1
|
|
2
|
Geary DC. Spatial ability as a distinct domain of human cognition: An evolutionary perspective. INTELLIGENCE 2022. [DOI: 10.1016/j.intell.2021.101616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
3
|
Basso MA, Bickford ME, Cang J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron 2021; 109:918-937. [PMID: 33548173 PMCID: PMC7979487 DOI: 10.1016/j.neuron.2021.01.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
The superior colliculus is a conserved sensorimotor structure that integrates visual and other sensory information to drive reflexive behaviors. Although the evidence for this is strong and compelling, a number of experiments reveal a role for the superior colliculus in behaviors usually associated with the cerebral cortex, such as attention and decision-making. Indeed, in addition to collicular outputs targeting brainstem regions controlling movements, the superior colliculus also has ascending projections linking it to forebrain structures including the basal ganglia and amygdala, highlighting the fact that the superior colliculus, with its vast inputs and outputs, can influence processing throughout the neuraxis. Today, modern molecular and genetic methods combined with sophisticated behavioral assessments have the potential to make significant breakthroughs in our understanding of the evolution and conservation of neuronal cell types and circuits in the superior colliculus that give rise to simple and complex behaviors.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | - Jianhua Cang
- University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Mendes-Lima T, Kirsten TB, Rodrigues PS, Sampaio ACS, Felício LF, Rocha PRDA, Reis-Silva TM, Bondan EF, Martins MFM, Queiroz-Hazarbassanov N, Bernardi MM. Prenatal LPS induces sickness behaviour and decreases maternal and predatory behaviours after an LPS challenge. Int J Neurosci 2020; 130:804-816. [PMID: 31916878 DOI: 10.1080/00207454.2019.1706505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose: The influence of a challenge dose of lipopolysaccharide (LPS) on the behavioural selection between maternal (MB) and predatory behaviours (PB) of female rats prenatally treated with the same endotoxin or saline solution (F1 generation) were studied.Material and methods: Thus, in adult age, these female rats were mated and, at lactation days 5 or 6, the following groups were formed: (1) LPS + LPS group-female rats prenatally treated with LPS and received an LPS challenge dose; (2) S + LPS group-female rats prenatally treated with saline solution and received a challenge LPS dose (3) S + S group-females rats prenatally treated with saline which received a saline injection. MB, PB to cockroaches, exploratory behaviour, periaqueductal grey (PAG) expression of the astrocytic biomarker glial fibrillary acidic protein (GFAP), and corticosterone and TNF-alpha serum levels were evaluated.Results: Showed that: (1) relative to the S + S group, the LPS + S group showed decreased MB and slightly increased PB, without inducing sickness behaviour; (2) the LPS + LPS group showed decreased MB but few effects on PB; (3) there was increased sickness behaviour associated with increased TNF-alpha serum levels in the LPS + LPS group; (4) a significant increase in GFAP expression was observed in both LPS groups, which was greater in the LPS + LPS group and (5) no differences in the corticosterone of all groups.Conclusions: Prenatal LPS impaired the switch from MB to PB in female rats of the LPS + LPS group by increased sickness behaviour as well as an increase in plasmatic TNF-alpha levels inducing PAG astrogliosis.
