirneco oculo-neurological syndrome), and undertook homozygosity mapping and whole-genome sequencing to determine its potential genetic etiology. Notably, we detected a 1-bp deletion in chromosome 6 that was predicted to cause a frameshift and premature stop codon within the canine AMPD2 gene, which encodes adenosine monophosphate deaminase, an enzyme that converts adenosine 5'-monophosphate (AMP) to inosine 5'-monophosphate (IMP). Genotyping of the available Cirneco population suggested perfect segregation between cases and controls for the variant. Moreover, this variant was absent in canine genomic databases comprised of thousands of unaffected dogs. The AMPD2 genetic variant we identified in dogs presents with retinal manifestations, adding to the spectrum of neurological manifestations associated with AMPD2 variants in humans.
Collapse
Affiliation(s)
- Leonardo Murgiano
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.N.); (W.A.B.); (G.D.A.)
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica K. Niggel
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.N.); (W.A.B.); (G.D.A.)
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leontine Benedicenti
- Matthew J. Ryan Veterinary Hospital, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Matteo Cortellari
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milan, 20133 Milan, Italy; (M.C.); (A.B.); (P.C.)
| | - Arianna Bionda
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milan, 20133 Milan, Italy; (M.C.); (A.B.); (P.C.)
| | - Paola Crepaldi
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milan, 20133 Milan, Italy; (M.C.); (A.B.); (P.C.)
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Geoffrey K. Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - William A. Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.N.); (W.A.B.); (G.D.A.)
| | - Gustavo D. Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.N.); (W.A.B.); (G.D.A.)
- Sylvia M. Van Sloun Laboratory for Canine Genomic Analysis, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Jiménez AG. A revisiting of "the hallmarks of aging" in domestic dogs: current status of the literature. GeroScience 2024; 46:241-255. [PMID: 37594598 PMCID: PMC10828135 DOI: 10.1007/s11357-023-00911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
A progressive decline in biological function and fitness is, generally, how aging is defined. However, in 2013, a description on the "hallmarks of aging" in mammals was published, and within it, it described biological processes that are known to alter the aging phenotype. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication (inflammation), and changes within the microbiome. This mini-review provides a detailed account of the progress on each of these hallmarks of aging in the domestic dog within the last 5 years. Additionally, when there are gaps in the literature between other mammalian species and dogs, I highlight the aging biomarkers that may be missing for dogs as aging models. I also argue for the importance of dog aging studies to include several breeds of dogs at differing ages and for age corrections for breeds with differing mean lifespans throughout.
Collapse
Affiliation(s)
- Ana Gabriela Jiménez
- Department of Biology, Colgate University, 13 Oak Dr, Hamilton, NY, 133546, USA.
| |
Collapse
|
6
|
Provoost L. Cognitive Changes Associated with Aging and Physical Disease in Dogs and Cats. Vet Clin North Am Small Anim Pract 2024; 54:101-119. [PMID: 37722947 DOI: 10.1016/j.cvsm.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Behavior changes may indicate primary physical disease or primary behavioral disorders in veterinary patients. It is imperative to recognize that secondary behavioral problems can develop due to medical causes. The incidence of systemic disease increases with age and behavior manifestations can be similar to those expected with cognitive dysfunction syndrome. In this article, we review basic concepts of cognition, aging, and cognitive dysfunction syndrome. Additionally, we provide information regarding factors that influence cognition, and the role medical conditions have on the behavior of aging pets.
Collapse
Affiliation(s)
- Lena Provoost
- Clinical Sciences & Advanced Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Corder ML, Petricoin EF, Li Y, Cleland TP, DeCandia AL, Alonso Aguirre A, Pukazhenthi BS. Metabolomic profiling implicates mitochondrial and immune dysfunction in disease syndromes of the critically endangered black rhinoceros (Diceros bicornis). Sci Rep 2023; 13:15464. [PMID: 37726331 PMCID: PMC10509206 DOI: 10.1038/s41598-023-41508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
The critically endangered black rhinoceros (Diceros bicornis; black rhino) experiences extinction threats from poaching in-situ. The ex-situ population, which serves as a genetic reservoir against impending extinction threats, experiences its own threats to survival related to several disease syndromes not typically observed among their wild counterparts. We performed an untargeted metabolomic analysis of serum from 30 ex-situ housed black rhinos (Eastern black rhino, EBR, n = 14 animals; Southern black rhino, SBR, n = 16 animals) and analyzed differences in metabolite profiles between subspecies, sex, and health status (healthy n = 13 vs. diseased n = 14). Of the 636 metabolites detected, several were differentially (fold change > 1.5; p < 0.05) expressed between EBR vs. SBR (40 metabolites), female vs. male (36 metabolites), and healthy vs. diseased (22 metabolites). Results suggest dysregulation of propanoate, amino acid metabolism, and bile acid biosynthesis in the subspecies and sex comparisons. Assessment of healthy versus diseased rhinos indicates involvement of arachidonic acid metabolism, bile acid biosynthesis, and the pentose phosphate pathway in animals exhibiting inflammatory disease syndromes. This study represents the first systematic characterization of the circulating serum metabolome in the black rhinoceros. Findings further implicate mitochondrial and immune dysfunction as key contributors for the diverse disease syndromes reported in ex-situ managed black rhinos.
