1
|
Wale N, Freimark CB, Ramirez J, Dziuba MK, Kafri AY, Bilich R, Duffy MA. Virulence and transmission biology of the widespread, ecologically important pathogen of zooplankton, Spirobacillus cienkowskii. Appl Environ Microbiol 2024; 90:e0152923. [PMID: 39264204 PMCID: PMC11497810 DOI: 10.1128/aem.01529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/01/2024] [Indexed: 09/13/2024] Open
Abstract
Spirobacillus cienkowskii (Spirobacillus, hereafter) is a widely distributed bacterial pathogen that has significant impacts on the population dynamics of zooplankton (Daphnia spp.), particularly in months when Daphnia are asexually reproducing. However, little is known about Spirobacillus' virulence, transmission mode, and dynamics. As a result, we cannot explain the dynamics of Spirobacillus epidemics in nature or use Spirobacillus as a model pathogen, despite Daphnia's tractability as a model host. Here, we work to fill these knowledge gaps experimentally. We found that Spirobacillus is among the most virulent of Daphnia pathogens, killing its host within a week and reducing host fecundity. We further found that Spirobacillus did not transmit horizontally among hosts unless the host died or was destroyed (i.e., it is an "obligate killer"). In experiments aimed at quantifying the dynamics of horizontal transmission among asexually reproducing Daphnia, we demonstrated that Spirobacillus transmits poorly in the laboratory. In mesocosms, Spirobacillus failed to generate epidemics; in experiments wherein individual Daphnia were exposed, Spirobacillus' transmission success was low. In the (limited) set of conditions we considered, Spirobacillus' transmission success did not change with host density or pathogen dose and declined following environmental incubation. Finally, we conducted a field survey of Spirobacillus' prevalence within egg cases (ephippia) made by sexually reproducing Daphnia. We found Spirobacillus DNA in ~40% of ephippia, suggesting that, in addition to transmitting horizontally among asexually reproducing Daphnia, Spirobacillus may transmit vertically from sexually reproducing Daphnia. Our work fills critical gaps in the biology of Spirobacillus and illuminates new hypotheses vis-à-vis its life history. IMPORTANCE Spirobacillus cienkowskii is a bacterial pathogen of zooplankton, first described in the 19th century and recently placed in a new family of bacteria, the Silvanigrellaceae. Spirobacillus causes large epidemics in lake zooplankton populations and increases the probability that zooplankton will be eaten by predators. However, little is known about how Spirobacillus transmits among hosts, to what extent it reduces host survival and reproduction (i.e., how virulent it is), and what role virulence plays in Spirobacillus' life cycle. Here, we experimentally quantified Spirobacillus' virulence and showed that Spirobacillus must kill its host to transmit horizontally. We also found evidence that Spirobacillus may transmit vertically via Daphnia's seed-like egg sacks. Our work will help scientists to (i) understand Spirobacillus epidemics, (ii) use Spirobacillus as a model pathogen for the study of host-parasite interactions, and (iii) better understand the unusual group of bacteria to which Spirobacillus belongs.
Collapse
Affiliation(s)
- Nina Wale
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, USA
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Claire B. Freimark
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Justin Ramirez
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marcin K. Dziuba
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ahmad Y. Kafri
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca Bilich
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Rayner E, Lavenir A, Murray GGR, Matusewska M, Tucker AW, Welch JJ, Weinert LA. Variation in bacterial pathotype is consistent with the sit-and-wait hypothesis. MICROBIOLOGY (READING, ENGLAND) 2024; 170. [PMID: 39287974 PMCID: PMC11407517 DOI: 10.1099/mic.0.001500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The sit-and-wait hypothesis predicts that bacteria can become more virulent when they survive and transmit outside of their hosts due to circumventing the costs of host mortality. While this hypothesis is largely supported theoretically and through comparative analysis, experimental validation is limited. Here we test this hypothesis in Streptococcus suis, an opportunistic zoonotic pig pathogen, where a pathogenic ecotype proliferated during the change to intensive pig farming that amplifies opportunities for fomite transmission. We show in an in vitro environmental survival experiment that pathogenic ecotypes survive for longer than commensal ecotypes, despite similar rates of decline. The presence of a polysaccharide capsule has no consistent effect on survival. Our findings suggest that extended survival in the food chain may augment the zoonotic capability of S. suis. Moreover, eliminating the long-term environmental survival of bacteria could be a strategy that will both enhance infection control and curtail the evolution of virulence.
