1
|
Szarek P, Pierce DM. A specialized protocol for mechanical testing of isolated networks of type II collagen. J Mech Behav Biomed Mater 2022; 136:105466. [PMID: 36183667 DOI: 10.1016/j.jmbbm.2022.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
The mechanical responses of most soft biological tissues rely heavily on networks of collagen fibers, thus quantifying the mechanics of both individual collagen fibers and networks of these fibers advances understanding of biological tissues in health and disease. The mechanics of type I collagen are well-studied and quantified. Yet no data exist on the tensile mechanical responses of individual type II collagen fibers nor of isolated networks comprised of type II collagen. We aimed to establish methods to facilitate studies of networked and individual type II collagen fibers within the native networked structure, specifically to establish best practices for isolating and mechanically testing type II collagen networks in tension. We systematically investigated mechanical tests of networks of type II collagen undergoing uniaxial extension, and quantified ranges for each of the important variables to help ensure that the experiment itself does not affect the measured mechanical parameters. Specifically we determined both the specimen (establishing networks of isolated collagen, the footprint and thickness of the specimen) and the mechanical test (both the device and the strain rate) to establish a repeatable and practical protocol. Mechanical testing of isolated networks of type II collagen fibers leveraging this protocol will lead to better understanding of the mechanics both of these networks and of the individual fibers. Such understanding may aid in developing and testing therapeutics, understanding inter-constituent interactions (and their roles in bulk-tissue biomechanics), investigating mechanical/biochemical modifications to networked type II collagen, and proposing, calibrating, and validating constitutive models for finite element analyses.
Collapse
Affiliation(s)
- Phoebe Szarek
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - David M Pierce
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States of America.
| |
Collapse
|
2
|
Cederlund AA, Aspden RM. Walking on water: revisiting the role of water in articular cartilage biomechanics in relation to tissue engineering and regenerative medicine. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220364. [PMID: 35919975 PMCID: PMC9346369 DOI: 10.1098/rsif.2022.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The importance, and the difficulty, of generating biosynthetic articular cartilage is widely recognized. Problems arise from obtaining sufficient stiffness, toughness and longevity in the material and integration of new material into existing cartilage and bone. Much work has been done on chondrocytes and tissue macromolecular components while water, which comprises the bulk of the tissue, is largely seen as a passive component; the ‘solid matrix’ is believed to be the main load-bearing element most of the time. Water is commonly seen as an inert filler whose restricted flow through the tissue is believed to be sufficient to generate the properties measured. We propose that this model should be turned on its head. Water comprises 70–80% of the matrix and has a bulk modulus considerably greater than that of cartilage. We suggest that the macromolecular components structure the water to support the loads applied. Here, we shall examine the structure and organization of the main macromolecules, collagen, aggrecan and hyaluronan, and explore how water interacts with their polyelectrolyte nature. This may inform the biosynthetic process by identifying starting points to enable developing tissue properties to guide the cells into producing the appropriate macromolecular composition and structure.
Collapse
Affiliation(s)
- Anna A Cederlund
- Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Richard M Aspden
- Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
3
|
Stampoultzis T, Karami P, Pioletti DP. Thoughts on cartilage tissue engineering: A 21st century perspective. Curr Res Transl Med 2021; 69:103299. [PMID: 34192658 DOI: 10.1016/j.retram.2021.103299] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/11/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
In mature individuals, hyaline cartilage demonstrates a poor intrinsic capacity for repair, thus even minor defects could result in progressive degeneration, impeding quality of life. Although numerous attempts have been made over the past years for the advancement of effective treatments, significant challenges still remain regarding the translation of in vitro cartilage engineering strategies from bench to bedside. This paper reviews the latest concepts on engineering cartilage tissue in view of biomaterial scaffolds, tissue biofabrication, mechanobiology, as well as preclinical studies in different animal models. The current work is not meant to provide a methodical review, rather a perspective of where the field is currently focusing and what are the requirements for bridging the gap between laboratory-based research and clinical applications, in light of the current state-of-the-art literature. While remarkable progress has been accomplished over the last 20 years, the current sophisticated strategies have reached their limit to further enhance healthcare outcomes. Considering a clinical aspect together with expertise in mechanobiology, biomaterial science and biofabrication methods, will aid to deal with the current challenges and will present a milestone for the furtherance of functional cartilage engineering.