Collapse
Affiliation(s)
- Molly L Corder
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, 22630, USA
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, 20900, USA
- Department of Environmental Sciences and Policy, George Mason University, Fairfax, Virginia, 22030, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, 20900, USA
| | - Yue Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | | | - Alexandra L DeCandia
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Conservation Genomics, Washington, DC, 20008, USA
| | - A Alonso Aguirre
- Department of Fish, Wildlife, and Conservation Biology, Warner College of Natural Resources, Colorado State University, Fort Collins, 80523, USA
| | - Budhan S Pukazhenthi
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, 22630, USA.
| |
Collapse
|
8
|
Allenspach K, Sung CH, Ceron JJ, Peres Rubio C, Bourgois-Mochel A, Suchodolski JS, Yuan L, Kundu D, Colom Comas J, Rea K, Mochel JP. Effect of the Probiotic Bacillus subtilis DE-CA9 TM on Fecal Scores, Serum Oxidative Stress Markers and Fecal and Serum Metabolome in Healthy Dogs. Vet Sci 2023; 10:566. [PMID: 37756088 PMCID: PMC10537710 DOI: 10.3390/vetsci10090566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND There is increasing interest in the use of Bacillus species as probiotics since their spore-forming ability favors their survival in the acidic gastric environment over other probiotic species. The subsequent germination of B. subtilis to their vegetative form allows for their growth in the small intestine and may increase their beneficial effect on the host. B. subtilis strains have also previously been shown to have beneficial effects in humans and production animals, however, no reports are available so far on their use in companion animals. STUDY DESIGN The goal of this study was therefore to investigate the daily administration of 1 × 109 cfu DE-CA9TM orally per day versus placebo on health parameters, fecal scores, fecal microbiome, fecal metabolomics, as well as serum metabolomics and oxidative stress markers in ten healthy Beagle dogs in a parallel, randomized, prospective, placebo-controlled design over a period of 45 days. RESULTS DE-CA9TM decreased the oxidative status compared to controls for advanced oxidation protein products (AOPP), thiobarbituric acid reactive substances (TBARS) and reactive oxygen metabolites (d-ROMS), suggesting an antioxidant effect of the treatment. Fecal metabolomics revealed a significant reduction in metabolites associated with tryptophan metabolism in the DE-CA9TM-treated group. DE-CA9TM also significantly decreased phenylalanine and homocysteine and increased homoserine and threonine levels. Amino acid metabolism was also affected in the serum metabolome, with increased levels of urea and cadaverine, and reductions in N-acetylornithine in DE-CA9TM compared to controls. Similarly, changes in essential amino acids were observed, with a significant increase in tryptophan and lysine levels and a decrease in homocysteine. An increase in serum guanine and deoxyuridine was also detected, with a decrease in beta-alanine in the animals that ingested DE-CA9TM. CONCLUSIONS Data generated throughout this study suggest that the daily administration of 1 × 109 cfu of DE-CA9TM in healthy Beagle dogs is safe and does not affect markers of general health and fecal scores. Furthermore, DE-CA9TM administration had a potential positive effect on some serum markers of oxidative stress, and protein and lipid metabolism in serum and feces.
