1
|
Park C, Lim H, Moon SK, Park R. Pyridoxine Preferentially Induces Auditory Neuropathy Through Mitochondrial Dysfunction and Endoplasmic Reticulum Stress-Mediated Apoptosis. Ann Otol Rhinol Laryngol 2019; 128:117S-124S. [DOI: 10.1177/0003489419836116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives: Auditory neuropathy due to toxicity mechanism of pyridoxine has not yet been fully documented. Therefore, the present study explored a direct mechanism underlying the effects of pyridoxine on auditory neuropathy in organ of Corti (OC) explants ex vivo and cochlear neuroblast cell line, VOT-33 in vitro. Methods: Primary OC explants containing spiral ganglion neurons and cultured VOT-33 cells were treated with pyridoxine. Results: In nerve fiber of primary OC explants, pyridoxine decreased staining for NF200, a neuro-cytoskeletal protein. We also found that pyridoxine-induced VOT-33 apoptosis, as indicated by accumulation of the sub-G0/G1 fraction, caspase-3 activation, and PARP cleavage. In addition, pyridoxine induced reactive oxygen species (ROS) generation and alteration of mitochondrial membrane potential transition (MPT), including Bcl-2 family protein expression and consequently Ca2+ accumulation and changes of endoplasmic reticulum (ER) stress-related protein expression such as phospho-PERK, caspase-12, Grp78, and CHOP. Conclusion: Pyridoxine preferentially induced severe cell death on nerve fiber in primary OC explants and markedly increased apoptotic cell death via mitochondria-mediated ER stress in VOT-33 cells.
Collapse
Affiliation(s)
- Channy Park
- Laboratory of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hyewon Lim
- Department of Obstetrics and Gynecology, Iksan Hospital, Jeonbuk, Korea
| | - Sung K. Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Raekil Park
- Laboratory of Peroxisomes & Lipid Metabolism, Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Zangari A, Micheli D, Galeazzi R, Tozzi A. Node of Ranvier as an Array of Bio-Nanoantennas for Infrared Communication in Nerve Tissue. Sci Rep 2018; 8:539. [PMID: 29323217 PMCID: PMC5764955 DOI: 10.1038/s41598-017-18866-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/18/2017] [Indexed: 01/21/2023] Open
Abstract
Electromagnetic radiation, in the visible and infrared spectrum, is increasingly being investigated for its possible role in the most evolved brain capabilities. Beside experimental evidence of electromagnetic cellular interactions, the possibility of light propagation in the axon has been recently demonstrated using computational modelling, although an explanation of its source is still not completely understood. We studied electromagnetic radiation onset and propagation at optical frequencies in myelinated axons, under the assumption that ion channel currents in the node of Ranvier behave like an array of nanoantennas emitting in the wavelength range from 300 to 2500 nm. Our results suggest that the wavelengths below 1600 nm are most likely to propagate throughout myelinated segments. Therefore, a broad wavelength window exists where both generation and propagation could happen, which in turn raises the possibility that such a radiation may play some role in neurotransmission.
Collapse
Affiliation(s)
- Andrea Zangari
- Azienda Ospedaliera San Camillo Forlanini, Pediatric Surgery and Urology Unit, Circonvallazione Gianicolense 87-00152, Roma, Italy
| | - Davide Micheli
- TIM S.P.A., Wireless Access Engineering Department, Viale Parco de' Medici, 61 - 00148, Roma, Italy.
| | - Roberta Galeazzi
- Dipartimento di Scienze della Vita e dell'Ambiente, università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Antonio Tozzi
- UOC Fisica Sanitaria, Azienda USL Toscana Sud Est, via Senese 161, 58100, Grosseto, Italy
| |
Collapse
|
3
|
Lin SF, Chien JY, Kapupara K, Huang CYF, Huang SP. Oroxylin A promotes retinal ganglion cell survival in a rat optic nerve crush model. PLoS One 2017. [PMID: 28640893 PMCID: PMC5480866 DOI: 10.1371/journal.pone.0178584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose To investigate the effect of oroxylin A on the survival of retinal ganglion cells (RGC) and the activation of microglial cells in a rat optic nerve (ON) crush model. Methods Oroxylin A (15mg/Kg in 0.2ml phosphate-buffered saline) or phosphate-buffered saline (PBS control) was immediately administered after ON crush once by subcutaneous injection. Rats were euthanized at 2 weeks after the crush injury. The density of RGC was counted by retrograde labeling with FluoroGold and immunostaining of retina flat mounts for Brn3a. Electrophysiological visual function was assessed by flash visual evoked potentials (FVEP). TUNEL assay, immunoblotting analysis of glial fibrillary acidic protein (GFAP), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the retinas, and immunohistochemistry of GFAP in the retinas and ED1 in the ON were evaluated. Results Two weeks after the insult, the oroxylin A-treated group had significantly higher FG labeled cells and Brn3a+ cells suggesting preserved RGC density in the central and mid-peripheral retinas compared with those of the PBS-treated group. FVEP measurements showed a significantly better preserved latency of the P1 wave in the ON-crushed, oroxylin A-treated rats than the ON-crushed, PBS treated rats. TUNEL assays showed fewer TUNEL positive cells in the ON-crushed, oroxylin A-treated rats. The number of ED1 positive cells was reduced at the lesion site of the optic nerve in the ON-crushed, oroxylin A-treated group. Increased GFAP expression in the retina was reduced greatly in ON-crushed, oroxylin A-treated group. Furthermore, administration of oroxylin A significantly attenuated ON crush insult-induced iNOS and COX-2 expression in the retinas. Conclusions These results demonstrated that oroxylin A hasss neuroprotective effects on RGC survival with preserved visual function and a decrease in microglial infiltration in the ONs after ON crush injury.