Collapse
Affiliation(s)
| | - Peyman Karami
- Laboratory of Biomechanical Orthopedics, EPFL, Lausanne, Switzerland.
| | | |
Collapse
|
4
|
COMP and TSP-4: Functional Roles in Articular Cartilage and Relevance in Osteoarthritis. Int J Mol Sci 2021; 22:ijms22052242. [PMID: 33668140 PMCID: PMC7956748 DOI: 10.3390/ijms22052242] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a slow-progressing joint disease, leading to the degradation and remodeling of the cartilage extracellular matrix (ECM). The usually quiescent chondrocytes become reactivated and accumulate in cell clusters, become hypertrophic, and intensively produce not only degrading enzymes, but also ECM proteins, like the cartilage oligomeric matrix protein (COMP) and thrombospondin-4 (TSP-4). To date, the functional roles of these newly synthesized proteins in articular cartilage are still elusive. Therefore, we analyzed the involvement of both proteins in OA specific processes in in vitro studies, using porcine chondrocytes, isolated from femoral condyles. The effect of COMP and TSP-4 on chondrocyte migration was investigated in transwell assays and their potential to modulate the chondrocyte phenotype, protein synthesis and matrix formation by immunofluorescence staining and immunoblot. Our results demonstrate that COMP could attract chondrocytes and may contribute to a repopulation of damaged cartilage areas, while TSP-4 did not affect this process. In contrast, both proteins similarly promoted the synthesis and matrix formation of collagen II, IX, XII and proteoglycans, but inhibited that of collagen I and X, resulting in a stabilized chondrocyte phenotype. These data suggest that COMP and TSP-4 activate mechanisms to protect and repair the ECM in articular cartilage.
Collapse
|
5
|
Bas O, De-Juan-Pardo EM, Meinert C, D’Angella D, Baldwin JG, Bray LJ, Wellard RM, Kollmannsberger S, Rank E, Werner C, Klein TJ, Catelas I, Hutmacher DW. Biofabricated soft network composites for cartilage tissue engineering. Biofabrication 2017; 9:025014. [DOI: 10.1088/1758-5090/aa6b15] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Goh KL, Holmes DF. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue. Int J Mol Sci 2017; 18:ijms18050901. [PMID: 28441344 PMCID: PMC5454814 DOI: 10.3390/ijms18050901] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced composites to a wide variety of collagen reinforcing (non-mutable) connective tissue, has allowed us to draw general conclusions concerning the mechanical response of the MCT at specific mechanical states, namely the stiff and complaint states. The intent of this review is to provide the latest insights, as well as identify technical challenges and opportunities, that may be useful for developing methods for effective mechanical support when adapting decellularised connective tissues from the sea urchin for tissue engineering or for the design of a synthetic analogue.
Collapse
Affiliation(s)
- Kheng Lim Goh
- Newcastle University Singapore, SIT Building at Nanyang Polytechnic, 172A Ang Mo Kio Avenue 8 #05-01, Singapore 567739, Singapore.
- Newcastle University, School of Mechanical & Systems Engineering, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK.
| | - David F Holmes
- Manchester University, Wellcome Trust Centre for Cell Matrix Research, B.3016 Michael Smith Building, Faculty of Life Sciences, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
7
|
Anderson DE, Markway BD, Bond D, McCarthy HE, Johnstone B. Responses to altered oxygen tension are distinct between human stem cells of high and low chondrogenic capacity. Stem Cell Res Ther 2016; 7:154. [PMID: 27765063 PMCID: PMC5073443 DOI: 10.1186/s13287-016-0419-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/05/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Lowering oxygen from atmospheric level (hyperoxia) to the physiological level (physioxia) of articular cartilage promotes mesenchymal stem cell (MSC) chondrogenesis. However, the literature is equivocal regarding the benefits of physioxic culture on preventing hypertrophy of MSC-derived chondrocytes. Articular cartilage progenitors (ACPs) undergo chondrogenic differentiation with reduced hypertrophy marker expression in hyperoxia but have not been studied in physioxia. This study sought to delineate the effects of physioxic culture on both cell types undergoing chondrogenesis. METHODS MSCs were isolated from human bone marrow aspirates and ACP clones were isolated from healthy human cartilage. Cells were differentiated in pellet culture in physioxia (2 % oxygen) or hyperoxia (20 % oxygen) over 14 days. Chondrogenesis was characterized by biochemical assays and gene and protein expression analysis. RESULTS MSC preparations and ACP clones of high intrinsic chondrogenicity (termed high-GAG) produced abundant matrix in hyperoxia and physioxia. Poorly chondrogenic cells (low-GAG) demonstrated a significant fold-change matrix increase in physioxia. Both high-GAG and low-GAG groups of MSCs and ACPs significantly upregulated chondrogenic genes; however, only high-GAG groups had a concomitant decrease in hypertrophy-related genes. High-GAG MSCs upregulated many common hypoxia-responsive genes in physioxia while low-GAG cells downregulated most of these genes. In physioxia, high-GAG MSCs and ACPs produced comparable type II collagen but less type I collagen than those in hyperoxia. Type X collagen was detectable in some ACP pellets in hyperoxia but reduced or absent in physioxia. In contrast, type X collagen was detectable in all MSC preparations in hyperoxia and physioxia. CONCLUSIONS MSC preparations and ACP clones had a wide range of chondrogenicity between donors. Physioxia significantly enhanced the chondrogenic potential of both ACPs and MSCs compared with hyperoxia, but the magnitude of response was inversely related to intrinsic chondrogenic potential. Discrepancies in the literature regarding MSC hypertrophy in physioxia can be explained by the use of low numbers of preparations of variable chondrogenicity. Physioxic differentiation of MSC preparations of high chondrogenicity significantly decreased hypertrophy-related genes but still produced type X collagen protein. Highly chondrogenic ACP clones had significantly lower hypertrophic gene levels, and there was little to no type X collagen protein in physioxia, emphasizing the potential advantage of these cells.