Collapse
Affiliation(s)
- Eliza Rayner
- Dept. Veterinary Medicine, Madingley Road, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Amelie Lavenir
- Dept. Veterinary Medicine, Madingley Road, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Gemma G R Murray
- Dept. Veterinary Medicine, Madingley Road, University of Cambridge, Cambridge, CB3 0ES, UK
- Dept. Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Marta Matusewska
- Dept. Veterinary Medicine, Madingley Road, University of Cambridge, Cambridge, CB3 0ES, UK
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1RQ, UK
| | - Alexander W Tucker
- Dept. Veterinary Medicine, Madingley Road, University of Cambridge, Cambridge, CB3 0ES, UK
| | - John J Welch
- Dept. Genetics, Downing Street, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Lucy A Weinert
- Dept. Veterinary Medicine, Madingley Road, University of Cambridge, Cambridge, CB3 0ES, UK
| |
Collapse
|
3
|
Wilber MQ, DeMarchi JA, Briggs CJ, Streipert S. Rapid Evolution of Resistance and Tolerance Leads to Variable Host Recoveries following Disease-Induced Declines. Am Nat 2024; 203:535-550. [PMID: 38635360 DOI: 10.1086/729437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractRecoveries of populations that have suffered severe disease-induced declines are being observed across disparate taxa. Yet we lack theoretical understanding of the drivers and dynamics of recovery in host populations and communities impacted by infectious disease. Motivated by disease-induced declines and nascent recoveries in amphibians, we developed a model to ask the following question: How does the rapid evolution of different host defense strategies affect the transient recovery trajectories of hosts following pathogen invasion and disease-induced declines? We found that while host life history is predictably a major driver of variability in population recovery trajectories (including declines and recoveries), populations that use different host defense strategies (i.e., tolerance, avoidance resistance, and intensity-reduction resistance) experience notably different recoveries. In single-species host populations, populations evolving tolerance recovered on average four times slower than populations evolving resistance. Moreover, while populations using avoidance resistance strategies had the fastest potential recovery rates, these populations could get trapped in long transient states at low abundance prior to recovery. In contrast, the recovery of populations evolving intensity-reduction resistance strategies were more consistent across ecological contexts. Overall, host defense strategies strongly affect the transient dynamics of population recovery and may affect the ultimate fate of real populations recovering from disease-induced declines.
Collapse
|
4
|
Lion S, Gandon S. Evolution of class-structured populations in periodic environments. Evolution 2022; 76:1674-1688. [PMID: 35657205 PMCID: PMC9541870 DOI: 10.1111/evo.14522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/17/2022] [Indexed: 01/22/2023]
Abstract
What is the influence of periodic environmental fluctuations on life-history evolution? We present a general theoretical framework to understand and predict the long-term evolution of life-history traits under a broad range of ecological scenarios. Specifically, we investigate how periodic fluctuations affect selection when the population is also structured in distinct classes. This analysis yields time-varying selection gradients that clarify the influence of the fluctuations of the environment on the competitive ability of a specific life-history mutation. We use this framework to analyse the evolution of key life-history traits of pathogens. We examine three different epidemiological scenarios and we show how periodic fluctuations of the environment can affect the evolution of virulence and transmission as well as the preference for different hosts. These examples yield new and testable predictions on pathogen evolution, and illustrate how our approach can provide a better understanding of the evolutionary consequences of time-varying environmental fluctuations in a broad range of scenarios.