Collapse
Affiliation(s)
- Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA;
| | - Chi-Hsuan Sung
- The Gastrointestinal Laboratory, Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.); (J.S.S.)
| | - Jose Joaquin Ceron
- Department of Clinical Pathology, College of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (C.P.R.); (L.Y.)
| | - Camila Peres Rubio
- Department of Clinical Pathology, College of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (C.P.R.); (L.Y.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA;
| | - Jan S. Suchodolski
- The Gastrointestinal Laboratory, Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.); (J.S.S.)
| | - Lingnan Yuan
- Department of Clinical Pathology, College of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (C.P.R.); (L.Y.)
| | - Debosmita Kundu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA; (D.K.); (J.P.M.)
| | - Joan Colom Comas
- ADM Cork H&W Limited, Bioinnovation Unit, Food Science Building, College Road, University College Cork, T12 Y337 Cork, Ireland; (J.C.C.); (K.R.)
| | - Kieran Rea
- ADM Cork H&W Limited, Bioinnovation Unit, Food Science Building, College Road, University College Cork, T12 Y337 Cork, Ireland; (J.C.C.); (K.R.)
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA; (D.K.); (J.P.M.)
| |
Collapse
|
9
|
Barko PC, Rubin SI, Swanson KS, McMichael MA, Ridgway MD, Williams DA. Untargeted Analysis of Serum Metabolomes in Dogs with Exocrine Pancreatic Insufficiency. Animals (Basel) 2023; 13:2313. [PMID: 37508091 PMCID: PMC10376357 DOI: 10.3390/ani13142313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Exocrine pancreatic insufficiency (EPI) is a malabsorptive syndrome resulting from insufficient secretion of pancreatic digestive enzymes. EPI is treated with pancreatic enzyme replacement therapy (PERT), but the persistence of clinical signs, especially diarrhea, is common after treatment. We used untargeted metabolomics of serum to identify metabolic disturbances associated with EPI and generate novel hypotheses related to its pathophysiology. Fasted serum samples were collected from dogs with EPI (n = 20) and healthy controls (n = 10), all receiving PERT. Serum metabolomes were generated using UPLC-MS/MS, and differences in relative metabolite abundances were compared between the groups. Of the 759 serum metabolites detected, 114 varied significantly (p < 0.05, q < 0.2) between dogs with EPI and healthy controls. Differences in amino acids (arginate, homoarginine, 2-oxoarginine, N-acetyl-cadaverine, and α-ketoglutaramate) and lipids (free fatty acids and docosahexaenoylcarnitine) were consistent with increased proteolysis and lipolysis, indicating a persistent catabolic state in dogs with EPI. Relative abundances of gut microbial metabolites (phenyllactate, 4-hydroxyphenylacetate, phenylacetyl-amino acids, catechol sulfates, and o-cresol-sulfate) were altered in dogs with EPI, consistent with disruptions in gut microbial communities. Increased kynurenine is consistent with the presence of intestinal inflammation in dogs with EPI. Whether these metabolic disturbances participate in the pathophysiology of EPI or contribute to the persistence of clinical signs after treatment is unknown, but they are targets for future investigations.
Collapse
Affiliation(s)
- Patrick C Barko
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences and Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Marcella D Ridgway
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - David A Williams
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
10
|
Arlt SP, Ottka C, Lohi H, Hinderer J, Lüdeke J, Müller E, Weber C, Kohn B, Bartel A. Metabolomics during canine pregnancy and lactation. PLoS One 2023; 18:e0284570. [PMID: 37163464 PMCID: PMC10171673 DOI: 10.1371/journal.pone.0284570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/03/2023] [Indexed: 05/12/2023] Open
Abstract
During pregnancy and parturition, female dogs have to cope with various challenges such as providing nutrients for the growth of the fetuses, hormonal changes, whelping, nursing, milk production, and uterine involution. Metabolomic research has been used to characterize the influence of several factors on metabolism such as inter- and intra-individual factors, feeding, aging, inter-breed differences, drug action, behavior, exercise, genetic factors, neuter status, and pathologic processes. Aim of this study was to identify metabolites showing specific changes in blood serum at the different phases of pregnancy and lactation. In total, 27 privately owned female dogs of 21 different breeds were sampled at six time points: during heat, in early, mid and late pregnancy, at the suspected peak of lactation and after weaning. A validated and highly automated canine-specific NMR metabolomics technology was utilized to quantitate 123 measurands. It was evaluated which metabolite concentrations showed significant changes between the different time points. Metabolites were then grouped into five clusters based on concentration patterns and biochemical relationships between the metabolites: high in mid-pregnancy, low in mid-pregnancy, high in late pregnancy, high in lactation, and low in lactation. Several metabolites such as albumin, glycoprotein acetyls, fatty acids, lipoproteins, glucose, and some amino acids show similar patterns during pregnancy and lactation as shown in humans. The patterns of some other parameters such as branched-chain amino acids, alanine and histidine seem to differ between these species. For most metabolites, it is yet unstudied whether the observed changes arise from modified resorption from the intestines, modified production, or metabolism in the maternal or fetal tissues. Hence, further species-specific metabolomic research may support a broader understanding of the physiological changes caused by pregnancy that are likely to be key for the normal fetal growth and development. Our findings provide a baseline of normal metabolic changes during healthy canine pregnancy and parturition. Combined with future metabolomics findings, they may help monitor vital functions of pre-, intra-, and post-partum bitches and may allow early detection of illness.