Collapse
Affiliation(s)
- Devon E Anderson
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, HRC529C, Portland, OR, 97239, USA
| | - Brandon D Markway
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, HRC529C, Portland, OR, 97239, USA
| | - Derek Bond
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, HRC529C, Portland, OR, 97239, USA
| | - Helen E McCarthy
- Cardiff School of Biosciences, Sir Martin Evans Building, Cardiff, CF10 3AX, UK
| | - Brian Johnstone
- Oregon Health & Science University, 3181 SW Sam Jackson Park Road, OP31, Portland, OR, 97239, USA.
| |
Collapse
|
8
|
Anssari-Benam A, Barber AH, Bucchi A. Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer approach. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:42. [PMID: 26715134 DOI: 10.1007/s10856-015-5657-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
A matrix-fibril shear stress transfer approach is devised and developed in this paper to analyse the primary biomechanical factors which initiate the structural degeneration of the bioprosthetic heart valves (BHVs). Using this approach, the critical length of the collagen fibrils l c and the interface shear acting on the fibrils in both BHV and natural aortic valve (AV) tissues under physiological loading conditions are calculated and presented. It is shown that the required critical fibril length to provide effective reinforcement to the natural AV and the BHV tissue is l c = 25.36 µm and l c = 66.81 µm, respectively. Furthermore, the magnitude of the required shear force acting on fibril interface to break a cross-linked fibril in the BHV tissue is shown to be 38 µN, while the required interfacial force to break the bonds between the fibril and the surrounding extracellular matrix is 31 µN. Direct correlations are underpinned between these values and the ultimate failure strength and the failure mode of the BHV tissue compared with the natural AV, and are verified against the existing experimental data. The analyses presented in this paper explain the role of fibril interface shear and critical length in regulating the biomechanics of the structural failure of the BHVs, for the first time. This insight facilitates further understanding into the underlying causes of the structural degeneration of the BHVs in vivo.
Collapse
Affiliation(s)
- Afshin Anssari-Benam
- School of Engineering, University of Portsmouth, Anglesea Road, Portsmouth, PO1 3DJ, UK.
| | - Asa H Barber
- School of Engineering, University of Portsmouth, Anglesea Road, Portsmouth, PO1 3DJ, UK
| | - Andrea Bucchi
- School of Engineering, University of Portsmouth, Anglesea Road, Portsmouth, PO1 3DJ, UK
| |
Collapse
|
9
|
Sadeghi H, Espino DM, Shepherd DET. Variation in viscoelastic properties of bovine articular cartilage below, up to and above healthy gait-relevant loading frequencies. Proc Inst Mech Eng H 2016; 229:115-23. [PMID: 25767149 PMCID: PMC4456430 DOI: 10.1177/0954411915570372] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to determine the variation in viscoelastic properties of femoral head bovine articular cartilage, on-bone, over five orders of magnitude of loading frequency. These frequencies ranged from below, up to and above healthy gait-relevant frequencies, using<1, 1–5 and 10 Hz, respectively. Dynamic mechanical analysis was used to measure storage and loss stiffness. A maximum compressive force of 36 N was applied through a chamfered-end, 5.2-mm-diameter, indenter. This induced a maximum nominal stress of 1.7 MPa. The ratio of storage to loss stiffness increased from near parity (2.5) at low frequencies to 11.4 at 10 Hz. This was the result of a significant logarithmic increase (p < 0.05) in storage stiffness with frequency, from 367 N/mm (0.001 Hz) up to 1460 N/mm (10 Hz). In contrast, the loss stiffness remained approximately constant. In conclusion, viscoelastic properties of articular cartilage measured at frequencies below those of gait activities are poor predictors of its relevant dynamic mechanical behaviour.