Collapse
|
5
|
Boldin B. The importance of ecological dynamics in evolutionary processes: a host-bacteriophage model revisited. J Theor Biol 2022; 539:111057. [PMID: 35181286 DOI: 10.1016/j.jtbi.2022.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
A recent study of adaptive dynamics of lysis propensity in temperate phages suggested that full lysogeny emerges as the outcome of bacteriophage evolution in a simple host-phage system. The conclusion is based on the premise that mutant strains necessarily appear in equilibrium host-phage environments. Revisiting the model, we show that the ecological system exhibits richer asymptotic dynamics and that, in a certain parameter regime, evolution may in fact drive lysis propensity towards an evolutionary singularity in which a non-zero proportion of phages initiate infection in a lytic cycle. These singularities act as points of evolutionary diversification, leading to periodic coexistence of two distinct phage strains on the evolutionary time-scale. One of the two strains in the dimorphic evolutionary singularity is fully lysogenic (in the sense that cell infection always leads to lysogeny), while the other is partially lytic. Our study thus highlights the importance of ecological interactions as a driver of evolution.
Collapse
Affiliation(s)
- Barbara Boldin
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia.
| |
Collapse
|
6
|
Buckingham LJ, Ashby B. Coevolutionary theory of hosts and parasites. J Evol Biol 2022; 35:205-224. [PMID: 35030276 PMCID: PMC9305583 DOI: 10.1111/jeb.13981] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Host and parasite evolution are closely intertwined, with selection for adaptations and counter-adaptations forming a coevolutionary feedback loop. Coevolutionary dynamics are often difficult to intuit due to these feedbacks and are hard to demonstrate empirically in most systems. Theoretical models have therefore played a crucial role in shaping our understanding of host-parasite coevolution. Theoretical models vary widely in their assumptions, approaches and aims, and such variety makes it difficult, especially for non-theoreticians and those new to the field, to: (1) understand how model approaches relate to one another; (2) identify key modelling assumptions; (3) determine how model assumptions relate to biological systems; and (4) reconcile the results of different models with contrasting assumptions. In this review, we identify important model features, highlight key results and predictions and describe how these pertain to model assumptions. We carry out a literature survey of theoretical studies published since the 1950s (n = 219 papers) to support our analysis. We identify two particularly important features of models that tend to have a significant qualitative impact on the outcome of host-parasite coevolution: population dynamics and the genetic basis of infection. We also highlight the importance of other modelling features, such as stochasticity and whether time proceeds continuously or in discrete steps, that have received less attention but can drastically alter coevolutionary dynamics. We finish by summarizing recent developments in the field, specifically the trend towards greater model complexity, and discuss likely future directions for research.
Collapse
Affiliation(s)
- Lydia J. Buckingham
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| | - Ben Ashby
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| |
Collapse
|
7
|
Pandey A, Mideo N, Platt TG. Virulence Evolution of Pathogens That Can Grow in Reservoir Environments. Am Nat 2022; 199:141-158. [DOI: 10.1086/717177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Turner WC, Kamath PL, van Heerden H, Huang YH, Barandongo ZR, Bruce SA, Kausrud K. The roles of environmental variation and parasite survival in virulence-transmission relationships. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210088. [PMID: 34109041 PMCID: PMC8170194 DOI: 10.1098/rsos.210088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.
