1
|
Dittmann IL, Zauchner T, Nevard LM, Telford MJ, Egger B. SALMFamide2 and serotonin immunoreactivity in the nervous system of some acoels (Xenacoelomorpha). J Morphol 2018; 279:589-597. [PMID: 29388261 PMCID: PMC5947262 DOI: 10.1002/jmor.20794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/20/2017] [Accepted: 12/31/2017] [Indexed: 11/06/2022]
Abstract
Acoel worms are simple, often microscopic animals with direct development, a multiciliated epidermis, a statocyst, and a digestive parenchyma instead of a gut epithelium. Morphological characters of acoels have been notoriously difficult to interpret due to their relative scarcity. The nervous system is one of the most accessible and widely used comparative features in acoels, which have a so-called commissural brain without capsule and several major longitudinal neurite bundles. Here, we use the selective binding properties of a neuropeptide antibody raised in echinoderms (SALMFamide2, or S2), and a commercial antibody against serotonin (5-HT) to provide additional characters of the acoel nervous system. We have prepared whole-mount immunofluorescent stainings of three acoel species: Symsagittifera psammophila (Convolutidae), Aphanostoma pisae, and the model acoel Isodiametra pulchra (both Isodiametridae). The commissural brain of all three acoels is delimited anteriorly by the ventral anterior commissure, and posteriorly by the dorsal posterior commissure. The dorsal anterior commissure is situated between the ventral anterior commissure and the dorsal posterior commissure, while the statocyst lies between dorsal anterior and dorsal posterior commissure. S2 and serotonin do not co-localise, and they follow similar patterns to each other within an animal. In particular, S2, but not 5-HT, stains a prominent commissure posterior to the main (dorsal) posterior commissure. We have for the first time observed a closed posterior loop of the main neurite bundles in S. psammophila for both the amidergic and the serotonergic nervous system. In I. pulchra, the lateral neurite bundles also form a posterior loop in our serotonergic nervous system stainings.
Collapse
Affiliation(s)
- Isabel L. Dittmann
- Research unit Evolutionary Developmental BiologyInstitute of Zoology, University of Innsbruck, Technikerstr. 25Innsbruck6020Austria
| | - Thomas Zauchner
- Research unit Evolutionary Developmental BiologyInstitute of Zoology, University of Innsbruck, Technikerstr. 25Innsbruck6020Austria
- Department of Genetics, Evolution and EnvironmentUniversity College London, Darwin Building, Gower StreetLondonWC1E 6BTUnited Kingdom
| | - Lucy M. Nevard
- Department of Genetics, Evolution and EnvironmentUniversity College London, Darwin Building, Gower StreetLondonWC1E 6BTUnited Kingdom
| | - Maximilian J. Telford
- Department of Genetics, Evolution and EnvironmentUniversity College London, Darwin Building, Gower StreetLondonWC1E 6BTUnited Kingdom
| | - Bernhard Egger
- Research unit Evolutionary Developmental BiologyInstitute of Zoology, University of Innsbruck, Technikerstr. 25Innsbruck6020Austria
- Department of Genetics, Evolution and EnvironmentUniversity College London, Darwin Building, Gower StreetLondonWC1E 6BTUnited Kingdom
| |
Collapse
|
2
|
Lin M, Egertová M, Zampronio CG, Jones AM, Elphick MR. Pedal peptide/orcokinin-type neuropeptide signaling in a deuterostome: The anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens. J Comp Neurol 2017; 525:3890-3917. [PMID: 28880392 PMCID: PMC5656890 DOI: 10.1002/cne.24309] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/15/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022]
Abstract
Pedal peptide (PP) and orcokinin (OK) are related neuropeptides that were discovered in protostomian invertebrates (mollusks, arthropods). However, analysis of genome/transcriptome sequence data has revealed that PP/OK‐type neuropeptides also occur in a deuterostomian phylum—the echinoderms. Furthermore, a PP/OK‐type neuropeptide (starfish myorelaxant peptide, SMP) was recently identified as a muscle relaxant in the starfish Patiria pectinifera. Here mass spectrometry was used to identify five neuropeptides (ArPPLN1a‐e) derived from the SMP precursor (PP‐like neuropeptide precursor 1; ArPPLNP1) in the starfish Asterias rubens. Analysis of the expression of ArPPLNP1 and neuropeptides derived from this precursor in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed a widespread pattern of expression, with labeled cells and/or processes present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach) and body wall‐associated muscles (e.g., apical muscle) and appendages (e.g., tube feet and papulae). Furthermore, our data provide the first evidence that neuropeptides are present in the lateral motor nerves and in nerve processes innervating interossicular muscles. In vitro pharmacological tests with SMP (ArPPLN1b) revealed that it causes dose‐dependent relaxation of apical muscle, tube foot and cardiac stomach preparations from A. rubens. Collectively, these anatomical and pharmacological data indicate that neuropeptides derived from ArPPLNP1 act as inhibitory neuromuscular transmitters in starfish, which contrasts with the myoexcitatory actions of PP/OK‐type neuropeptides in protostomian invertebrates. Thus, the divergence of deuterostomes and protostomes may have been accompanied by an inhibitory–excitatory transition in the roles of PP/OK‐type neuropeptides as regulators of muscle activity.
Collapse
Affiliation(s)
- Ming Lin
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London, UK
| | - Michaela Egertová
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London, UK
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry, UK
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London, UK
| |
Collapse
|
3
|
Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol 2016; 6:150224. [PMID: 26865025 PMCID: PMC4772807 DOI: 10.1098/rsob.150224] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an ‘intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan.