Collapse
Affiliation(s)
- Hamid Sadeghi
- School of Mechanical Engineering, University of Birmingham, Birmingham, UK
| | - Daniel M Espino
- School of Mechanical Engineering, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
10
|
Control superstructure of rigid polyelectrolytes in oppositely charged hydrogels via programmed internal stress. Nat Commun 2014; 5:4490. [DOI: 10.1038/ncomms5490] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/24/2014] [Indexed: 11/08/2022] Open
|
11
|
Viscoelastic properties of bovine knee joint articular cartilage: dependency on thickness and loading frequency. BMC Musculoskelet Disord 2014; 15:205. [PMID: 24929249 PMCID: PMC4068975 DOI: 10.1186/1471-2474-15-205] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 06/10/2014] [Indexed: 11/17/2022] Open
Abstract
Background The knee is an incongruent joint predisposed to developing osteoarthritis, with certain regions being more at risk of cartilage degeneration even in non-osteoarthrosed joints. At present it is unknown if knee regions prone to cartilage degeneration have similar storage and/or loss stiffness, and frequency-dependent trends, to other knee joint cartilage. The aim of this study was to determine the range of frequency-dependent, viscoelastic stiffness of articular cartilage across the bovine knee joint. Such changes were determined at frequencies associated with normal and rapid heel-strike rise times. Methods Cartilage on bone, obtained from bovine knee joints, was tested using dynamic mechanical analysis (DMA). DMA was performed at a range of frequencies between 1 and 88 Hz (i.e. relevant to normal and rapid heel-strike rise times). Viscoelastic stiffness of cartilage from the tibial plateau, femoral condyles and patellar groove were compared. Results For all samples the storage stiffness increased, but the loss stiffness remained constant, with frequency. They were also dependent on cartilage thickness. Both the loss stiffness and the storage stiffness decreased with cartilage thickness. Femoral condyles had the thinnest cartilage but had the highest storage and loss stiffness. Tibial plateau cartilage not covered by the meniscus had the thickest cartilage and lowest storage and loss stiffness. Conclusion Differences in regional thickness of knee joint cartilage correspond to altered frequency-dependent, viscoelastic stiffness.
Collapse
|
12
|
Szczesny SE, Elliott DM. Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon. Acta Biomater 2014; 10:2582-90. [PMID: 24530560 DOI: 10.1016/j.actbio.2014.01.032] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/04/2013] [Accepted: 01/30/2014] [Indexed: 12/15/2022]
Abstract
Despite the critical role tendons play in transmitting loads throughout the musculoskeletal system, little is known about the microstructural mechanisms underlying their mechanical function. Of particular interest is whether collagen fibrils in tendon fascicles bear load independently or if load is transferred between fibrils through interfibrillar shear forces. We conducted multiscale experimental testing and developed a microstructural shear lag model to explicitly test whether interfibrillar shear load transfer is indeed the fibrillar loading mechanism in tendon. Experimental correlations between fascicle macroscale mechanics and microscale interfibrillar sliding suggest that fibrils are discontinuous and share load. Moreover, for the first time, we demonstrate that a shear lag model can replicate the fascicle macroscale mechanics as well as predict the microscale fibrillar deformations. Since interfibrillar shear stress is the fundamental loading mechanism assumed in the model, this result provides strong evidence that load is transferred between fibrils in tendon and possibly other aligned collagenous tissues. Conclusively establishing this fibrillar loading mechanism and identifying the involved structural components should help develop repair strategies for tissue degeneration and guide the design of tissue engineered replacements.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd St, Philadelphia, PA 19104, USA
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, 125 East Delaware Avenue, Newark, DE 19716, USA.