Collapse
Affiliation(s)
- Shu-Fang Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Ying Chien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
- Institute of systems neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Kishan Kapupara
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Chi-Ying F. Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (CYFH); (SPH)
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
- * E-mail: (CYFH); (SPH)
| |
Collapse
|
4
|
Hong BN, Yi TH, Kim SY, Kang TH. High-Dosage Pyridoxine-Induced Auditory Neuropathy and Protection with Coffee in Mice. Biol Pharm Bull 2009; 32:597-603. [DOI: 10.1248/bpb.32.597] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Tae Hoo Yi
- College of Life Sciences, Kyung Hee University
| | - Sun Yeou Kim
- Graduate School of East-West Medical Science, Kyung Hee University
| | - Tong Ho Kang
- Department of Oriental Pharmaceutical Development, Nambu University
| |
Collapse
|
5
|
Sandyk R. Weak electromagnetic fields increase the amplitude of the pattern reversal VEP response in patients with multiple sclerosis. Int J Neurosci 1996; 85:79-91. [PMID: 8727684 DOI: 10.3109/00207459608986353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Visual evoked potential (VEP) studies are widely used for the diagnosis of multiple sclerosis (MS) and are also useful in monitoring the effects of various therapeutic modalities in the disease. Brief, extracerebral applications of picotesla (pT) range flux intensity electromagnetic fields (EMFs) of low frequency have been shown efficacious in the treatment of motor and cognitive symptoms in MS implying that this treatment modality improves action potential transmission in demyelinating pathways. This report documents three MS patients with a remitting-progressive course in whom two successive brief extracerebral applications of pT range EMFs caused an immediate increase (and normalization) of the amplitudes of the visual evoked response in the eye previously affected by optic neuritis. However, the pretreatment prolonged latencies of the evoked responses remained essentially unchanged after the administration of EMFs. Since the latency of the VEP reflects the degree of conduction velocity and the amplitude the degree of conduction block in demyelinating optic pathways, the report demonstrates that extracerebral applications of these EMFs may rapidly reverse conduction block in demyelinating fibers. Reversal of the conduction block, which is though to be related to changes in axonal Na+ and K+ channels and synaptic neurotransmitter release, accounts for the immediate improvement of vision and other neurological deficits observed in MS patients following exposure to these EMFs.
Collapse
Affiliation(s)
- R Sandyk
- NeuroCommunication Research Laboratories, Danbury, CT 06811, USA
| |
Collapse
|
6
|
Russell JW, Windebank AJ, Harper CM. Treatment of stable chronic demyelinating polyneuropathy with 3,4-diaminopyridine. Mayo Clin Proc 1995; 70:532-9. [PMID: 7776711 DOI: 10.4065/70.6.532] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To determine whether 3,4-diaminopyridine (3,4-DAP) would improve clinical or electrophysiologic function in patients with stable chronic demyelinating polyneuropathy. DESIGN We conducted a prospective, randomized, placebo-controlled, blinded, crossover study of 3,4-DAP in 34 patients with demyelinating polyneuropathy. MATERIAL AND METHODS Of the 17 men and 17 women, who were 21 to 80 years of age, 27 had hereditary motor and sensory neuropathy type I and 7 had acquired demyelinating polyneuropathy. Treatment consisted of stepped doses of 3,4-DAP (increasing to 20 mg four times daily) or placebo for 4 days. Pretreatment and posttreatment determination of the Neurologic Disability Score (NDS); isometric muscle strength testing; median, ulnar, and peroneal nerve conduction studies; and measurement of serum 3,4-DAP were performed. Quantitative computer-assisted sensory examinations were done in five patients. RESULTS The results for the final day of treatment with 3,4-DAP or placebo and the differences between pretreatment and posttreatment findings for total NDS, sensory NDS, isometric muscle strength testing, compound muscle action potential amplitude, sensory nerve action potential amplitude, motor and sensory conduction velocities, and vibration and cold detection thresholds did not vary significantly. A small improvement of 4 points in the motor NDS (P < 0.05) was found. Five patients with electrophysiologic conduction block had no significant reduction in the degree of block. CONCLUSION Because no improvement was noted in most measurements of neurologic function, despite use of high doses of drug, 3,4-DAP is unlikely to be beneficial in the treatment of stable chronic demyelinating polyneuropathy.