Collapse
Affiliation(s)
- Dean C Semmens
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olivier Mirabeau
- Institut Curie, Genetics and Biology of Cancers Unit, INSERM U830, PSL Research University, Paris 75005, France
| | - Ismail Moghul
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mahesh R Pancholi
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
4
|
Kim C, Kim EJ, Go H, Oh HY, Lin M, Elphick MR, Park NG. Identification of a novel starfish neuropeptide that acts as a muscle relaxant. J Neurochem 2016; 137:33-45. [PMID: 26801824 PMCID: PMC5069636 DOI: 10.1111/jnc.13543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 11/29/2022]
Abstract
Neuropeptides that act as muscle relaxants have been identified in chordates and protostomian invertebrates but little is known about the molecular identity of neuropeptides that act as muscle relaxants in deuterostomian invertebrates (e.g. echinoderms) that are 'evolutionary intermediates' of chordates and protostomes. Here, we have used the apical muscle of the starfish Patiria pectinifera to assay for myorelaxants in extracts of this species. A hexadecapeptide with the amino acid sequence Phe-Gly-Lys-Gly-Gly-Ala-Tyr-Asp-Pro-Leu-Ser-Ala-Gly-Phe-Thr-Asp was identified and designated starfish myorelaxant peptide (SMP). Cloning and sequencing of a cDNA encoding the SMP precursor protein revealed that it comprises 12 copies of SMP as well as 3 peptides (7 copies in total) that are structurally related to SMP. Analysis of the expression of SMP precursor transcripts in P. pectinifera using qPCR revealed the highest expression in the radial nerve cords and lower expression levels in a range of neuromuscular tissues, including the apical muscle, tube feet and cardiac stomach. Consistent with these findings, SMP also caused relaxation of tube foot and cardiac stomach preparations. Furthermore, SMP caused relaxation of apical muscle preparations from another starfish species - Asterias amurensis. Collectively, these data indicate that SMP has a general physiological role as a muscle relaxant in starfish. Interestingly, comparison of the sequence of the SMP precursor with known neuropeptide precursors revealed that SMP belongs to a bilaterian family of neuropeptides that include molluscan pedal peptides (PP) and arthropodan orcokinins (OK). This is the first study to determine the function of a PP/OK-type peptide in a deuterostome. Pedal peptide/orcokinin (PP/OK)-type peptides are a family of structurally related neuropeptides that were first identified and functionally characterised in protostomian invertebrates. Here, we report the discovery of starfish myorelaxant peptide (SMP), a novel member of the PP/OK-type neuropeptide identified in the starfish Patiria pectinifera (phylum Echinodermata). SMP is the first PP/OK-type neuropeptide to be functionally characterised in a deuterostome.
Collapse
Affiliation(s)
- Chan‐Hee Kim
- Department of BiotechnologyCollege of Fisheries SciencesPukyong National UniversityBusanKorea
| | - Eun Jung Kim
- Department of BiotechnologyCollege of Fisheries SciencesPukyong National UniversityBusanKorea
- Present address: Center for Food and Drug AnalysisBusan Regional Food and Drug Administration, Ministry of Food and Drug SafetyBusanKorea
| | - Hye‐Jin Go
- Department of BiotechnologyCollege of Fisheries SciencesPukyong National UniversityBusanKorea
| | - Hye Young Oh
- Department of BiotechnologyCollege of Fisheries SciencesPukyong National UniversityBusanKorea
| | - Ming Lin
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Maurice R. Elphick
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Nam Gyu Park
- Department of BiotechnologyCollege of Fisheries SciencesPukyong National UniversityBusanKorea
| |
Collapse
|
5
|
Elphick MR, Semmens DC, Blowes LM, Levine J, Lowe CJ, Arnone MI, Clark MS. Reconstructing SALMFamide Neuropeptide Precursor Evolution in the Phylum Echinodermata: Ophiuroid and Crinoid Sequence Data Provide New Insights. Front Endocrinol (Lausanne) 2015; 6:2. [PMID: 25699014 PMCID: PMC4313774 DOI: 10.3389/fendo.2015.00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/10/2015] [Indexed: 11/17/2022] Open
Abstract
The SALMFamides are a family of neuropeptides that act as muscle relaxants in echinoderms. Analysis of genome/transcriptome sequence data from the sea urchin Strongylocentrotus purpuratus (Echinoidea), the sea cucumber Apostichopus japonicus (Holothuroidea), and the starfish Patiria miniata (Asteroidea) reveals that in each species there are two types of SALMFamide precursor: an L-type precursor comprising peptides with a C-terminal LxFamide-type motif and an F-type precursor solely or largely comprising peptides with a C-terminal FxFamide-type motif. Here, we have identified transcripts encoding SALMFamide precursors in the brittle star Ophionotus victoriae (Ophiuroidea) and the feather star Antedon mediterranea (Crinoidea). We have also identified SALMFamide precursors in other species belonging to each of the five echinoderm classes. As in S. purpuratus, A. japonicus, and P. miniata, in O. victoriae there is one L-type precursor and one F-type precursor. However, in A. mediterranea only a single SALMFamide precursor was found, comprising two peptides with a LxFamide-type motif, one with a FxFamide-type motif, five with a FxLamide-type motif, and four with a LxLamide-type motif. As crinoids are basal to the Echinozoa (Holothuroidea + Echinoidea) and Asterozoa (Asteroidea + Ophiuroidea) in echinoderm phylogeny, one model of SALMFamide precursor evolution would be that ancestrally there was a single SALMFamide gene encoding a variety of SALMFamides (as in crinoids), which duplicated in a common ancestor of the Echinozoa and Asterozoa and then specialized to encode L-type SALMFamides or F-type SALMFamides. Alternatively, a second SALMFamide precursor may remain to be discovered or may have been lost in crinoids. Further insights will be obtained if SALMFamide receptors are identified, which would provide a molecular basis for experimental analysis of the functional significance of the "cocktails" of SALMFamides that exist in echinoderms.