Collapse
Affiliation(s)
- Sebastian P Arlt
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Freie Universitaet Berlin, Berlin, Germany
| | | | - Hannes Lohi
- PetBiomics Ltd, Helsinki, Finland
- Department of Veterinary Biosciences and Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Janna Hinderer
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Freie Universitaet Berlin, Berlin, Germany
| | - Julia Lüdeke
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Freie Universitaet Berlin, Berlin, Germany
| | | | | | - Barbara Kohn
- Clinic for Small Animals, Faculty of Veterinary Medicine, Freie Universitaet Berlin, Berlin, Germany
| | - Alexander Bartel
- Institute for Veterinary Epidemiology and Biostatistics, Faculty of Veterinary Medicine, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
11
|
Balashova E, Trifonova O, Maslov D, Lichtenberg S, Lokhov P, Archakov A. Metabolome profiling in the study of aging processes. BIOMEDITSINSKAYA KHIMIYA 2022; 68:321-338. [DOI: 10.18097/pbmc20226805321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aging of a living organism is closely related to systemic metabolic changes. But due to the multilevel and network nature of metabolic pathways, it is difficult to understand these connections. Today, this problem is solved using one of the main approaches of metabolomics — untargeted metabolome profiling. The purpose of this publication is to systematize the results of metabolomic studies based on such profiling, both in animal models and in humans.
Collapse
Affiliation(s)
| | | | - D.L. Maslov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - P.G. Lokhov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
12
|
Balashova EE, Maslov DL, Trifonova OP, Lokhov PG, Archakov AI. Metabolome Profiling in Aging Studies. BIOLOGY 2022; 11:1570. [PMID: 36358271 PMCID: PMC9687709 DOI: 10.3390/biology11111570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 06/07/2024]
Abstract
Organism aging is closely related to systemic metabolic changes. However, due to the multilevel and network nature of metabolic pathways, it is difficult to understand these connections. Today, scientists are trying to solve this problem using one of the main approaches of metabolomics-untargeted metabolome profiling. The purpose of this publication is to review metabolomic studies based on such profiling, both in animal models and in humans. This review describes metabolites that vary significantly across age groups and include carbohydrates, amino acids, carnitines, biogenic amines, and lipids. Metabolic pathways associated with the aging process are also shown, including those associated with amino acid, lipid, and energy metabolism. The presented data reveal the mechanisms of aging and can be used as a basis for monitoring biological age and predicting age-related diseases in the early stages of their development.