Collapse
Affiliation(s)
- J W Russell
- Department of Neurology, Mayo Clinic Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
7
|
Minturn JE, Sontheimer H, Black JA, Ransom BR, Waxman SG. Sodium channel expression in optic nerve astrocytes chronically deprived of axonal contact. Glia 1992; 6:19-29. [PMID: 1324888 DOI: 10.1002/glia.440060104] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Immunocytochemical and electrophysiological methods were used to examine the effect of retinal ablation on the expression of sodium channels within optic nerve astrocytes in situ and in vitro. Enucleation was performed at postnatal day 3 (P3), and electron microscopy of the enucleated optic nerves at P28-P40 revealed complete degeneration of retinal ganglion axons, resulting in optic nerves composed predominantly of astrocytes. In contrast to control (non-enucleated) optic nerve astrocytes, which exhibited distinct sodium channel immunoreactivity following immunostaining with antibody 7493, the astrocytes in enucleated optic nerves did not display sodium channel immunoreactivity in situ. Cultures obtained from enucleated optic nerves consisted principally (greater than 90%) of glial fibrillary acidic protein (GFAP)+/A2B5- ("type-1") astrocytes, as determined by indirect immunofluorescence; GFAP+/A2B5+ ("type-2") astrocytes were not present, nor were GFAP-/A2B5+ (O-2A) progenitor cells. Sodium channel immunoreactivity was not present in GFAP+/A2B5- astrocytes obtained from enucleated optic nerves; in contrast, GFAP+/A2B5- astrocytes from control optic nerves exhibited 7493 immunostaining for the first 4-6 days in culture. Sodium current expression, studied using whole-cell patch-clamp recording, was attenuated in cultured astrocytes derived from enucleated optic nerves. Whereas 39 of 50 type-1 astrocytes cultured from intact optic nerves showed measurable sodium currents at 1-7 days in vitro, sodium currents were present in only 6 of 38 astrocytes cultured from enucleated optic nerves. Mean sodium current densities in astrocytes from the enucleated optic nerves (0.66 +/- 0.3 pA/pF) were significantly smaller than in astrocytes from control optic nerves (7.15 +/- 1.1 pA/pF). The h infinity-curves of sodium currents were similar in A2B5- astrocytes from enucleated and control rat optic nerves. These results suggest that there is neuronal modulation of sodium channel expression in type-1 optic nerve astrocytes, and that, following chronic loss of axonal association in vivo, sodium channel expression is down-regulated in this population of optic nerve astrocytes.
Collapse
Affiliation(s)
- J E Minturn
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | |
Collapse
|
8
|
Massacrier A, Couraud F, Cau P. Voltage-sensitive Na+ channels in mammalian peripheral nerves detected using scorpion toxins. JOURNAL OF NEUROCYTOLOGY 1990; 19:850-72. [PMID: 1963443 DOI: 10.1007/bf01186815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The localization of voltage-sensitive sodium channels was investigated in mouse, rat and rabbit sciatic nerves using iodinated alpha- and beta-Scorpion toxins (ScTx) as specific probes. Saturable specific binding for a beta-ScTx was detected in mouse sciatic nerve homogenates (Kd = 90 pM, binding site capacity = 90 fmol mg-1 protein). LM autoradiographic studies demonstrated that the two types of ScTx stained the Ranvier nodes of the myelinated fibres, and also showed a clear but weaker labelling of the unmyelinated Remak bundles. In the sciatic nerve, which is widely considered as a model 'myelinated nerve', the nodal membrane represented only a small fraction of the total axonal membranes (0.2% and 0.05% for mouse and rabbit sciatic nerves respectively). Therefore, despite their high channel density, nodal membranes contribute only a small proportion of the total labelling by beta-ScTx (15% and 2.3% for mouse and rabbit sciatic nerves respectively), with the major contribution to labelling arising from unmyelinated axons. The distribution of specific binding sites for a beta-Scorpion toxin was then analysed in cross-sections of rabbit sciatic nerve at the EM level. The quantitative analysis of autoradiograms involved three methods, the 50% probability circle method, and two cross-fire analyses using either systematically distributed hypothetical sources or hypothetical sources only located on the plasma membranes of axons and of Schwann cells associated with unmyelinated Remak bundles. No specific beta-Scorpion toxin binding sites were detected at the plasma membrane of Schwann cells from either myelinated fibres or unmyelinated bundles, or at the internodal surface of myelinated axons. Sites were only detected at the surface of unmyelinated axons and at nodal axolemma. Their density in unmyelinated axons was found to be in the range of 1-6 per micron2 of plasma membrane surface area by combining quantitative EM autoradiography and stereological measurements.