Collapse
Affiliation(s)
- Maurice R. Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- *Correspondence: Maurice R. Elphick, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK e-mail:
| | - Dean C. Semmens
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Liisa M. Blowes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Judith Levine
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | | | | | | |
Collapse
|
6
|
Elphick MR. SALMFamide salmagundi: the biology of a neuropeptide family in echinoderms. Gen Comp Endocrinol 2014; 205:23-35. [PMID: 24583124 DOI: 10.1016/j.ygcen.2014.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 12/28/2022]
Abstract
The SALMFamides are a family of neuropeptides that occur in species belonging to the phylum Echinodermata. The prototypes for this neuropeptide family (S1 and S2) were discovered in starfish but subsequently SALMFamides were identified in other echinoderms. There are two types of SALMFamides: L-type, which have the C-terminal motif SxLxFamide, and F-type, which have the C-terminal motif SxFxFamide. They are derived from two types of precursor proteins: an L-type SALMFamide precursor, which comprises only L-type or L-type-like SALMFamides and an F-type SALMFamide precursor, which contains several F-type or F-type-like SALMFamides and, typically, one or more L-type SALMFamides. Thus, SALMFamides occur as heterogeneous mixtures of neuropeptides - a SALMFamide salmagundi. SALMFamides are produced by distinct populations of neurons in echinoderm larval and adult nervous systems and are present in the innervation of neuromuscular organs. Both L-type and F-type SALMFamides cause muscle relaxation in echinoderms and, for example, in starfish this effect of SALMFamides may mediate neural control of cardiac stomach eversion in species that feed extra-orally (e.g., Asterias rubens). The SALMFamide S1 also causes inhibition of neural release of a relaxin-like gonadotropin in the starfish Asterina pectinifera. An important issue that remains to be resolved are the relationships of SALMFamides with neuropeptides that have been identified in other phyla. However, it has been noted that the C-terminal SxLxFamide motif of L-type SALMFamides is a feature of some members of a bilaterian neuropeptide family that includes gonadotropin-inhibitory hormone (GnIH) in vertebrates and SIFamide-type neuropeptides in protostomes. Similarly, the C-terminal FxFamide motif of F-type SALMFamides is a feature of vertebrate QRFP (26RFa)-type neuropeptides. These sequence similarities may provide a basis for molecular identification of receptors that mediate effects of SALMFamides. Furthermore, analysis of the actions of the heterogeneous mixtures of SALMFamides that occur in echinoderms may provide new insights into the physiological significance of the general phenomenon of precursor proteins that give rise to neuropeptide "cocktails".
Collapse
Affiliation(s)
- Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
7
|
Bioactivity and structural properties of chimeric analogs of the starfish SALMFamide neuropeptides S1 and S2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1842-50. [PMID: 25110179 DOI: 10.1016/j.bbapap.2014.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 11/23/2022]
Abstract
The starfish SALMFamide neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide) are the prototypical members of a family of neuropeptides that act as muscle relaxants in echinoderms. Comparison of the bioactivity of S1 and S2 as muscle relaxants has revealed that S2 is ten times more potent than S1. Here we investigated a structural basis for this difference in potency by comparing the bioactivity and solution conformations (using NMR and CD spectroscopy) of S1 and S2 with three chimeric analogs of these peptides. A peptide comprising S1 with the addition of S2's N-terminal tetrapeptide (Long S1 or LS1; SGPYGFNSALMFamide) was not significantly different to S1 in its bioactivity and did not exhibit concentration-dependent structuring seen with S2. An analog of S1 with its penultimate residue substituted from S2 (S1(T); GFNSALTFamide) exhibited S1-like bioactivity and structure. However, an analog of S2 with its penultimate residue substituted from S1 (S2(M); SGPYSFNSGLMFamide) exhibited loss of S2-type bioactivity and structural properties. Collectively, our data indicate that the C-terminal regions of S1 and S2 are the key determinants of their differing bioactivity. However, the N-terminal region of S2 may influence its bioactivity by conferring structural stability in solution. Thus, analysis of chimeric SALMFamides has revealed how neuropeptide bioactivity is determined by a complex interplay of sequence and conformation.
Collapse
|
8
|
Structural analysis of the starfish SALMFamide neuropeptides S1 and S2: The N-terminal region of S2 facilitates self-association. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:358-65. [DOI: 10.1016/j.bbapap.2013.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 11/22/2022]
|
9
|
Elphick MR. From gonadotropin-inhibitory hormone to SIFamides: are echinoderm SALMFamides the "missing link" in a bilaterian family of neuropeptides that regulate reproductive processes? Gen Comp Endocrinol 2013; 193:229-33. [PMID: 23994034 DOI: 10.1016/j.ygcen.2013.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) belongs to a family of vertebrate neuropeptides with a C-terminal PxRFamide motif, which exert effects by activating the G-protein coupled receptors NPFF1 and/or NPFF2. Comparative analysis of genome sequence data has revealed that orthologs of NPFF1/NPFF2-type receptors occur throughout the Bilateria and the neuropeptide ligand that activates the Drosophila NPFF1/NPFF2-type receptor has been identified as AYRKPPFNGSIFamide ("SIFamide"). Therefore, SIFamide-type neuropeptides, which occur throughout protostomian invertebrates, probably share a common evolutionary origin with vertebrate PxRFamide-type neuropeptides. Based on structural similarities, here SALMFamide neuropeptides are identified as candidate ligand components of this ancient bilaterian peptide-receptor signaling system in a deuterostomian invertebrate phylum, the echinoderms (e.g., starfish, sea urchins). Furthermore, functional studies provide evidence that PxRFamide/SALMFamide/SIFamide-type neuropeptides have evolutionarily conserved roles in regulation (typically inhibitory) of reproductive processes.
Collapse
Affiliation(s)
- Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
10
|
Abstract
The SALMFamides are a family of neuropeptides that act as muscle relaxants in echinoderms. Two types of SALMFamides have been identified: L-type (e.g. the starfish neuropeptides S1 and S2) with the C-terminal motif LxFamide (x is variable) and F-type with the C-terminal motif FxFamide. In the sea urchin Strongylocentrotus purpuratus (class Echinoidea) there are two SALMFamide genes, one encoding L-type SALMFamides and a second encoding F-type SALMFamides, but hitherto it was not known if this applies to other echinoderms. Here we report the identification of SALMFamide genes in the sea cucumber Apostichopus japonicus (class Holothuroidea) and the starfish Patiria miniata (class Asteroidea). In both species there are two SALMFamide genes: one gene encoding L-type SALMFamides (e.g. S1 in P. miniata) and a second gene encoding F-type SALMFamides plus one or more L-type SALMFamides (e.g. S2-like peptide in P. miniata). Thus, the ancestry of the two SALMFamide gene types traces back to the common ancestor of echinoids, holothurians and asteroids, although it is not clear if the occurrence of L-type peptides in F-type SALMFamide precursors is an ancestral or derived character. The gene sequences also reveal a remarkable diversity of SALMFamide neuropeptides. Originally just two peptides (S1 and S2) were isolated from starfish but now we find that in P. miniata, for example, there are sixteen putative SALMFamide neuropeptides. Thus, the SALMFamides would be a good model system for experimental analysis of the physiological significance of neuropeptide “cocktails” derived from the same precursor protein.