Collapse
Affiliation(s)
- Wendy C. Turner
- US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Yen-Hua Huang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zoe R. Barandongo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kyrre Kausrud
- Section for Epidemiology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|
9
|
Molina F, Simancas A, Tabla R, Gómez A, Roa I, Rebollo JE. Diversity and Local Coadaptation of Escherichia coli and Coliphages From Small Ruminants. Front Microbiol 2020; 11:564522. [PMID: 33178150 PMCID: PMC7596221 DOI: 10.3389/fmicb.2020.564522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages are highly specific predators that drive bacterial diversity through coevolution while striking tradeoffs among preserving host populations for long-term exploitation and increasing their virulence, structural stability, or host range. Escherichia coli and other coliform bacteria present in the microbiota of milk and during early ripening of raw milk cheeses have been linked to the production of gas, manifested by the appearance of eyes, and the development of off-flavors; thus, they might cause early blowing and cheese spoilage. Here, we report the characterization of coliphages isolated from manure from small ruminant farms and E. coli strains isolated from goat and sheep raw milk cheese. Additionally, the virulence and host range of locally isolated and laboratory collection phages were determined by comparing the susceptibility of E. coli strains from different sources. In agreement with the high genetic diversity found within the species E. coli, clustering analysis of whole-cell protein revealed a total of 13 distinct profiles but none of the raw milk cheese isolates showed inhibition of growth by reference or water-isolated coliphages. Conversely, 10 newly isolated phages had a broad host range (i.e., able to lyse ≥50% of bacterial hosts tested), thus exhibiting utility for biocontrol and only one cheese-isolated E. coli strain was resistant to all the phages. Whereas there was a high positive correlation between bacterial susceptibility range and lysis intensity, the phages virulence decreased as range increased until reaching a plateau. These results suggest local gene-for-gene coevolution between hosts and phages with selective tradeoffs for both resistance and competitive ability of the bacteria and host-range extension and virulence of the phage populations. Hence, different phage cocktail formulations might be required when devising long-term and short-term biocontrol strategies.
Collapse
Affiliation(s)
- Felipe Molina
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Alfredo Simancas
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Rafael Tabla
- Dairy Department, Technological Institute of Food and Agriculture - Scientific and Technological Research Centre of Extremadura, Junta de Extremadura, Badajoz, Spain
| | - Antonia Gómez
- Dairy Department, Technological Institute of Food and Agriculture - Scientific and Technological Research Centre of Extremadura, Junta de Extremadura, Badajoz, Spain
| | - Isidro Roa
- Dairy Department, Technological Institute of Food and Agriculture - Scientific and Technological Research Centre of Extremadura, Junta de Extremadura, Badajoz, Spain
| | - José Emilio Rebollo
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| |
Collapse
|
10
|
Gomez LM, Meszaros VA, Turner WC, Ogbunugafor CB. The Epidemiological Signature of Pathogen Populations That Vary in the Relationship between Free-Living Parasite Survival and Virulence. Viruses 2020; 12:E1055. [PMID: 32971954 PMCID: PMC7551987 DOI: 10.3390/v12091055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The relationship between parasite virulence and transmission is a pillar of evolutionary theory that has implications for public health. Part of this canon involves the idea that virulence and free-living survival (a key component of transmission) may have different relationships in different host-parasite systems. Most examinations of the evolution of virulence-transmission relationships-Theoretical or empirical in nature-Tend to focus on the evolution of virulence, with transmission being a secondary consideration. Even within transmission studies, the focus on free-living survival is a smaller subset, though recent studies have examined its importance in the ecology of infectious diseases. Few studies have examined the epidemic-scale consequences of variation in survival across different virulence-survival relationships. In this study, we utilize a mathematical model motivated by aspects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) natural history to investigate how evolutionary changes in survival may influence several aspects of disease dynamics at the epidemiological scale. Across virulence-survival relationships (where these traits are either positively or negatively correlated), we found that small changes (5% above and below the nominal value) in survival can have a meaningful effect on certain outbreak features, including R0, and on the size of the infectious peak in the population. These results highlight the importance of properly understanding the mechanistic relationship between virulence and parasite survival, as the evolution of increased survival across different relationships with virulence may have considerably different epidemiological signatures.