Collapse
Affiliation(s)
- T Mendes-Lima
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - T B Kirsten
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - P S Rodrigues
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - A C S Sampaio
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - L F Felício
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP CEP, Brazil
| | - P R D A Rocha
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - T M Reis-Silva
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - E F Bondan
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - M F M Martins
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| | - N Queiroz-Hazarbassanov
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, SP CEP, Brazil
| | - M M Bernardi
- Graduate Program in Environmental and Experimental Pathology, Graduate Program in Dentistry, Paulista University, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Gerlai R. Zebrafish and relational memory: Could a simple fish be useful for the analysis of biological mechanisms of complex vertebrate learning? Behav Processes 2017; 141:242-250. [PMID: 28143721 DOI: 10.1016/j.beproc.2017.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/06/2017] [Accepted: 01/24/2017] [Indexed: 12/19/2022]
Abstract
Analysis of the zebrafish allows one to combine two distinct scientific approaches, comparative ethology and neurobehavioral genetics. Furthermore, this species arguably represents an optimal compromise between system complexity and practical simplicity. This mini-review focuses on a complex form of learning, relational learning and memory, in zebrafish. It argues that zebrafish are capable of this type of learning, and it attempts to show how this species may be useful in the analysis of the mechanisms and the evolution of this complex brain function. The review is not intended to be comprehensive. It is a short opinion piece that reflects the author's own biases, and it draws some of its examples from the work coming from his own laboratory. Nevertheless, it is written in the hope that it will persuade those who have not utilized zebrafish and who may be interested in opening their research horizon to this relatively novel but powerful vertebrate research tool.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road North, Rm CCT4004 Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
6
|
|
7
|
Rubelowski JM, Menge M, Distler C, Rothermel M, Hoffmann KP. Connections of the superior colliculus to shoulder muscles of the rat: a dual tracing study. Front Neuroanat 2013; 7:17. [PMID: 23760726 PMCID: PMC3675767 DOI: 10.3389/fnana.2013.00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/22/2013] [Indexed: 12/18/2022] Open
Abstract
Previous investigations indicate that the superior colliculus (SC) is involved in the initiation and execution of forelimb movements. In the present study we investigated the tectofugal, in particular the tecto-reticulo-spinal projections to the shoulder and arm muscles in the rat. We simultaneously retrogradely labeled the premotor neurons in the brainstem by injection of the pseudorabies virus PrV Bartha 614 into the m. rhomboideus minor and m. acromiodeltoideus, and anterogradely visualized the tectofugal projections by intracollicular injection of the tracer FITC dextrane. Our results demonstrate that the connection of the SC to the skeletal muscles of the forelimb is at least trisynaptic. This was confirmed by long survival times after virus injections into the muscles (98-101 h) after which numerous neurons in the deep layers of the SC were labeled. Transsynaptically retrogradely labeled brainstem neurons connected disynaptically to the injected muscles with adjacent tectal terminals were predominantly located in the gigantocellular nuclear complex of the reticular formation. In addition, putative relay neurons were found in the caudal part of the pontine reticular nucleus. Both tectal projections to the nucleus gigantocellularis and the pontine reticular nucleus were bilateral but ipsilaterally biased. We suggest this projection to be involved in more global functions in motivated behavior like general arousal allowing fast voluntary motor activity.
Collapse
Affiliation(s)
- J. M. Rubelowski
- Allgemeine Zoologie and Neurobiologie, Ruhr-University BochumBochum, Germany
| | - M. Menge
- Allgemeine Zoologie and Neurobiologie, Ruhr-University BochumBochum, Germany
| | - C. Distler
- Allgemeine Zoologie and Neurobiologie, Ruhr-University BochumBochum, Germany
| | - M. Rothermel
- Brain Institute and Department of Physiology, School of Medicine, University of UtahSalt Lake City, UT, USA
| | | |
Collapse
|
8
|
Abstract
Much attention has focused on the dramatic expansion of the forebrain, particularly the neocortex, as the neural substrate of cognitive evolution. However, though relatively small, the cerebellum contains about four times more neurons than the neocortex. I show that commonly used comparative measures such as neocortex ratio underestimate the contribution of the cerebellum to brain evolution. Once differences in the scaling of connectivity in neocortex and cerebellum are accounted for, a marked and general pattern of correlated evolution of the two structures is apparent. One deviation from this general pattern is a relative expansion of the cerebellum in apes and other extractive foragers. The confluence of these comparative patterns, studies of ape foraging skills and social learning, and recent evidence on the cognitive neuroscience of the cerebellum, suggest an important role for the cerebellum in the evolution of the capacity for planning, execution and understanding of complex behavioural sequences--including tool use and language. There is no clear separation between sensory-motor and cognitive specializations underpinning such skills, undermining the notion of executive control as a distinct process. Instead, I argue that cognitive evolution is most effectively understood as the elaboration of specialized systems for embodied adaptive control.