Collapse
|
11
|
Semmens DC, Dane RE, Pancholi MR, Slade SE, Scrivens JH, Elphick MR. Discovery of a novel neurophysin-associated neuropeptide that triggers cardiac stomach contraction and retraction in starfish. J Exp Biol 2013; 216:4047-53. [DOI: 10.1242/jeb.092171] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Feeding in starfish is a remarkable process in which the cardiac stomach is everted over prey and then retracted when prey tissue has been resorbed. Previous studies have revealed that SALMFamide-type neuropeptides trigger cardiac stomach relaxation and eversion in the starfish Asterias rubens. We hypothesised, therefore, that a counteracting neuropeptide system controls cardiac stomach contraction and retraction. Members of the NG peptide family cause muscle contraction in other echinoderms (e.g. NGFFFamide in sea urchins and NGIWYamide in sea cucumbers), so we investigated NG peptides as candidate regulators of cardiac stomach retraction in starfish. Generation and analysis of neural transcriptome sequence data from Asterias rubens revealed a precursor protein comprising two copies of a novel NG peptide, NGFFYamide, which was confirmed by mass spectrometry. A noteworthy feature of the NGFFYamide precursor is a C-terminal neurophysin domain, indicative of a common ancestry with vasopressin/oxytocin-type neuropeptide precursors. Interestingly, in precursors of other NG peptides the neurophysin domain has been retained (e.g. NGFFFamide) or lost (e.g. NGIWYamide and human neuropeptide S) and its functional significance remains to be determined. Investigation of the pharmacological actions of NGFFYamide in starfish revealed that it is a potent stimulator of cardiac stomach contraction in vitro and that it triggers cardiac stomach retraction in vivo. Thus, discovery of NGFFYamide provides a novel insight on neural regulation of cardiac stomach retraction as well as a rationale for chemically based strategies to control starfish that feed on economically important shellfish (e.g. mussels) or protected marine fauna (e.g. coral).
Collapse
|
12
|
Yun SS, Thorndyke M. Localization of the SALMFamide neuropeptides in the starfishMarthasterias glacialis. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2011.630753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
13
|
Rowe ML, Elphick MR. Discovery of a second SALMFamide gene in the sea urchin Strongylocentrotus purpuratus reveals that L-type and F-type SALMFamide neuropeptides coexist in an echinoderm species. Mar Genomics 2010; 3:91-7. [PMID: 21798202 DOI: 10.1016/j.margen.2010.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/03/2010] [Indexed: 11/25/2022]
Abstract
The SALMFamides are a family of neuropeptides that act as muscle relaxants in the phylum Echinodermata. Two types of SALMFamides have been identified in echinoderms: firstly, the prototypical L-type SALMFamide peptides with the C-terminal sequence Leu-X-Phe-NH(2) (where X is variable), which have been identified in several starfish species and in the sea cucumber Holothuria glaberrima; secondly, F-type SALMFamide peptides with the C-terminal sequence Phe-X-Phe-NH(2), which have been identified in the sea cucumber Apostichopus japonicus. However, the genetic basis and functional significance of the occurrence of these two types of SALMFamides in echinoderms are unknown. Here we have obtained a new insight on this issue with the discovery that in the sea urchin Strongylocentrotus purpuratus there are two SALMFamide genes. In addition to a gene encoding seven putative F-type SALMFamide neuropeptides with the C-terminal sequence Phe-X-Phe-NH(2) (SpurS1-SpurS7), which has been reported previously (Elphick and Thorndyke, 2005; J. Exp. Biol., 208, 4273-4282), we have identified a gene that is expressed in the nervous system and that encodes a precursor of two putative L-type SALMFamide neuropeptides with the C-terminal sequences Ile-His-Phe-NH(2) (SpurS8) and Leu-Leu-Phe-NH(2) (SpurS9). Our discovery has revealed for the first time that L-type and F-type SALMFamide neuropeptides can coexist in an echinoderm species but are encoded by different genes. We speculate that this feature of S. purpuratus may apply to other echinoderms and further insights on this issue will be possible if genomic and/or neural cDNA sequence data are obtained for other echinoderm species.
Collapse
Affiliation(s)
- Matthew L Rowe
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | | |
Collapse
|
14
|
Díaz-Balzac CA, Santacana-Laffitte G, San Miguel-Ruíz JE, Tossas K, Valentín-Tirado G, Rives-Sánchez M, Mesleh A, Torres II, García-Arrarás JE. Identification of nerve plexi in connective tissues of the sea cucumber Holothuria glaberrima by using a novel nerve-specific antibody. THE BIOLOGICAL BULLETIN 2007; 213:28-42. [PMID: 17679718 DOI: 10.2307/25066616] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The echinoderm nervous system is one of the least studied among invertebrates, partly because the tools available to study the neurobiology of this phylum are limited. We have now produced a monoclonal antibody (RN1) that labels a nervous system component of the sea cucumber Holothuria glaberrima. Western blots show that our antibody recognizes a major band of 66 kDa and a minor band of 53 kDa. Immunohistological experiments show that, in H. glaberrima, the antibody distinctly labels most of the known nervous system structures and some components that were previously unknown or little studied. A surprising finding was the labeling of nervous plexi within the connective tissue compartments of all organs studied. Double labeling with holothurian neuropeptides and an echinoderm synaptotagmin showed that RN1 labeled most, if not all, of the fibers labeled by these neuronal markers, but also a larger component of cells and fibers. The presence of a distinct connective tissue plexus in holothurians is highly significant since these organisms possess mutable connective tissues that change viscosity under the control of the nervous system. Therefore, the cells and fibers recognized by our monoclonal antibodies may be involved in controlling tensility changes in echinoderm connective tissue.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Biology Department, University of Puerto Rico, Río Piedras Campus, Río Piedras, Puerto Rico 00931
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yun SS, Thorndyke MC, Elphick MR. Identification of novel SALMFamide neuropeptides in the starfish Marthasterias glacialis. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:536-42. [PMID: 17337223 DOI: 10.1016/j.cbpa.2007.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 11/22/2022]
Abstract
The SALMFamides are a family of neuropeptides found in species belonging to the phylum Echinodermata and which act as muscle relaxants. The first two members of this family to be identified were both isolated from the starfishes Asterias rubens and Asterias forbesi and are known as S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide). However, little is known about the occurrence and characteristics of SALMFamide neuropeptides in other starfish species. Here we report the identification of four SALMFamide neuropeptides in the starfish Marthasterias glacialis: GFNSALMFamide (S1), SGPYSMTSGLTFamide (MagS2), AYHSALPFamide (MagS3), and AYQTGLPFamide (MagS4). Analysis of the effects of MagS2 and MagS3 on cardiac stomach preparations from Asterias rubens revealed that both peptides cause dose-dependent relaxation, consistent with previous studies using S1 and S2. The identification of four SALMFamide neuropeptides in Marthasterias glacialis provides new insights into the diversity and phylogenetic distribution of SALMFamide neuropeptides in the class Asteroidea of the phylum Echinodermata. In particular, the identification of MagS3 and MagS4, in addition to S1 and the S2-like peptide MagS2, has revealed a greater diversity of SALMFamide neuropeptides occurring in a starfish species than any previous studies.