Collapse
Affiliation(s)
- Elena E. Balashova
- Institute of Biomedical Chemistry, Pogodinskaya St. 10, 119121 Moscow, Russia
| | | | | | | | | |
Collapse
|
13
|
Berk BA, Ottka C, Hong Law T, Packer RMA, Wessmann A, Bathen-Nöthen A, Jokinen TS, Knebel A, Tipold A, Lohi H, Volk HA. Metabolic fingerprinting of dogs with idiopathic epilepsy receiving a ketogenic medium-chain triglyceride (MCT) oil. Front Vet Sci 2022; 9:935430. [PMID: 36277072 PMCID: PMC9584307 DOI: 10.3389/fvets.2022.935430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/15/2022] [Indexed: 11/04/2022] Open
Abstract
Consumption of medium-chain triglycerides (MCT) has been shown to improve seizure control, reduce behavioural comorbidities and improve cognitive function in epileptic dogs. However, the exact metabolic pathways affected by dietary MCT remain poorly understood. In this study, we aimed to identify changes in the metabolome and neurotransmitters levels relevant to epilepsy and behavioural comorbidities associated with the consuming of an MCT supplement (MCT-DS) in dogs with idiopathic epilepsy (IE). Metabolic alterations induced by a commercial MCT-DS in a population of 28 dogs with IE were evaluated in a 6-month multi-centre, prospective, randomised, double-blinded, controlled cross-over trial design. A metabolic energy requirement-based amount of 9% MCT or control oil was supplemented to the dogs' stable base diet for 3 months, followed by the alternative oil for another 3 months. A validated, quantitative nuclear magnetic resonance (NMR) spectroscopy platform was applied to pre- and postprandially collected serum samples to compare the metabolic profile between both DS and baseline. Furthermore, alterations in urinary neurotransmitter levels were explored. Five dogs (30%) had an overall reduction in seizure frequency of ≥50%, and were classified as MCT-responders, while 23 dogs showed a ≤50% reduction, and were defined as MCT non-responders. Amino-acid metabolism was significantly influenced by MCT consumption compared to the control oil. While the serum concentrations of total fatty acids appeared similar during both supplements, the relative concentrations of individual fatty acids differed. During MCT supplementation, the concentrations of polyunsaturated fatty acids and arachidonic acid were significantly higher than under the control oil. β-Hydroxybutyric acid levels were significantly higher under MCT supplementation. In total, four out of nine neurotransmitters were significantly altered: a significantly increased γ-aminobutyric acid (GABA) concentration was detected during the MCT-phase accompanied by a significant shift of the GABA-glutamate balance. MCT-Responders had significantly lowered urinary concentrations of histamine, glutamate, and serotonin under MCT consumption. In conclusion, these novel data highlight metabolic changes in lipid, amino-acid and ketone metabolism due to MCT supplementation. Understanding the metabolic response to MCT provides new avenues to develop better nutritional management with improved anti-seizure and neuroprotective effects for dogs with epilepsy, and other behavioural disorders.
Collapse
Affiliation(s)
- Benjamin Andreas Berk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom,BrainCheck.Pet, Tierärztliche Praxis für Epilepsie, Mannheim, Germany
| | - Claudia Ottka
- Department of Veterinary Biosciences and Department of Medical and Clinical Genetics, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland,PetBiomics Ltd., Helsinki, Finland
| | - Tsz Hong Law
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Rowena Mary Anne Packer
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Annette Wessmann
- Pride Veterinary Centre, Neurology/Neurosurgery Service, Derby, United Kingdom
| | | | - Tarja Susanna Jokinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, Helsinki, Finland
| | - Anna Knebel
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Hannes Lohi
- Department of Veterinary Biosciences and Department of Medical and Clinical Genetics, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland,PetBiomics Ltd., Helsinki, Finland
| | - Holger Andreas Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom,Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany,*Correspondence: Holger Andreas Volk
| |
Collapse
|
14
|
Schulte E, Arlt SP. What Kinds of Dogs Are Used in Clinical and Experimental Research? Animals (Basel) 2022; 12:ani12121487. [PMID: 35739824 PMCID: PMC9219481 DOI: 10.3390/ani12121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The objective of this study was to evaluate the signalment of dogs used in veterinary research in six different specialties. In total, 150 randomly chosen clinical studies (25 studies per specialty) published between 2007 and 2019 were evaluated for the breed, sex, neuter status, age, and weight information of the dogs used. Breed information was given for 5.7% of the included animals. Beagles were used 1.9% of the time, which was a less significant role in research than we expected. Information about the sex of the dogs was lacking for 16.2% of the included animals, while age and weight information were missing for 22.7 and 32.7%, respectively. The neuter status was not given in 38.7% of the clinical studies. The results show deficits in the reporting of demographic data for the dogs. The need for an improvement in the documentation and/or reporting of animal signalment is obvious and should be addressed by authors, reviewers, and journal editors in the future. Abstract Background: Dogs are widely used in research to answer questions about canine or human conditions. For the latter, research dogs are often used as models, since they are physiologically more similar to humans than other species used in research and they share similar environmental conditions. From a veterinary perspective, research findings are widely based on academic research, and thus are generated under experimental conditions. In that regard, the question arises: do the dogs used for research adequately represent the dog population seen in veterinary practice? It may, for example, be assumed that Beagle dogs are often used as experimental animals. The objective of this study was to evaluate the signalment of dogs used in veterinary research. Furthermore, we aimed to assess other relevant criteria regarding the validity of clinical trials in the context of six different veterinary medicine specialties: cardiology, internal medicine, neurology, orthopaedics, reproduction, and surgery. Methods: A literature search was conducted and 25 studies per specialty were randomly selected. The breed, sex, neuter status, median age, and median weight of the dogs used for clinical studies (n = 150) published between 2007 and 2019 were evaluated. Results: In total, 596,542 dogs were used in the 150 trials. Breed information was given for 33,835 of these dogs (5.7%). Of the latter, 1.9% were Beagles. Nine clinical trials exclusively used Beagles. The most frequently used breeds were German Shepherds (7.3%), Labrador Retrievers (6.7%), and Golden Retrievers (4.7%). The major reporting deficits found were missing breed specification in 25.3% of the articles; missing information about the sex of the dogs in 16.2%; missing age and weight information in 22.7 and 32.7%, respectively; and missing neuter status in 38.7% of the clinical studies. The median sample size was 56 (Q1:29; Q3:365) dogs. Conclusions: The presented project revealed that Beagle dogs represent only a small proportion of dogs in veterinary research. Based on the evaluated publications, it seems that some relevant dog attributes differ between the specialties. The results, however, show deficits in the reporting of demographic data for the dogs. The need for an improvement in the documentation and/or reporting of animal signalment is obvious and should be addressed by authors, reviewers, and journal editors in the future.
