1
|
Brewster DA, Nowak MA, Tkadlec J. Fixation times on directed graphs. PLoS Comput Biol 2024; 20:e1012299. [PMID: 39024375 PMCID: PMC11288448 DOI: 10.1371/journal.pcbi.1012299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/30/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024] Open
Abstract
Computing the rate of evolution in spatially structured populations is difficult. A key quantity is the fixation time of a single mutant with relative reproduction rate r which invades a population of residents. We say that the fixation time is "fast" if it is at most a polynomial function in terms of the population size N. Here we study fixation times of advantageous mutants (r > 1) and neutral mutants (r = 1) on directed graphs, which are those graphs that have at least some one-way connections. We obtain three main results. First, we prove that for any directed graph the fixation time is fast, provided that r is sufficiently large. Second, we construct an efficient algorithm that gives an upper bound for the fixation time for any graph and any r ≥ 1. Third, we identify a broad class of directed graphs with fast fixation times for any r ≥ 1. This class includes previously studied amplifiers of selection, such as Superstars and Metafunnels. We also show that on some graphs the fixation time is not a monotonically declining function of r; in particular, neutral fixation can occur faster than fixation for small selective advantages.
Collapse
Affiliation(s)
- David A. Brewster
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Martin A. Nowak
- Department of Mathematics, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Josef Tkadlec
- Department of Mathematics, Harvard University, Cambridge, Massachusetts, United States of America
- Computer Science Institute, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Gao S, Liu Y, Wu B. The speed of neutral evolution on graphs. J R Soc Interface 2024; 21:20230594. [PMID: 38835245 PMCID: PMC11346635 DOI: 10.1098/rsif.2023.0594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/02/2024] [Indexed: 06/06/2024] Open
Abstract
The speed of evolution on structured populations is crucial for biological and social systems. The likelihood of invasion is key for evolutionary stability. But it makes little sense if it takes long. It is far from known what population structure slows down evolution. We investigate the absorption time of a single neutral mutant for all the 112 non-isomorphic undirected graphs of size 6. We find that about three-quarters of the graphs have an absorption time close to that of the complete graph, less than one-third are accelerators, and more than two-thirds are decelerators. Surprisingly, determining whether a graph has a long absorption time is too complicated to be captured by the joint degree distribution. Via the largest sojourn time, we find that echo-chamber-like graphs, which consist of two homogeneous graphs connected by few sparse links, are likely to slow down absorption. These results are robust for large graphs, mutation patterns as well as evolutionary processes. This work serves as a benchmark for timing evolution with complex interactions, and fosters the understanding of polarization in opinion formation.
Collapse
Affiliation(s)
- Shun Gao
- School of Sciences, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China
| | - Yuan Liu
- School of Sciences, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China
| | - Bin Wu
- School of Sciences, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Svoboda J, Joshi S, Tkadlec J, Chatterjee K. Amplifiers of selection for the Moran process with both Birth-death and death-Birth updating. PLoS Comput Biol 2024; 20:e1012008. [PMID: 38551989 PMCID: PMC11006194 DOI: 10.1371/journal.pcbi.1012008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/10/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Populations evolve by accumulating advantageous mutations. Every population has some spatial structure that can be modeled by an underlying network. The network then influences the probability that new advantageous mutations fixate. Amplifiers of selection are networks that increase the fixation probability of advantageous mutants, as compared to the unstructured fully-connected network. Whether or not a network is an amplifier depends on the choice of the random process that governs the evolutionary dynamics. Two popular choices are Moran process with Birth-death updating and Moran process with death-Birth updating. Interestingly, while some networks are amplifiers under Birth-death updating and other networks are amplifiers under death-Birth updating, so far no spatial structures have been found that function as an amplifier under both types of updating simultaneously. In this work, we identify networks that act as amplifiers of selection under both versions of the Moran process. The amplifiers are robust, modular, and increase fixation probability for any mutant fitness advantage in a range r ∈ (1, 1.2). To complement this positive result, we also prove that for certain quantities closely related to fixation probability, it is impossible to improve them simultaneously for both versions of the Moran process. Together, our results highlight how the two versions of the Moran process differ and what they have in common.