Collapse
Affiliation(s)
- A Massacrier
- Laboratoire de Biologie Cellulaire-Histologie, INSERM U 172-CNRS UA 1179, Faculté de Médecine-Nord, Marseille, France
| | | | | |
Collapse
|
9
|
Waxman SG, Black JA, Kocsis JD, Ritchie JM. Low density of sodium channels supports action potential conduction in axons of neonatal rat optic nerve. Proc Natl Acad Sci U S A 1989; 86:1406-10. [PMID: 2537496 PMCID: PMC286700 DOI: 10.1073/pnas.86.4.1406] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The density of sodium channels in premyelinated axons was estimated from measurements of the binding of [3H]saxitoxin to neonatal rat optic nerve. The maximum saturable binding capacity of the nerve was 16.2 +/- 1.2 fmol/mg of wet weight, with an equilibrium dissociation constant of 0.88 +/- 0.18 nM (mean +/- SEM). These values correspond to a high-affinity saxitoxin-binding site density of approximately 2/microns 2 within premyelinated axon membrane. Action potential propagation in neonatal rat optic nerve is completely blocked by 5 nM saxitoxin, indicating that action potential electrogenesis is mediated by channels that correspond to high-affinity saxitoxin-binding sites. These results demonstrate that action potential conduction is supported by a low density of sodium channels in this system. Since the internodal axon membrane of myelinated fibers may contain a low density of sodium channels, it is possible that restoration of conduction in some demyelinated fibers may not require additional sodium channel incorporation into the demyelinated axon membrane.
Collapse
Affiliation(s)
- S G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510
| | | | | | | |
Collapse
|
10
|
|
11
|
Bevan S, Chiu SY, Gray PT, Ritchie JM. The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES B, BIOLOGICAL SCIENCES 1985; 225:299-313. [PMID: 2414778 DOI: 10.1098/rspb.1985.0063] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Patch-clamp recording from the plasmalemma of rat cultured astrocytes reveals the presence of both voltage-dependent sodium and voltage-dependent potassium conductances. These conductances are similar but not identical to the corresponding conductances in the axolemma. Whereas the h infinity relation of the sodium channels has the same voltage dependence as in the nodal axolemma, the peak current-voltage relation is shifted by about 30 mV along the voltage axis in the depolarizing direction. It is speculated that the glial cells synthesize sodium and potassium channels for later insertion into the axolemma of neighbouring axons. The astrocytes also express a plasmalemmal voltage-dependent anion conductance that is turned on at about -40 mV (that is, near the resting potential of the cultured astrocytes). The channels involved are large enough to be just permeable to glutamate but not to ascorbate. It is suggested that the conductance of this channel for chloride plays a physiological role in the spatial buffering of potassium by glial cells.
Collapse
|
12
|
Shrager P, Chiu SY, Ritchie JM. Voltage-dependent sodium and potassium channels in mammalian cultured Schwann cells. Proc Natl Acad Sci U S A 1985; 82:948-52. [PMID: 2579384 PMCID: PMC397165 DOI: 10.1073/pnas.82.3.948] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cultured Schwann cells from sciatic nerves of newborn rabbits and rats have been examined with patch-clamp techniques. In rabbit cells, single sodium and potassium channels have been detected with single channel conductances of 20 pS and 19 pS, respectively. Single sodium channels have a reversal potential within 15 mV of ENa, are blocked by tetrodotoxin, and have rapid and voltage-independent inactivation kinetics. Single potassium channels show current reversal close to EK and are blocked by 4-aminopyridine. From these results, and from comparisons of single-channel and whole-cell data, we show that these Schwann cells contain voltage-dependent sodium and potassium channels that are similar in most respects to the corresponding channels in mammalian axonal membranes. Cultured rat Schwann cells also have sodium channels, but at a density about 1/10th that of rabbit cells, a result in agreement with saxitoxin binding experiments on axon-free sectioned nerves. Saxitoxin binding to cultured cells suggests that there are up to 25,000 sodium channels in a single rabbit Schwann cell. We speculate that in vivo Schwann cells in myelinated axons might act as a local source for sodium channels at the nodal axolemma.
Collapse
|