| |
Collapse
|
13
|
Wilcox A, Buchan K, Espino D. Frequency and diameter dependent viscoelastic properties of mitral valve chordae tendineae. J Mech Behav Biomed Mater 2014; 30:186-95. [DOI: 10.1016/j.jmbbm.2013.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 11/30/2022]
|
14
|
Burgin L, Edelsten L, Aspden R. The mechanical and material properties of elderly human articular cartilage subject to impact and slow loading. Med Eng Phys 2014; 36:226-32. [DOI: 10.1016/j.medengphy.2013.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/11/2013] [Accepted: 11/03/2013] [Indexed: 11/26/2022]
|
15
|
Pearson B, Espino DM. Effect of hydration on the frequency-dependent viscoelastic properties of articular cartilage. Proc Inst Mech Eng H 2013; 227:1246-52. [DOI: 10.1177/0954411913501294] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of this study was to determine the effect of tissue hydration on the frequency-dependant viscoelastic properties of articular cartilage. Such changes were determined at frequencies associated with normal (1–10 Hz) and impulsive/traumatic (90 Hz) heel-strike times. Cartilage on bone samples, obtained from bovine humeral heads, was tested when hypo-hydrated and hyper-hydrated using dynamic mechanical analysis. Dynamic mechanical analysis was performed at a range of frequencies between 1 and 90 Hz. Hypo-hydration increased the stiffness of cartilage as compared to hyper-hydrated cartilage; this increase was greater at higher frequencies. The storage modulus and stiffness increased in hypo-hydrated cartilage as compared to hyper-hydrated cartilage. However, the loss modulus and stiffness increased when cartilage was hypo-hydrated as compared to hyper-hydrated, but these increases were not frequency dependent. An impulsive heel-strike time may result in a greater increase of stiffness in hypo-hydrated cartilage, compared with hyper-hydrated cartilage. However, the ratio of storage to loss stiffness was greater for hyper-hydrated cartilage, thereby, reducing the tissue’s ability to dissipate energy and increasing the likelihood of cartilage rupture.
Collapse
Affiliation(s)
| | - Daniel M Espino
- School of Mechanical Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
Fessel G, Snedeker JG. Equivalent stiffness after glycosaminoglycan depletion in tendon — an ultra-structural finite element model and corresponding experiments. J Theor Biol 2011; 268:77-83. [DOI: 10.1016/j.jtbi.2010.10.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/26/2010] [Accepted: 10/06/2010] [Indexed: 11/15/2022]
|
17
|
|
18
|
Stress transfer in collagen fibrils reinforcing connective tissues: effects of collagen fibril slenderness and relative stiffness. J Theor Biol 2006; 245:305-11. [PMID: 17123548 DOI: 10.1016/j.jtbi.2006.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 09/25/2006] [Accepted: 10/10/2006] [Indexed: 11/17/2022]
Abstract
Unlike engineering fibre composite materials which comprise of fibres that are uniform cylindrical in shape, collagen fibrils reinforcing the proteoglycan-rich (PG) gel in the extra-cellular matrices (ECMs) of connective tissues are taper-ended (paraboloidal in shape). In an earlier paper we have discussed how taper of a fibril leads to an axial stress up-take which differs from that of a uniform cylindrical fibre and implications for fibril fracture. The present paper focuses on the influence of fibre aspect ratio, q (slenderness), and Young's modulus (stiffness), relative to that of the gel phase, E(R), on the magnitude of the axial tensile stresses generated within a fibril and wider implications on failure at tissue level. Fibre composite models were evaluated using finite element (FE) and mathematical analyses. When the applied force is low, there is elastic stress transfer between the PG gel and a fibril. FE modelling shows that the stress in a fibril increases with E(R) and q. At higher applied forces, there is plastic stress transfer. Mathematical modelling predicts that the stress in a fibril increases linearly with q. For small q values, fibrils may be regarded as fillers with little ability to provide tensile reinforcement. Large q values lead to high stress in a fibril. Such high stresses are beneficial provided they do not exceed the fracture stress of collagen. Modulus difference regulates the strain energy release density, u, for interfacial rupture; large E(R) not only leads to high stress in a fibril but also insures against interfacial rupture by raising the value of u.