Collapse
Affiliation(s)
| | | | - Josef Tkadlec
- Computer Science Institute, Charles University, Prague, Czech Republic
| | | |
Collapse
|
4
|
Xu Y, Zhu L. Pharmaceutical enterprises drug quality strategy Moran analysis considering government supervision and new media participation. Front Public Health 2023; 10:1079232. [PMID: 36733287 PMCID: PMC9887106 DOI: 10.3389/fpubh.2022.1079232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
The improvement of drug quality requires not only the supervision of government, but also the participation of new media. Therefore, this paper considers the impact of government regulation and new media reports on pharmaceutical enterprises, constructs a Moran Process evolutionary game model, and analyzes the evolution trajectory of pharmaceutical enterprises' choice of drug quality improvement strategy and drug cost reduction strategy. We obtain the conditions for the two strategies to achieve evolutionary stability under the dominance of external factors and the dominance of expected returns. To verify the theoretical results, we conduct a numerical simulation by the software MATLAB 2021b. The results show that, first of all, when the government penalty is high, the drug quality improvement strategy tends to become an evolutionary stable solution, increasing the penalty amount will help promote the improvement of drug quality. What's more, when the government penalty is low and the new media influence is low, the drug cost reduction strategy is easier to dominate. The higher the new media influence, the higher the probability that pharmaceutical enterprises choose the drug quality improvement strategy. Thirdly, when the number of pharmaceutical enterprises is lower than a threshold, the drug quality improvement strategy is easier to dominate. Finally, the drug quality improvement strategy is dominant when the quality cost factor is low and the government penalty is high, the drug cost reduction strategy is dominant when the quality cost factor is high and the government penalty is low. Above all, this paper provides countermeasures and suggestions for the drug quality improvement of pharmaceutical enterprises in practice.
Collapse
Affiliation(s)
- Yanping Xu
- School of Business, Shandong Normal University, Ji'nan, China,Quality Research Center, Shandong Normal University, Ji'nan, China
| | - Lilong Zhu
- School of Business, Shandong Normal University, Ji'nan, China,Quality Research Center, Shandong Normal University, Ji'nan, China,*Correspondence: Lilong Zhu ✉ ; ✉
| |
Collapse
|
5
|
Monk T, van Schaik A. Martingales and the fixation time of evolutionary graphs with arbitrary dimensionality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220011. [PMID: 35573040 PMCID: PMC9091843 DOI: 10.1098/rsos.220011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/01/2022] [Indexed: 05/03/2023]
Abstract
Evolutionary graph theory (EGT) investigates the Moran birth-death process constrained by graphs. Its two principal goals are to find the fixation probability and time for some initial population of mutants on the graph. The fixation probability of graphs has received considerable attention. Less is known about the distribution of fixation time. We derive clean, exact expressions for the full conditional characteristic functions (CCFs) of a close proxy to fixation and extinction times. That proxy is the number of times that the mutant population size changes before fixation or extinction. We derive these CCFs from a product martingale that we identify for an evolutionary graph with any number of partitions. The existence of that martingale only requires that the connections between those partitions are of a certain type. Our results are the first expressions for the CCFs of any proxy to fixation time on a graph with any number of partitions. The parameter dependence of our CCFs is explicit, so we can explore how they depend on graph structure. Martingales are a powerful approach to study principal problems of EGT. Their applicability is invariant to the number of partitions in a graph, so we can study entire families of graphs simultaneously.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Sydney, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Sydney, Australia
| |
Collapse
|
6
|
Monk T, van Schaik A. Martingales and the characteristic functions of absorption time on bipartite graphs. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210657. [PMID: 34703620 PMCID: PMC8527206 DOI: 10.1098/rsos.210657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/15/2021] [Indexed: 05/14/2023]
Abstract
Evolutionary graph theory investigates how spatial constraints affect processes that model evolutionary selection, e.g. the Moran process. Its principal goals are to find the fixation probability and the conditional distributions of fixation time, and show how they are affected by different graphs that impose spatial constraints. Fixation probabilities have generated significant attention, but much less is known about the conditional time distributions, even for simple graphs. Those conditional time distributions are difficult to calculate, so we consider a close proxy to it: the number of times the mutant population size changes before absorption. We employ martingales to obtain the conditional characteristic functions (CCFs) of that proxy for the Moran process on the complete bipartite graph. We consider the Moran process on the complete bipartite graph as an absorbing random walk in two dimensions. We then extend Wald's martingale approach to sequential analysis from one dimension to two. Our expressions for the CCFs are novel, compact, exact, and their parameter dependence is explicit. We show that our CCFs closely approximate those of absorption time. Martingales provide an elegant framework to solve principal problems of evolutionary graph theory. It should be possible to extend our analysis to more complex graphs than we show here.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Sydney, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Sydney, Australia
| |
Collapse
|
7
|
Yagoobi S, Traulsen A. Fixation probabilities in network structured meta-populations. Sci Rep 2021; 11:17979. [PMID: 34504152 PMCID: PMC8429422 DOI: 10.1038/s41598-021-97187-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
The effect of population structure on evolutionary dynamics is a long-lasting research topic in evolutionary ecology and population genetics. Evolutionary graph theory is a popular approach to this problem, where individuals are located on the nodes of a network and can replace each other via the links. We study the effect of complex network structure on the fixation probability, but instead of networks of individuals, we model a network of sub-populations with a probability of migration between them. We ask how the structure of such a meta-population and the rate of migration affect the fixation probability. Many of the known results for networks of individuals carry over to meta-populations, in particular for regular networks or low symmetric migration probabilities. However, when patch sizes differ we find interesting deviations between structured meta-populations and networks of individuals. For example, a two patch structure with unequal population size suppresses selection for low migration probabilities.
Collapse
Affiliation(s)
- Sedigheh Yagoobi
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| |
Collapse
|