Collapse
Affiliation(s)
- Sang-Seon Yun
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | | | | |
Collapse
|
16
|
Elphick MR, Thorndyke MC. Molecular characterisation of SALMFamide neuropeptides in sea urchins. ACTA ACUST UNITED AC 2006; 208:4273-82. [PMID: 16272250 DOI: 10.1242/jeb.01910] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The SALMFamides are a family of neuropeptides found in species belonging to the phylum Echinodermata. Members of this family have been identified in starfish (class Asteroidea) and in sea cucumbers (class Holothuroidea) but not in other echinoderms. Our aim here was to characterise SALMFamide neuropeptides in sea urchins (class Echinoidea). Radioimmunoassays for the starfish SALMFamides S1 and S2 were used to test for related peptides in whole-body acetone extracts of the sea urchin Echinus esculentus. Fractionation of extracts using high performance liquid chromatography (HPLC) revealed several peaks of SALMFamide-like immunoreactivity, with two S2-like immunoreactive peaks (3 and 4) being the most prominent. However, peak 4 could not be purified to homogeneity and although peak 3 was purified, only a partial sequence (MRYH) could be obtained. An alternative strategy for identification of echinoid SALMFamides was provided by sequencing the genome of the sea urchin Strongylocentrotus purpuratus. Analysis of whole-genome shotgun sequence data using the Basic Local Alignment Search Tool (BLAST) identified a contig (347664) that contains a coding region for seven putative SALMFamide neuropeptides (PPVTTRSKFTFamide, DAYSAFSFamide, GMSAFSFamide, AQPSFAFamide, GLMPSFAFamide, PHGGSAFVFamide and GDLAFAFamide), which we have named SpurS1-SpurS7, respectively. Three of these peptides (SpurS1-3) have the C-terminal sequences TFamide or SFamide, which are identical or similar to the C-terminal region of the starfish SALMFamide S2. This may explain the occurrence of several S2-like immunoreactive peptides in extracts of Echinus esculentus. Detailed analysis of the sequence of contig 347664 indicated that the SALMFamide gene in Strongylocentrotus purpuratus comprises two exons, with the first exon encoding a signal peptide sequence and the second exon encoding SpurS1-SpurS7. Characterisation of this gene is important because it is the first echinoderm neuropeptide precursor sequence to be identified and, more specifically, it provides our first insight into the structure and organisation of a SALMFamide gene in an echinoderm. In particular, it has revealed a hitherto unknown complexity in the diversity of SALMFamide neuropeptides that may occur in an echinoderm species because all previous studies, which relied on peptide purification and sequencing, revealed only two SALMFamide neuropeptides in each species examined. It now remains to be established whether or not the occurrence of more than two SALMFamides in Strongylocentrotus purpuratus is a feature that is peculiar to this species and to echinoids in general or is more widespread across the phylum Echinodermata. Identification of SpurS1-SpurS7 provides the basis for comparative analysis of the physiological actions of these peptides in sea urchins and for exploitation of the sea urchin genome sequence to identify the receptor(s) that mediate effects of SALMFamides in echinoderms.
Collapse
Affiliation(s)
- Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary, University of London, UK.
| | | |
Collapse
|
17
|
Santos R, Haesaerts D, Jangoux M, Flammang P. Comparative histological and immunohistochemical study of sea star tube feet (Echinodermata, Asteroidea). J Morphol 2005; 263:259-69. [PMID: 15549719 DOI: 10.1002/jmor.10187] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adhesion in sea stars is the function of specialized structures, the tube feet or podia, which are the external appendages of the water-vascular system. Adhesive secretions allow asteroid tube feet to perform multiple functions. Indeed, according to the sea star species considered, the tube feet may be involved in locomotion, fixation, or burrowing. Different tube foot shapes usually correspond to this variety of function. In this study, we investigated the variability of the morphology of sea star tube feet as well as the variability of the composition of their adhesive secretions. This second aspect was addressed by a comparative immunohistochemical study using antibodies raised against the adhesive material of the forcipulatid Asterias rubens. The tube feet from 14 sea star species representing five orders and 10 families of the Class Asteroidea were examined. The histological study revealed three main tube foot morphotypes, i.e., knob-ending, simple disc-ending, and reinforced disc-ending. Analysis of the results suggests that tube foot morphology is influenced by species habitat, but within limits imposed by the evolutionary lineage. In immunohistochemistry, on the other hand, the results were very homogeneous. In every species investigated there was a very strong immunolabeling of the adhesive cells, independently of the taxon considered, of the tube foot morphotype or function, or of the species habitat. This indicates that the adhesives in all the species considered are closely related, probably sharing many identical molecules or, at least, many identical epitopes on their constituents.
Collapse
Affiliation(s)
- Romana Santos
- Marine Biology Laboratory, University of Mons-Hainaut, B-7000 Mons, Belgium.