Collapse
|
15
|
Tal S, Sutton G, Arlt S, Bar-Gal GK. Analysis of biochemical parameters in canine fetal fluids during the second half of pregnancy. Theriogenology 2022; 189:31-41. [DOI: 10.1016/j.theriogenology.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
|
16
|
Puurunen J, Ottka C, Salonen M, Niskanen JE, Lohi H. Age, breed, sex and diet influence serum metabolite profiles of 2000 pet dogs. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 35223061 DOI: 10.5061/dryad.fj6q573w5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
As an individual's metabolism reflects health and disease states well, metabolomics holds a vast potential in biomedical applications. However, normal physiological factors, such as age, can also influence metabolism, challenging the establishment of disease-specific metabolic aberrations. Here, we examined how physiological and diet-related factors drive variance in the metabolism of healthy pet dogs. We analysed 2068 serum samples using a canine nuclear magnetic resonance (NMR) spectroscopy-based metabolomics platform. With generalized linear models, we discovered that age, breed, sex, sterilization, diet type and fasting time significantly affected the canine metabolite profiles. Especially, breed and age caused considerable variation in the metabolite concentrations, and breeds with very different body conformations systematically differed in several lipid measurands. Our results enhance the understanding how normal physiological factors influence canine metabolism, aid accurate interpretation of the NMR results, and suggest the NMR platform might be applied in identifying aberrations in nutrient absorption and metabolism.
Collapse
Affiliation(s)
- Jenni Puurunen
- PetBiomics Ltd, 00300 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Claudia Ottka
- PetBiomics Ltd, 00300 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Milla Salonen
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Julia E Niskanen
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Hannes Lohi
- PetBiomics Ltd, 00300 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| |
Collapse
|
17
|
Puurunen J, Ottka C, Salonen M, Niskanen JE, Lohi H. Age, breed, sex and diet influence serum metabolite profiles of 2000 pet dogs. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211642. [PMID: 35223061 PMCID: PMC8847897 DOI: 10.1098/rsos.211642] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/25/2022] [Indexed: 05/03/2023]
Abstract
As an individual's metabolism reflects health and disease states well, metabolomics holds a vast potential in biomedical applications. However, normal physiological factors, such as age, can also influence metabolism, challenging the establishment of disease-specific metabolic aberrations. Here, we examined how physiological and diet-related factors drive variance in the metabolism of healthy pet dogs. We analysed 2068 serum samples using a canine nuclear magnetic resonance (NMR) spectroscopy-based metabolomics platform. With generalized linear models, we discovered that age, breed, sex, sterilization, diet type and fasting time significantly affected the canine metabolite profiles. Especially, breed and age caused considerable variation in the metabolite concentrations, and breeds with very different body conformations systematically differed in several lipid measurands. Our results enhance the understanding how normal physiological factors influence canine metabolism, aid accurate interpretation of the NMR results, and suggest the NMR platform might be applied in identifying aberrations in nutrient absorption and metabolism.
Collapse
Affiliation(s)
- Jenni Puurunen
- PetBiomics Ltd, 00300 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Claudia Ottka
- PetBiomics Ltd, 00300 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Milla Salonen
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Julia E. Niskanen
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Hannes Lohi
- PetBiomics Ltd, 00300 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| |
Collapse
|