Collapse
|
19
|
Yao L, Bestwick CS, Bestwick LA, Maffulli N, Aspden RM. Phenotypic Drift in Human Tenocyte Culture. ACTA ACUST UNITED AC 2006; 12:1843-9. [PMID: 16889514 DOI: 10.1089/ten.2006.12.1843] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tendon ruptures are increasingly common, repair can be difficult, and healing is poorly understood. Tissue engineering approaches often require expansion of cell numbers to populate a construct, and maintenance of cell phenotype is essential for tissue regeneration. Here, we characterize the phenotype of human Achilles tenocytes and assess how this is affected by passaging. Tenocytes, isolated from tendon samples from 6 patients receiving surgery for rupture of the Achilles tendon, were passaged 8 times. Proliferation rates and cell morphology were recorded at passages 1, 4, and 8. Total collagen, the ratio of collagen types I and III, and decorin were used as indicators of matrix formation, and expression of the integrin beta1 subunit as a marker of cell-matrix interactions. With increasing passage number, cells became more rounded, were more widely spaced at confluence, and confluent cell density declined from 18,700/cm2 to 16,100/cm2 ( p = 0.009). No change to total cell layer collagen was observed but the ratio of type III to type I collagen increased from 0.60 at passage 1 to 0.89 at passage 8 ( p < 0.001). Decorin expression significantly decreased with passage number, from 22.9 +/- 3.1 ng/ng of DNA at passage 1, to 9.1 +/- 1.8 ng/ng of DNA at passage 8 ( p < 0.001). Integrin expression did not change. We conclude that the phenotype of tenocytes in culture rapidly drifts with progressive passage.
Collapse
Affiliation(s)
- L Yao
- Department of Orthopaedic Surgery, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | | | | | | |
Collapse
|
20
|
Yao L, Bestwick C, Bestwick L, Maffulli N, Aspden R. Phenotypic Drift in Human Tenocyte Culture. ACTA ACUST UNITED AC 2006. [DOI: 10.1089/ten.2006.12.ft-90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Rudman KE, Aspden RM, Meakin JR. Compression or tension? The stress distribution in the proximal femur. Biomed Eng Online 2006; 5:12. [PMID: 16504005 PMCID: PMC1397837 DOI: 10.1186/1475-925x-5-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 02/20/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Questions regarding the distribution of stress in the proximal human femur have never been adequately resolved. Traditionally, by considering the femur in isolation, it has been believed that the effect of body weight on the projecting neck and head places the superior aspect of the neck in tension. A minority view has proposed that this region is in compression because of muscular forces pulling the femur into the pelvis. Little has been done to study stress distributions in the proximal femur. We hypothesise that under physiological loading the majority of the proximal femur is in compression and that the internal trabecular structure functions as an arch, transferring compressive stresses to the femoral shaft. METHODS To demonstrate the principle, we have developed a 2D finite element model of the femur in which body weight, a representation of the pelvis, and ligamentous forces were included. The regions of higher trabecular bone density in the proximal femur (the principal trabecular systems) were assigned a higher modulus than the surrounding trabecular bone. Two-legged and one-legged stances, the latter including an abductor force, were investigated. RESULTS The inclusion of ligamentous forces in two-legged stance generated compressive stresses in the proximal femur. The increased modulus in areas of greater structural density focuses the stresses through the arch-like internal structure. Including an abductor muscle force in simulated one-legged stance also produced compression, but with a different distribution. CONCLUSION This 2D model shows, in principle, that including ligamentous and muscular forces has the effect of generating compressive stresses across most of the proximal femur. The arch-like trabecular structure transmits the compressive loads to the shaft. The greater strength of bone in compression than in tension is then used to advantage. These results support the hypothesis presented. If correct, a better understanding of the stress distribution in the proximal femur may lead to improvements in prosthetic devices and an appreciation of the effects of various surgical procedures affecting load transmission across the hip.
Collapse
Affiliation(s)
- K E Rudman
- Department of Orthopaedic Surgery, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | | | | |
Collapse
|
22
|
Goh K, Meakin J, Aspden R, Hukins D. Influence of fibril taper on the function of collagen to reinforce extracellular matrix. Proc Biol Sci 2006; 272:1979-83. [PMID: 16191606 PMCID: PMC1559877 DOI: 10.1098/rspb.2005.3173] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Collagen fibrils provide tensile reinforcement for extracellular matrix. In at least some tissues, the fibrils have a paraboloidal taper at their ends. The purpose of this paper is to determine the implications of this taper for the function of collagen fibrils. When a tissue is subjected to low mechanical forces, stress will be transferred to the fibrils elastically. This process was modelled using finite element analysis because there is no analytical theory for elastic stress transfer to a non-cylindrical fibril. When the tissue is subjected to higher mechanical forces, stress will be transferred plastically. This process was modelled analytically. For both elastic and plastic stress transfer, a paraboloidal taper leads to a more uniform distribution of axial tensile stress along the fibril than would be generated if it were cylindrical. The tapered fibril requires half the volume of collagen than a cylindrical fibril of the same length and the stress is shared more evenly along its length. It is also less likely to fracture than a cylindrical fibril of the same length in a tissue subjected to the same mechanical force.