| | | | | | | |
Collapse
|
18
|
Mita M, Oka H, Thorndyke MC, Shibata Y, Yoshikuni M, Nagahama Y. Inhibitory Effect of a SALMFamide Neuropeptide on Secretion of Gonad-Stimulating Substance from Radial Nerves in the Starfish Asterina pectinifera. Zoolog Sci 2004; 21:299-303. [PMID: 15056924 DOI: 10.2108/zsj.21.299] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In starfish, the peptide hormone gonad-stimulating substance (GSS) secreted from nervous tissue stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) production by ovarian follicle cells. The SALMFamide family is also known to an echinoderm neuropeptide. The present study examined effect of SALMFamide 1 (S1) on oocyte maturation of starfish Asterina pectinifera. Unlike GSS, S1 did not induce spawning in starfish ovary. In contrast, S1 was found to inhibit GSS secretion from radial nerves by treatment with high K+ concentration. Fifty percent inhibition was obtained by 0.1 mM S1. S1 did not have any effect on GSS- and 1-MeAde-induced oocyte maturation. Following incubation with a S1 antibody and subsequently with rhodamine-conjugated second antibody, neural networks were observed in ovaries. The networks were restricted mainly to their surface with little evidence of immunoreactivity inside the basement membranes. This indicates that neural networks are distributed in the ovarian wall. The result further suggests that S1 plays a role in oocyte maturation to regulate GSS secretion from the nervous system.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biosciences, School of Science and Engineering, Teikyo University, Toyosatodai, Utsunomiya, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Melarange R, Elphick MR. Comparative analysis of nitric oxide and SALMFamide neuropeptides as general muscle relaxants in starfish. J Exp Biol 2003; 206:893-9. [PMID: 12547944 DOI: 10.1242/jeb.00197] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have established that the gaseous signalling molecule nitric oxide (NO) and the SALMFamide neuropeptides S1 and S2 cause cardiac stomach relaxation in the starfish Asterias rubens. Here we show that S1, S2 and the NO donor SNAP also cause relaxation of two other preparations from Asterias - tube feet and the apical muscle of the body wall. The rank order of effectiveness as muscle relaxants when tested at a concentration of 10 micro mol l(-1) was SNAP>S2>S1 for both tube feet and apical muscle whereas for cardiac stomach it was S2>S1>SNAP. Significantly, these data indicate that NO and SALMFamide neuropeptides function as general muscle relaxants in starfish but vary in their relative importance in different organ systems. The molecular mechanisms by which NO and SALMFamides cause muscle relaxation in starfish are not known, but previous pharmacological studies on the cardiac stomach using the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazol[4,3-a]quinoxalin-1-one (ODQ) indicate that the cyclic nucleotide second messenger cGMP may mediate effects of NO. Consistent with this hypothesis, here we report that ODQ also causes partial inhibition of the relaxing effect of SNAP on tube foot and apical muscle preparations. To further investigate the involvement of cyclic nucleotides as mediators of the effects of NO and SALMFamides on starfish muscle, we have measured both cGMP and cAMP in cardiac stomach and in apical muscle after treatment with S1, S2 or SNAP. However, no significant changes in cyclic nucleotide content were observed compared with controls. Further experiments were performed on apical muscle tissue in the presence of the cyclic-nucleotide-phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), a drug that also causes cardiac stomach relaxation in starfish. Treatment with IBMX caused a 2-3-fold increase above basal levels for cGMP and cAMP, but co-treatment with IBMX and S1 or S2 or SNAP resulted in no significant further increase above the level observed with IBMX alone. We conclude from these data that the relaxing action of NO on starfish muscle may be mediated by both cGMP-dependent and cGMP-independent pathways. However, the mechanisms by which SALMFamides cause muscle relaxation in starfish remain unknown and, although our results do not rule out the involvement of cGMP or cAMP, other signalling pathways may now need to be investigated.
Collapse
Affiliation(s)
- Richard Melarange
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | | |
Collapse
|
20
|
Byrne M, Cisternas P. Development and distribution of the peptidergic system in larval and adult Patiriella: comparison of sea star bilateral and radial nervous systems. J Comp Neurol 2002; 451:101-14. [PMID: 12209830 DOI: 10.1002/cne.10315] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Development of the larval peptidergic system in the sea star Patiriella regularis and structure of the adult nervous system in Patiriella species were documented in an immunofluorescence investigation using antisera to the sea star neuropeptide GFNSALMFamide 1 (S1) and confocal microscopy. P. regularis has planktotrophic development through bipinnaria and brachiolaria larvae. In early bipinnaria, two groups of immunoreactive cells appeared on either side of the anterior region and proliferated to form a pair of dorsolateral ganglia. The ganglia gave rise to fine varicose fibres that innervated the preoral and adoral ciliated bands. Peptidergic cells also innervated the postoral ciliated band, and a nerve tract connected the pre- and postoral bands. Fully developed bipinnaria had a well-developed peptidergic system, the organisation of which reflected the bilateral larval body plan. As the brachiolar attachment complex differentiated at the anterior end, the ganglia became positioned on either side of the anterior projection, from which they innervated the complex. It is suggested, based on the distribution of S1-like immunoreactivity in association with ciliary and attachment structures, that the peptidergic system functions in modulation of feeding, swimming, and settlement. The larval peptidergic system degenerates as the larval body is resorbed during metamorphosis. In adults, S1-like immunoreactivity was intense in the axonal region of the ectoneural nervous system and in hyponeural perikarya. Immunoreactive cells in the neuroepithelium connected with the surface and may be sensory. Examination of immunoreactivity in several Patiriella species attests to the highly conserved organisation of the peptidergic system in adult asteroids.
Collapse
Affiliation(s)
- Maria Byrne
- Department of Anatomy and Histology, University of Sydney, New South Wales 2006, Australia.
| | | |
Collapse
|
21
|
Byrne M, Cisternas P, Koop D. Evolution of larval form in the sea star genus Patiriella: conservation and change in the larval nervous system. Dev Growth Differ 2001; 43:459-68. [PMID: 11473552 DOI: 10.1046/j.1440-169x.2001.00588.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The organization of the peptidergic system in the larvae of Patiriella species with divergent ontogenies was compared to determine which aspects of neurogenesis are conserved and which are altered in the evolution of development in these sea stars. P. regularis has ancestral-type feeding bipinnaria and brachiolaria larvae and the organization of the nervous system, in association with feeding structures, paralleled the bilateral larval body plan. P. calcar and P. exigua have non-feeding planktonic and benthic brachiolariae, respectively, and there was no trace of the neuronal architecture involved with feeding. The nervous system in the attachment stage brachiolaria was similar in all three species and neuronal organization reflected larval symmetry. Delayed expression of peptidergic lineages to the brachiolaria stage in the lecithotrophs indicates heterochronic change in the timing of neurogenesis or deletion of the ancestral early neurogenic program. The bipinnarial program is suggested to be a developmental module autonomous from the brachiolar one. With a divergence time of less than 10 Ma, the evolution of development in Patiriella has resulted in extensive reduction in the complexity of the larval nervous system in parallel with simplification in larval form. There is, however, strong conservation in the morphology and neuronal architecture of structures involved with settlement.