Collapse
Affiliation(s)
- Robert A Barton
- Evolutionary Anthropology Research Group, Department of Anthropology, Durham University, Dawson Building, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
9
|
Johnston K, Everling S. Neurophysiology and neuroanatomy of reflexive and voluntary saccades in non-human primates. Brain Cogn 2008; 68:271-83. [DOI: 10.1016/j.bandc.2008.08.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
|
10
|
Abstract
Genetic and neurobiological research is reviewed as related to controversy over the extent to which neocortical organization and associated cognitive functions are genetically constrained or emerge through patterns of developmental experience. An evolutionary framework that accommodates genetic constraint and experiential modification of brain organization and cognitive function is then proposed. The authors argue that 4 forms of modularity and 3 forms of neural and cognitive plasticity define the relation between genetic constraint and the influence of developmental experience. For humans, the result is the ontogenetic emergence of functional modules in the domains of folk psychology, folk biology, and folk physics. The authors present a taxonomy of these modules and review associated research relating to brain and cognitive plasticity in these domains.
Collapse
Affiliation(s)
- David C Geary
- Department of Psychological Sciences, University of Missouri-Columbia 65211-2500, USA.
| | | |
Collapse
|
11
|
Young MP, Hilgetag CC, Scannell JW. On imputing function to structure from the behavioural effects of brain lesions. Philos Trans R Soc Lond B Biol Sci 2000; 355:147-61. [PMID: 10703050 PMCID: PMC1692718 DOI: 10.1098/rstb.2000.0555] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
What is the link, if any, between the patterns of connections in the brain and the behavioural effects of localized brain lesions? We explored this question in four related ways. First, we investigated the distribution of activity decrements that followed simulated damage to elements of the thalamocortical network, using integrative mechanisms that have recently been used to successfully relate connection data to information on the spread of activation, and to account simultaneously for a variety of lesion effects. Second, we examined the consequences of the patterns of decrement seen in the simulation for each type of inference that has been employed to impute function to structure on the basis of the effects of brain lesions. Every variety of conventional inference, including double dissociation, readily misattributed function to structure. Third, we tried to derive a more reliable framework of inference for imputing function to structure, by clarifying concepts of function, and exploring a more formal framework, in which knowledge of connectivity is necessary but insufficient, based on concepts capable of mathematical specification. Fourth, we applied this framework to inferences about function relating to a simple network that reproduces intact, lesioned and paradoxically restored orientating behaviour. Lesion effects could be used to recover detailed and reliable information on which structures contributed to particular functions in this simple network. Finally, we explored how the effects of brain lesions and this formal approach could be used in conjunction with information from multiple neuroscience methodologies to develop a practical and reliable approach to inferring the functional roles of brain structures.
Collapse
Affiliation(s)
- M P Young
- Department of Psychology, University of Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
12
|
Künzle H. Connections of the superior colliculus with the tegmentum and the cerebellum in the hedgehog tenrec. Neurosci Res 1997; 28:127-45. [PMID: 9220470 DOI: 10.1016/s0168-0102(97)00034-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Different tracer substances were injected into the superior colliculus (CoS) in order to study its afferents and efferents with the meso-rhombencephalic tegmentum, the precerebellar nuclei and the cerebellum in the Madagascan hedgehog tenrec. The overall pattern of tectal connectivity in tenrec was similar to that in other mammals, as, e.g. the efferents to the contralateral paramedian reticular formation. Similarly the origin of the cerebello-tectal projection in mainly the lateral portions of the tenrec's cerebellar nuclear complex corresponded to the findings in species with little binocular overlap. In comparison to other mammals, however, the tenrec showed a consistent projection to the ipsilateral inferior olivary nucleus, in addition to the classical contralateral tecto-olivary projection. The tenrec's CoS also appeared to receive an unusually prominent monoaminergic input particularly from the substantia nigra, pars compacta. There was a reciprocal tecto-parabigeminal projection, a distinct nuclear aggregation of parabigeminal neurons, however, was difficult to identify. The dorsal lemniscal nucleus did not show perikaryal labeling in contrast to the paralemniscal region. Similar to the cat but unlike the rat there were a few neurons in the nucleus of the central acoustic tract. Unlike the cat, but similar to the rat there was a distinct, predominantly ipsilateral projection to the magnocellular reticular field known to project spinalward.
