1
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Johnson K, Melchert D, Gianola DS, Begley M, Ray TR. Recent progress in acoustic field-assisted 3D-printing of functional composite materials. MRS ADVANCES 2021; 6:636-643. [PMID: 34532078 PMCID: PMC8439201 DOI: 10.1557/s43580-021-00090-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022]
Abstract
Acoustic forces are an attractive pathway to achieve directed assembly for multi-phase materials via additive processes. Programmatic integration of microstructure and structural features during deposition offers opportunities for optimizing printed component performance. We detail recent efforts to integrate acoustic focusing with a direct-ink-write mode of printing to modulate material transport properties (e.g. conductivity). Acoustic field-assisted printing, operating under a multi-node focusing condition, supports deposition of materials with multiple focused lines in a single-pass printed line. Here, we report the demonstration of acoustic focusing in concert with diffusive self-assembly to rapidly assembly and print multiscale, mm-length colloidal solids on a timescale of seconds to minutes. These efforts support the promising capabilities of acoustic field-assisted deposition-based printing to achieve spatial control of printed microstructures with deterministic, long-range ordering across multiple length scales.
Collapse
Affiliation(s)
- Keith Johnson
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Drew Melchert
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Daniel S. Gianola
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Matthew Begley
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI
| |
Collapse
|
3
|
Cherkaev E, Guevara Vasquez F, Mauck C, Prisbrey M, Raeymaekers B. Wave-Driven Assembly of Quasiperiodic Patterns of Particles. PHYSICAL REVIEW LETTERS 2021; 126:145501. [PMID: 33891465 DOI: 10.1103/physrevlett.126.145501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
We theoretically show that a superposition of plane waves causes small (compared to the wavelength) particles dispersed in a fluid to assemble in quasiperiodic two or three-dimensional patterns. We experimentally demonstrate this theory by using ultrasound waves to assemble quasiperiodic patterns of carbon nanoparticles in water using an octagonal arrangement of ultrasound transducers, and we document good agreement between theory and experiments. The theory also applies to obtaining quasiperiodic patterns in other situations where particles move with linear waves, such as optical lattices.
Collapse
Affiliation(s)
- Elena Cherkaev
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | - China Mauck
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Milo Prisbrey
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Bart Raeymaekers
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
4
|
Guex AG, Di Marzio N, Eglin D, Alini M, Serra T. The waves that make the pattern: a review on acoustic manipulation in biomedical research. Mater Today Bio 2021; 10:100110. [PMID: 33997761 PMCID: PMC8094912 DOI: 10.1016/j.mtbio.2021.100110] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Novel approaches, combining technology, biomaterial design, and cutting-edge cell culture, have been increasingly considered to advance the field of tissue engineering and regenerative medicine. Within this context, acoustic manipulation to remotely control spatial cellular organization within a carrier matrix has arisen as a particularly promising method during the last decade. Acoustic or sound-induced manipulation takes advantage of hydrodynamic forces exerted on systems of particles within a liquid medium by standing waves. Inorganic or organic particles, cells, or organoids assemble within the nodes of the standing wave, creating distinct patterns in response to the applied frequency and amplitude. Acoustic manipulation has advanced from micro- or nanoparticle arrangement in 2D to the assembly of multiple cell types or organoids into highly complex in vitro tissues. In this review, we discuss the past research achievements in the field of acoustic manipulation with particular emphasis on biomedical application. We survey microfluidic, open chamber, and high throughput devices for their applicability to arrange non-living and living units in buffer or hydrogels. We also investigate the challenges arising from different methods, and their prospects to gain a deeper understanding of in vitro tissue formation and application in the field of biomedical engineering. Work on sound waves to spatially control particulate systems is reviewed. Classification of surface acoustic waves, bulk acoustic waves, and Faraday waves. Sound can be used to arrange, separate, or filter polymer particles. Sound can pattern cells in 3D to induce morphogenesis. Long-term applied sound induces differentiation and tissue formation.
Collapse
Affiliation(s)
- A G Guex
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - N Di Marzio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.,Department of Health Sciences, Università del Piemonte Orientale (UPO), Novara, Italy
| | - D Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - M Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - T Serra
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| |
Collapse
|