Collapse
Affiliation(s)
- Lourdes M. Gomez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA;
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA;
| | - Victor A. Meszaros
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA;
| | - Wendy C. Turner
- Department of Biological Sciences, University at Albany–State University of New York, Albany, NY 12222, USA;
| | - C. Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA;
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA;
| |
Collapse
|
11
|
Abstract
Why some parasites evolve and maintain extreme levels of virulence is a question that remains largely unanswered. A body of theory predicts that parasites that form long-lived spores able to persist in the environment evolve higher virulence, known as the sit and wait hypothesis. Such parasites can obliterate their local host population and wait in the environment for further hosts to arrive, reducing some of the costs of high virulence. On the other hand, some models predict the opposite to be true, that virulence and environmental persistence are both costly and traded off, the resource allocation hypothesis. I conducted a meta-analysis on published data on the relationship between environmental persistence and virulence collected to date. I first examined all data available to date and then conducted a smaller analysis focussing on just those studies testing the specific predictions of the sit and wait hypothesis. Empirical work supports both hypotheses; however, the direction of the effect is largely associated with parasite type. In both analyses, viruses tend to show evidence of resource allocation trade-offs, these traits are positively correlated in bacterial and fungal parasites.
Collapse
|
12
|
Weitz JS, Li G, Gulbudak H, Cortez MH, Whitaker RJ. Viral invasion fitness across a continuum from lysis to latency. Virus Evol 2019; 5:vez006. [PMID: 31024737 PMCID: PMC6476163 DOI: 10.1093/ve/vez006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The prevailing paradigm in ecological studies of viruses and their microbial hosts is that the reproductive success of viruses depends on the proliferation of the 'predator', that is, the virus particle. Yet, viruses are obligate intracellular parasites, and the virus genome-the actual unit of selection-can persist and proliferate from one cell generation to the next without lysis or the production of new virus particles. Here, we propose a theoretical framework to quantify the invasion fitness of viruses using an epidemiological cell-centric metric that focuses on the proliferation of viral genomes inside cells instead of virus particles outside cells. This cell-centric metric enables direct comparison of viral strategies characterized by obligate killing of hosts (e.g. via lysis), persistence of viral genomes inside hosts (e.g. via lysogeny), and strategies along a continuum between these extremes (e.g. via chronic infections). As a result, we can identify environmental drivers, life history traits, and key feedbacks that govern variation in viral propagation in nonlinear population models. For example, we identify threshold conditions given relatively low densities of susceptible cells and relatively high growth rates of infected cells in which lysogenic and other chronic strategies have higher potential viral reproduction than lytic strategies. Altogether, the theoretical framework helps unify the ongoing study of eco-evolutionary drivers of viral strategies in natural environments.
Collapse
Affiliation(s)
- Joshua S Weitz
- School of Biological Sciences
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Guanlin Li
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hayriye Gulbudak
- Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Michael H Cortez
- Department of Mathematics and Statistics Utah State University, Logan, UT, 84322, USA
| | - Rachel J Whitaker
- Department of Microbiology
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, 61801, USA
| |
Collapse
|
13
|
Ben‐Ami F. The virulence-transmission relationship in an obligate killer holds under diverse epidemiological and ecological conditions, but where is the tradeoff? Ecol Evol 2017; 7:11157-11166. [PMID: 29299290 PMCID: PMC5743645 DOI: 10.1002/ece3.3532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/30/2017] [Accepted: 09/13/2017] [Indexed: 01/07/2023] Open
Abstract
Parasite virulence is a leading theme in evolutionary biology. Modeling the course of virulence evolution holds the promise of providing practical insights into the management of infectious diseases and the implementation of vaccination strategies. A key element of virulence modeling is a tradeoff between parasite transmission rate and host lifespan. This assumption is crucial for predicting the level of optimal virulence. Here, I test this assumption using the water flea Daphnia magna and its castrating and obligate-killing bacterium Pasteuria ramosa. I found that the virulence-transmission relationship holds under diverse epidemiological and ecological conditions. In particular, parasite genotype, absolute and relative parasite dose, and within-host competition in multiple infections did not significantly affect the observed trend. Interestingly, the relationship between virulence and parasite transmission in this system is best explained by a model that includes a cubic term. Under this relationship, parasite transmission initially peaks and saturates at an intermediate level of virulence, but then it further increases as virulence decreases, surpassing the previous peak. My findings also highlight the problem of using parasite-induced host mortality as a "one-size-fits-all" measure of virulence for horizontally transmitted parasites, without considering the onset and duration of parasite transmission as well as other equally virulent effects of parasites (e.g., host castration). Therefore, mathematical models may be required to predict whether these particular characteristics of horizontally transmitted parasites can direct virulence evolution into directions not envisaged by existing models.