Collapse
Affiliation(s)
- H Künzle
- Institute of Anatomy, University of Munich, Germany.
| |
Collapse
|
13
|
Paw preferences in cats (Felis silvestris catus) living in a household environment. Behav Processes 1997; 39:241-7. [DOI: 10.1016/s0376-6357(96)00758-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/1994] [Revised: 09/17/1996] [Accepted: 09/17/1996] [Indexed: 11/23/2022]
|
14
|
Abstract
The neocortex is widely held to have been the focus of mammalian brain evolution, but what selection pressures explain the observed diversity in its size and structure? Among primates, comparative studies suggest that neocortical evolution is related to the cognitive demands of sociality, and here I confirm that neocortex size and social group size are positively correlated once phylogenetic associations and overall brain size are taken into account. This association holds within haplorhine but not strepsirhine primates. In addition, the neocortex is larger in diurnal than in nocturnal primates, and among diurnal haplorhines its size is positively correlated with the degree of frugivory. These ecological correlates reflect the diverse sensory-cognitive functions of the neocortex.
Collapse
Affiliation(s)
- R A Barton
- Department of Anthropology, University of Durham
| |
Collapse
|
15
|
Abstract
Arabidopsis thaliana is a small flowering plant that is a member of the family cruciferae. It has many characteristics--diploid genetics, rapid growth cycle, relatively low repetitive DNA content, and small genome size--that recommend it as the model for a plant genome project. The current status of the genetic and physical maps, as well as efforts to sequence the genome, are presented. Examples are given of genes isolated by using map-based cloning. The importance of the Arabidopsis project for plant biology in general is discussed.
Collapse
Affiliation(s)
- H M Goodman
- Department of Genetics, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
16
|
Barton RA, Purvis A, Harvey PH. Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Philos Trans R Soc Lond B Biol Sci 1995; 348:381-92. [PMID: 7480110 DOI: 10.1098/rstb.1995.0076] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
How brains have evolved in response to particular selection pressures is illuminated by ecological correlates of differences in brain structure among contemporary species. The focus of most comparative studies has been on the overall size of brains relative to body size, hence ignoring the ways in which selection operates on specific neural systems. Here we investigate evolutionary radiations in the size of visual and olfactory brain structures within three orders of mammals: primates, bats and insectivores. The comparative relationships within these three orders show both similarities and differences. After removal of the allometric effect of overall brain size, the sizes of different structures within each sensory modality are positively correlated in all three orders. Correlations between visual and olfactory structures, however, are negative in primates, negative but non-significant in insectivores, and positive in bats. In both primates and insectivores, nocturnal lineages tend to have larger olfactory structures than do diurnal or partly diurnal lineages, and among the primates diurnal lineages have larger striate visual cortexes. Hence the apparent trade-off between vision and olfaction in primates seems to be related to the divergence of nocturnal and diurnal forms. However, negative correlations between visual and olfactory structures were also found when nocturnal strepsirhines and diurnal haplorhines were analysed separately, suggesting that ecological variables in addition to activity timing may be significant. Indeed, there were also associations with diet: frugivory was associated with enlargements of the geniculostriate visual system in diurnal primates, enlargements of olfactory structures in nocturnal primates, and possibly enlargements of both in bats. Further ecological associations were found within insectivores: aquatic lineages had smaller olfactory structures than in their non-aquatic counterparts, and fossorial lineages had smaller optic nerves than in non-fossorial forms. We conclude that activity timing, diet and habitat have each played a role in the evolutionary radiation of mammalian sensory systems, but with varying effects in the different taxa. Some of the associations between ecology and sensory systems suggest alternative explanations for correlates of overall brain size, which have in the past commonly been interpreted in terms of selection on intelligence.
Collapse
Affiliation(s)
- R A Barton
- Department of Anthropology, University of Durham, UK
| | | | | |
Collapse
|