Collapse
Affiliation(s)
- M Byrne
- Department of Anatomy and Histology, F13, University of Sydney, New South Wales 2006, Australia.
| | | | | |
Collapse
|
22
|
Thorndyke MC, Carnevali MDC. Regeneration neurohormones and growth factors in echinoderms. CAN J ZOOL 2001. [DOI: 10.1139/z00-214] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There has been much recent interest in the presence and biological functions of growth regulators in invertebrates. In spite of the different distribution patterns of these molecules in different phyla (from molluscs, insects, and annelids to echinoderms and tunicates), they seem always to be extensively involved in developmental processes, both embryonic and regenerative. Echinoderms are well known for their striking regenerative potential and many can completely regenerate arms that, for example, are lost following self-induced or traumatic amputation. Thus, they provide a valuable experimental model for the study of regenerative processes from the macroscopic to the molecular level. In crinoids as well as probably all ophiuroids, regeneration is rapid and occurs by means of a mechanism that involves blastema formation, known as epimorphosis, where the new tissues arise from undifferentiated cells. In asteroids, morphallaxis is the mechanism employed, replacement cells being derived from existing tissues following differentiation and (or) transdifferentiation. This paper focuses on the possible contribution of neurohormones and growth factors during both repair and regenerative processes. Three different classes of regulatory molecules are proposed as plausible candidates for growth-promoting factors in regeneration: neurotransmitters (monoamines), neuropeptides (substance P, SALMFamides 1 and 2), and growth-factor-like molecules (TGF-β (transforming growth factor β), NGF (nerve growth factor), RGF-2 (basic fibroblast growth factor)).
Collapse
|
23
|
Beer AJ, Moss C, Thorndyke M. Development of serotonin-like and SALMFamide-like immunoreactivity in the nervous system of the sea urchin Psammechinus miliaris. THE BIOLOGICAL BULLETIN 2001; 200:268-280. [PMID: 11441970 DOI: 10.2307/1543509] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The present immunocytochemical study utilizes serotonin and SALMFamide antisera, together with confocal laser scanning microscopy, to provide new information about the development of the nervous system in the sea urchin Psammechinus miliaris (Echinodermata: Echinoidea). Special attention is paid to the extent of the nervous system in later larval stages (6-armed pluteus to metamorphic competency), a characteristic that has not been well described in this and other species of sea urchin. An extensive apical ganglion appears by the 6-armed pluteus stage, forming a complex of 10-20 cells and fibers, including discrete populations of both serotonin-like and SALMF-amide-like immunoreactive cells. At metamorphosis this complex is large, comprising at least 40 cells in distinct arrays. Serotonin-like immunoreactivity is also particularly apparent in the lower lip ganglion of 6- to 8-armed plutei; this ganglion consists of 15-18 cells that are distributed around the mouth. The ciliary nerves that lie beneath the ciliary bands in the larval arms, the esophagus, and a hitherto undescribed network associated with the pylorus all show SALMFamide-like immunoreactivity. The network of cells and fibers in the pyloric area develops later in larval life. It first appears as one cell body and fiber, then increases in size and complexity through the 8-armed pluteus stage to form a complex of cells that encircles the pylorus. SALMFamide-like, but not serotonin-like, immunoreactivity is seen in the vestibule wall, tube feet, and developing radial nerve fibers of the sea urchin adult rudiment as the larva gains metamorphic competency.
Collapse
Affiliation(s)
- A J Beer
- School of Biological Sciences, University of London, Egham, Surrey, UK
| | | | | |
Collapse
|
24
|
Abstract
Smooth muscle relaxation in vertebrates is regulated by a variety of neuronal signalling molecules, including neuropeptides and nitric oxide (NO). The physiology of muscle relaxation in echinoderms is of particular interest because these animals are evolutionarily more closely related to the vertebrates than to the majority of invertebrate phyla. However, whilst in vertebrates there is a clear structural and functional distinction between visceral smooth muscle and skeletal striated muscle, this does not apply to echinoderms, in which the majority of muscles, whether associated with the body wall skeleton and its appendages or with visceral organs, are made up of non-striated fibres. The mechanisms by which the nervous system controls muscle relaxation in echinoderms were, until recently, unknown. Using the cardiac stomach of the starfish Asterias rubens as a model, it has been established that the NO-cGMP signalling pathway mediates relaxation. NO also causes relaxation of sea urchin tube feet, and NO may therefore function as a ‘universal’ muscle relaxant in echinoderms. The first neuropeptides to be identified in echinoderms were two related peptides isolated from Asterias rubens known as SALMFamide-1 (S1) and SALMFamide-2 (S2). Both S1 and S2 cause relaxation of the starfish cardiac stomach, but with S2 being approximately ten times more potent than S1. SALMFamide neuropeptides have also been isolated from sea cucumbers, in which they cause relaxation of both gut and body wall muscle. Therefore, like NO, SALMFamides may also function as ‘universal’ muscle relaxants in echinoderms. The mechanisms by which SALMFamides cause relaxation of echinoderm muscle are not known, but several candidate signal transduction pathways are discussed here. The SALMFamides do not, however, appear to act by promoting release of NO, and muscle relaxation in echinoderms is therefore probably regulated by at least two neuronal signalling systems acting in parallel. Recently, other neuropeptides that influence muscle tone have been isolated from the sea cucumber Stichopus japonicus using body wall muscle as a bioassay, but at present SALMFamide peptides are the only ones that have been found to have a direct relaxing action on echinoderm muscle. One of the Stichopus japonicus peptides (holothurin 1), however, causes a reduction in the magnitude of electrically evoked muscle contraction in Stichopus japonicus and also causes ‘softening’ of the body wall dermis, a ‘mutable connective tissue’. It seems most likely that this effect of holothurin 1 on body wall dermis is mediated by constituent muscle cells, and the concept of ‘mutable connective tissue’ in echinoderms may therefore need to be re-evaluated to incorporate the involvement of muscle, as proposed recently for the spine ligament in sea urchins.