Collapse
Affiliation(s)
- K.L Goh
- School of Optometry & Vision Sciences, Cardiff UniversityRedwood Building, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - J.R Meakin
- Department of Biomedical Physics & Bioengineering, University of AberdeenForesterhill, Aberdeen AB25 2ZD, UK
| | - R.M Aspden
- Department of Orthopaedic Surgery, University of AberdeenForesterhill, Aberdeen AB25 2ZD, UK
| | - D.W.L Hukins
- School of Engineering, Mechanical Engineering, University of BirminghamEdgbaston, Birmingham B15 2TT, UK
- Author for correspondence ()
| |
Collapse
|
23
|
Plumb MS, Aspden RM. The response of elderly human articular cartilage to mechanical stimuli in vitro. Osteoarthritis Cartilage 2005; 13:1084-91. [PMID: 16154770 DOI: 10.1016/j.joca.2005.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 07/01/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the biosynthetic response of elderly human femoral head articular cartilage to mechanical stimulation in vitro and its variation with site. METHOD Full-depth cartilage biopsies of articular cartilage were removed from defined sites on 10 femoral heads from patients aged 68-95 years. Cartilage explants were subjected to either static or cyclic (2s on/2s off) loading in unconfined compression at a stress of 1MPa for 24h, or no load. Metabolic activity was assessed by adding medium containing (35)S-sulphate and (3)H-leucine during the last 4h of loading and measuring the incorporated radioisotope. Matrix composition was measured in terms of the amounts of collagen, sulphated glycosaminoglycans (GAG) and water content. RESULTS Loading of elderly human articular cartilage at 1MPa significantly inhibited incorporation of (35)S-sulphate (P=0.023) into cartilage explants. Pairwise comparisons showed that the difference in incorporation was only for static loading (43% decrease compared to unloaded) (P<0.05). (3)H-leucine incorporation appeared to follow the same trends but neither static nor cyclic load was significantly different from control (P=0.31). Significant topographical variation was found for % GAG wet and GAG:collagen but not water content, % GAG dry or collagen. Isotope incorporation rates were in the order anterior>superior>posterior. CONCLUSION Static loading inhibits matrix biosynthesis in elderly human cartilage, and cyclic loading is not stimulatory. This is in contrast to previous studies on young bovine tissue where cyclic loading is stimulatory.
Collapse
Affiliation(s)
- M S Plumb
- Department of Orthopaedics, University of Aberdeen, UK
| | | |
Collapse
|
24
|
|
25
|
Luckman SP, Rees E, Kwan APL. Partial characterization of cell-type X collagen interactions. Biochem J 2003; 372:485-93. [PMID: 12617725 PMCID: PMC1223416 DOI: 10.1042/bj20021572] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Revised: 02/20/2003] [Accepted: 03/05/2003] [Indexed: 12/15/2022]
Abstract
Type X collagen is a short-chain non-fibrillar collagen that is deposited exclusively at sites of new bone formation. Although this collagen has been implicated in chondrocyte hypertrophy and endochondral ossification, its precise function remains unclear. One possible function could be to regulate the processes of chondrocyte hypertrophy through direct cell-type X collagen interactions. Adhesions of embryonic chick chondrocytes, and cell lines with known expression of collagen-binding integrins (MG63 and HOS), were assayed on chick type X collagen substrates, including the native, heat-denatured and pepsin-digested collagen, and the isolated C-terminal non-collagenous (NC1) domain. Type X collagen supported the greatest level of adhesion for all cell types tested. The involvement of the alpha2beta1 integrin in type X collagen-cell interaction was demonstrated by adhesion studies in the presence of Mg(2+) and Ca(2+) ions and integrin-function-blocking antibodies. Cells expressing alpha2beta1 integrin (chick chondrocytes and MG63 cells) also adhered to heat-denatured type X collagen and the isolated NC1 domain; however, removal of the non-collagenous domains by limited pepsinization of type X collagen resulted in very low levels of adhesion. Both focal contacts and actin stress-fibre formation were apparent in cells plated on type X collagen. The presence of alpha2 and beta1 integrin subunits in isolated chondrocytes and epiphyseal cartilage was also confirmed by immunolocalization. Our results demonstrate, for the first time, that type X collagen is capable of interacting directly with chondrocytes and other cells, primarily via alpha2beta1 integrin. These findings are atypical from the fibrillar collagen-cell interactions via collagen binding integrins in that: (1) the triple-helical conformation is not strictly required for cell adhesion; (2) the NC1 domain is also involved in the adhesion of alpha2beta1-expressing cells. These data form the basis for further studies into the mechanism and biological significance of type X collagen deposition in the growth plate.