Collapse
Affiliation(s)
- Frida Ben‐Ami
- School of ZoologyGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
14
|
Caraco T, Turner WC. Pathogen transmission at stage-structured infectious patches: Killers and vaccinators. J Theor Biol 2017; 436:51-63. [PMID: 28966110 DOI: 10.1016/j.jtbi.2017.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/26/2017] [Accepted: 09/27/2017] [Indexed: 11/27/2022]
Abstract
Spatial localization of an obligate-killing, free-living pathogen generates a landscape of patches where new infections occur. As an infectious patch ages, both pathogen exposure at the patch and the probability of lethal infection following exposure can decline. We model stage-structured infectious patches, where non-lethal exposure can naturally "vaccinate" susceptible hosts. We let the between-stage difference in pathogen transmission, and then the between-stage difference in patch virulence, increase independently of other parameters. Effects of increasing either between-stage difference (about a fixed mean) depend on the probability a patch transitions from the first to second stage, i.e., the chance that a killer patch becomes a vaccinator. For slower stage transition, greater between-stage differences decreased susceptibles, and increased both resistant-host and killer patch numbers. But our examples reveal that each effect can be reversed when between-stage transition occurs more rapidly. For sufficiently rapid stage transition, increased between-stage virulence differences can lead to pathogen extinction, and leave the host at disease-free equilibrium. The model's general significance lies in demonstrating how epidemiological variation among sites of environmentally transmitted disease can strongly govern host-parasite dynamics.
Collapse
Affiliation(s)
- Thomas Caraco
- Department of Biological Sciences, University at Albany, Albany NY 12222, USA.
| | - Wendy C Turner
- Department of Biological Sciences, University at Albany, Albany NY 12222, USA.
| |
Collapse
|
15
|
Bera S, Moreno-Pérez MG, García-Figuera S, Pagán I, Fraile A, Pacios LF, García-Arenal F. Pleiotropic Effects of Resistance-Breaking Mutations on Particle Stability Provide Insight into Life History Evolution of a Plant RNA Virus. J Virol 2017; 91:e00435-17. [PMID: 28679755 PMCID: PMC5571237 DOI: 10.1128/jvi.00435-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
In gene-for-gene host-virus interactions, virus evolution to infect and multiply in previously resistant host genotypes, i.e., resistance breaking, is a case of host range expansion, which is predicted to be associated with fitness penalties. Negative effects of resistance-breaking mutations on within-host virus multiplication have been documented for several plant viruses. However, understanding virus evolution requires analyses of potential trade-offs between different fitness components. Here we analyzed whether coat protein (CP) mutations in Pepper mild mottle virus that break L-gene resistance in pepper affect particle stability and, thus, survival in the environment. For this purpose, CP mutations determining the overcoming of L 3 and L 4 resistance alleles were introduced in biologically active cDNA clones. The kinetics of the in vitro disassembly of parental and mutant particles were compared under different conditions. Resistance-breaking mutations variously affected particle stability. Structural analyses identified the number and type of axial and side interactions of adjacent CP subunits in virions, which explained differences in particle stability and contribute to understanding of tobamovirus disassembly. Resistance-breaking mutations also affected virus multiplication and virulence in the susceptible host, as well as infectivity. The sense and magnitude of the effects of resistance-breaking mutations on particle stability, multiplication, virulence, or infectivity depended on the specific mutation rather than on the ability to overcome the different resistance alleles, and effects on different traits were not correlated. Thus, the results do not provide evidence of links or trade-offs between particle stability, i.e., survival, and other components of virus fitness or virulence.IMPORTANCE The effect of survival on virus evolution remains underexplored, despite the fact that life history trade-offs may constrain virus evolution. We approached this topic by analyzing whether breaking of L-gene resistance in pepper by Pepper mild mottle virus, determined by coat protein (CP) mutations, is associated with reduced particle stability and survival. Resistance-breaking mutations affected particle stability by altering the interactions between CP subunits. However, the sense and magnitude of these effects were unrelated to the capacity to overcome different resistance alleles. Thus, resistance breaking was not traded with survival. Resistance-breaking mutations also affected virus fitness within the infected host, virulence, and infectivity in a mutation-specific manner. Comparison of the effects of CP mutations on these various traits indicates that there are neither trade-offs nor positive links between survival and other life history traits. These results demonstrate that trade-offs between life history traits may not be a general constraint in virus evolution.