Collapse
Affiliation(s)
- M R Elphick
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | |
Collapse
|
25
|
SALMFamide neuropeptides cause relaxation and eversion of the cardiac stomach in starfish. Proc Biol Sci 1999; 266:1785-1789. [PMCID: PMC1690199 DOI: 10.1098/rspb.1999.0847] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Feeding in starfish of the species Asterias rubens involves eversion of the cardiac stomach over prey such as mussels and oysters. For eversion to be accomplished the cardiac stomach must be relaxed. Here we show that two neuropeptides (S1 and S2) belonging to a family of echinoderm neuropeptides called SALMFamides cause concentration-dependent relaxation of the cardiac stomach in vitro , with S2 being 10 to 20 times more potent than S1. Previously, we have obtained evidence that nitric oxide mediates neural control of cardiac stomach relaxation in Asterias . However, S2-induced relaxation of the cardiac stomach is not affected by an inhibitor of the nitric oxide 'receptor' soluble guanylyl cyclase. Therefore, cardiac stomach relaxation in starfish appears to be controlled by at least two neural signalling pathways acting in parallel. To assess the involvement of the SALMFamides in mediating cardiac stomach eversion in Asterias , experiments were performed in which water (control) or S1 or S2 was injected into the perivisceral coelom. Cardiac stomach eversion was observed after 5 min in 3% of tests with water, in 11% of tests with S1 and in 57% of tests with S2. Importantly, the effectiveness of S1 and S2 in promoting eversion corresponds with their relative potency as cardiac stomach relaxants in vitro . Collectively, these data indicate that SALMFamide neuropeptides may be involved in regulating the process of cardiac stomach eversion in starfish.
Collapse
|
26
|
Localization of the neuropeptide NGIWYamide in the holothurian nervous system and its effects on muscular contraction. Proc Biol Sci 1999; 266:993-1000. [PMCID: PMC1689938 DOI: 10.1098/rspb.1999.0735] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
NGIWYamide is a peptide recently isolated from the sea cucumber Apostichopus japonicus . It stiffens the connective tissue of the holothurian body wall. Localization of NGIWYamide was investigated by immunohistochemical staining with antiserum raised against NGIWYamide. In holothurian nervous systems NGIWYamide-like immunoreactivity (NGIWYa-LI) was observed in the hyponeural and ectoneural regions of the radial nerve cord, as well as in the circumoral nerve ring, podial nerves, tentacular nerves, the basiepithelial nerve plexus of the intestine and in cellular processes running through the body wall dermis. Labelled nerve fibres from the hyponeural part of the radial nerve running towards the circular muscle and from the podial nerve into the body wall dermis suggest that NGIWYamide controls both muscle and connective tissue. We examined the effect on muscle activity of the sea cucumber. NGIWYamide (10-7 to 10-4 M) caused contraction of the longitudinal body wall muscle. Tentacles showed contraction only at a higher dose (10-4 M). NGIWYamide (10-4 M) inhibited spontaneous contraction of the intestine.
Collapse
|
27
|
Patterns of bromodeoxyuridine incorporation and neuropeptide immunoreactivity during arm regeneration in the starfish Asterias rubens. Philos Trans R Soc Lond B Biol Sci 1998; 353:421-436. [PMCID: PMC1692227 DOI: 10.1098/rstb.1998.0220] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Regeneration of the arm of the starfish, Asterias rubens (L.) (Echinodermata: Asteroidea) was examined using two preparations. The first involved regeneration of the entire arm tip and its associated sensory structures and the second examined regeneration of a small section of radial nerve cord in the mid-arm region. Cell cycle activity was investigated by incorporation of the thymidine analogue, bromodeoxyuridine (BrdU). Details of neuroanatomy were obtained by immunocytochemistry (ICC) using an antiserum to the recently isolated starfish neuropeptide, GFNSALMFamide (S1). BrdU labelling indicated that initial events occur by morphallaxis, with cell cycle activity first apparent after formation of a wound epidermis. As regeneration proceeded, BrdU immunoreactive (IR) nuclei revealed cell cycle activity in cells at the distal ends of the radial nerve cord epidermis, in the coelomic epithelium, the perihaemal and water vascular canal epithelia, and in the forming tube feet of both preparations. By varying the time between BrdU pulses and tissue fixation, the possible migration or differentiation of labelled cells was investigated. Neuropeptide ICC indicated the extension of S1-IR nerve fibres into the regenerating area, soon after initial wound healing processes were complete. These fibres were varicose and disorganized in appearance, when compared to the normal pattern of S1-IR in the radial nerve. S1-IR was also observed in cell bodies, which reappeared in the reforming optic cushion and radial nerve at later stages of regeneration. Double labelling studies with anti-BrdU and anti-S1 showed no co-localization in these cell bodies, in all the stages examined. It appeared that S1-IR cells were not undergoing, and had not recently undergone, cell cycle activity. It cannot be confirmed whether S1-IR neurons were derived from proliferating cells of epithelial origin, or from transdifferentiation of epithelial cells, although the former mechanism is suggested. Differentiation of the regenerating structures to replace cells such as S1-containing neurons, is thought to involve cell cycle activity and differentiation of epithelial cells in the epidermal tissue, possibly in association with certain types of coelomocytes which move into the regenerating area.
Collapse
|
28
|
de Bremaeker N, Deheyn D, Thorndyke MC, Baguet F, Mallefet J. Localization of S1- and S2-like immunoreactivity in the nervous system of the brittle star Amphipholis squamata (Delle Chiaje 1828). Proc Biol Sci 1997; 264:667-74. [PMID: 9178539 PMCID: PMC1688412 DOI: 10.1098/rspb.1997.0095] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The recent isolation and characterization of the SALMFanide neuropeptides S1 GFNSALMFamide; and S2 (SGPYSFNSGLTFamide) from the sea stars. Asterias rubens and Asterias forbesi have initiated numerous studies on their morphological localization and distribution within the phylum Echinodermata. It has been shown by immunocytochemistry and radioimmunoassay that these peptides are widely distributed in the nervous system of some asteroids, echinoids and ophiuroids. A physiological approach has also shown that S1 and S2 potentiate the luminescence of the small ophiuroid Amphipholis squamata. In the present study. S1- and S2-like immunoreactivity have been localized in A. squamata by immunocytochemistry on both wholemount preparation and histological sections. The results reveal a widespread neuronal distribution of S1-like immunoreactivity in the circumoral ring, radial nerve cord, and tube feet. S1-like immunoreactivity was found to be associated with axons and cell bodies in both the ectoneural and hyponeural components of the nervous. S2-like immunoreactivity was detected only in the ectoneural plenus of the circumoral ring and radial nerve cord.
Collapse
Affiliation(s)
- N de Bremaeker
- Laboratory of Animal Physiology, Catholic University of Lourain, Lourain-la-Nence, Belgiam
| | | | | | | | | |
Collapse
|