Collapse
Affiliation(s)
- Steven P Luckman
- Cardiff School of Biosciences, Cardiff University, PO Box 911, Museum Avenue, Wales, UK
| | | | | |
Collapse
|
26
|
Lammi PE, Lammi MJ, Hyttinen MM, Panula H, Kiviranta I, Helminen HJ. Site-specific immunostaining for type X collagen in noncalcified articular cartilage of canine stifle knee joint. Bone 2002; 31:690-6. [PMID: 12531563 DOI: 10.1016/s8756-3282(02)00904-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Type X collagen is a short-chain collagen that is strongly expressed in hypertrophic chondrocytes. In this study, we used an immunohistochemical technique exploiting a prolonged hyaluronidase unmasking of type X collagen epitopes to show that type X collagen is not restricted to calcified cartilage, but is also present in normal canine noncalcified articular cartilage. A 30 degrees valgus angulation procedure of the right tibia was performed in 15 dogs at the age of 3 months, whereas their nonoperated sister dogs served as controls. Samples were collected 7 and 18 months after the surgery and immunostained for type X collagen. The deposition of type X collagen increased during maturation from age 43 weeks to 91 weeks. In the patella, most of the noncalcified cartilage stained for type X collagen, whereas, in the patellar surface of the femur, it was present mainly in the femoral groove close to cartilage surface. In femoral condyles, the staining localized mostly in the superficial cartilage on the lateral and medial sides, but not in the central weight-bearing area. In tibial condyles, type X collagen was often observed close to the cartilage surface in medial parts of the condyles, although staining could also be seen in the deep zone of the cartilage. Staining for type X collagen appeared strongest at sites where the birefringence of polarized light was lowest, suggesting a colocalization of type X collagen with the collagen fibril arcades in the intermediate zone. No significant difference in type X collagen immunostaining was observed in lesion-free articular cartilage between controls and dogs that underwent a 30 degrees valgus osteotomy. In osteoarthritic lesions, however, there was strong immunostaining for both type X collagen and collagenase-induced collagen cleavage products. The presence of type X collagen in the transitional zone of cartilage in the patella, femoropatellar groove, and in tibial cartilage uncovered by menisci suggests that it may involve a modification of collagen fibril arrangement at the site of collagen fibril arcades, perhaps providing additional support to the collagen network.
Collapse
Affiliation(s)
- P E Lammi
- Department of Clinical Chemistry, Kuopio University Hospital, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
An effective closure of the female urethra in stress situations is dependent on an integrated action of various anatomical structures connected to the organ. The most important of these structures - from a functional aspect - are the suburethral vaginal wall, the pubourethral ligaments, the pubococcygeus muscles and the paraurethral connective tissues. In all these structures connective tissue is an essential ingredient. Hence, defects in the actual connective tissue - in particular the paraurethral connective tissue that connects the aforementioned structures to each other and to the urethra - will bring about an ineffective urethral closure. Female urinary incontinence may then be caused by defective connective tissue per se and/or by a disconnection of the aforementioned structures, whereby the urethra cannot be 'kinked' - that is, closed off in stress situations.
Collapse
Affiliation(s)
- U Ulmsten
- Department of Obstetrics and Gynaecology, Uppsala University Hospital, Sweden
| | | |
Collapse
|
28
|
Jeffrey JE, Thomson LA, Aspden RM. Matrix loss and synthesis following a single impact load on articular cartilage in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1334:223-32. [PMID: 9101717 DOI: 10.1016/s0304-4165(96)00097-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Articular cartilage biopsies were subjected to a single impact load and the metabolic response of the chondrocytes investigated using radiolabelled precursors for protein ([3H]leucine) and glycosaminoglycan ([35S]sulfate). The severity of the impact was controlled by using different masses and drop heights in a purpose built drop tower. Loss of matrix components was studied by prelabelling prior to loading, the possible repair response by pulse labelling at defined intervals after loading. There was an increase in the loss of both labels from the tissue with increasing severity of impact though the patterns of loss were different. Only 25%-40% of the sulfate was lost over a two week period and the loss increased with the severity of impact. This contrasted with 60% of the leucine being lost over the same period independently of loading. In addition to the loss of synthetic activity caused by cell death, there was a suppression of incorporation immediately following loading. This eventually recovered and increased above control values but the recovery time appeared to depend on the severity of the impact. These results provide preliminary evidence for a repair response.
Collapse
Affiliation(s)
- J E Jeffrey
- Department of Orthopaedics, University of Aberdeen, Scotland, UK
| | | | | |
Collapse
|