Collapse
Affiliation(s)
- Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Manuel G Moreno-Pérez
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sara García-Figuera
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingenieros de Montes, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
16
|
Sofonea MT, Alizon S, Michalakis Y. Exposing the diversity of multiple infection patterns. J Theor Biol 2017; 419:278-289. [PMID: 28193485 DOI: 10.1016/j.jtbi.2017.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 12/11/2022]
Abstract
Natural populations often have to cope with genetically distinct parasites that can coexist, or not, within the same hosts. Theoretical models addressing the evolution of virulence have considered two within host infection outcomes, namely superinfection and coinfection. The field somehow became limited by this dichotomy that does not correspond to an empirical reality as other infection patterns, namely sets of within-host infection outcomes, are possible. We indeed formally prove there are over one hundred different infection patterns solely for recoverable chronic infections caused by two genetically distinct horizontally-transmitted microparasites. We afterwards highlight eight infection patterns using an explicit modelling of within-host dynamics that captures a large range of ecological interactions, five of which have been neglected so far. To clarify the terminology related to multiple infections, we introduce terms describing these new relevant patterns and illustrate them with existing biological systems. These infection patterns constitute a new framework for linking within-host and between-host dynamics, which is a requirement to forward our understanding of the epidemiology and the evolution of parasites.
Collapse
Affiliation(s)
- Mircea T Sofonea
- Laboratoire MIVEGEC (UMR CNRS 5290, IRD 224, UM), 911 avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France.
| | - Samuel Alizon
- Laboratoire MIVEGEC (UMR CNRS 5290, IRD 224, UM), 911 avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France
| | - Yannis Michalakis
- Laboratoire MIVEGEC (UMR CNRS 5290, IRD 224, UM), 911 avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
17
|
Leisner JJ, Jørgensen NOG, Middelboe M. Predation and selection for antibiotic resistance in natural environments. Evol Appl 2016; 9:427-34. [PMID: 26989434 PMCID: PMC4778110 DOI: 10.1111/eva.12353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
Genes encoding resistance to antibiotics appear, like the antibiotics themselves, to be ancient, originating long before the rise of the era of anthropogenic antibiotics. However, detailed understanding of the specific biological advantages of antibiotic resistance in natural environments is still lacking, thus limiting our efforts to prevent environmental influx of resistance genes. Here, we propose that antibiotic-resistant cells not only evade predation from antibiotic producers but also take advantage of nutrients released from cells that are killed by the antibiotic-producing bacteria. Thus, predation is potentially an important mechanism for driving antibiotic resistance during slow or stationary phase of growth when nutrients are deprived. This adds to explain the ancient nature and widespread occurrence of antibiotic resistance in natural environments unaffected by anthropogenic antibiotics. In particular, we suggest that nutrient-poor environments including indoor environments, for example, clean rooms and intensive care units may serve as a reservoir and source for antibiotic-producing as well as antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jørgen J. Leisner
- Department of Veterinary Disease BiologyFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Niels O. G. Jørgensen
- Department of Plant and Environmental SciencesFaculty of ScienceUniversity of CopenhagenFrederiksbergDenmark
| | - Mathias Middelboe
- Department of BiologyMarine Biological SectionFaculty of ScienceUniversity of CopenhagenHelsingørDenmark
| |
Collapse
|
18
|
Fleming-Davies AE, Dwyer G. Phenotypic Variation in Overwinter Environmental Transmission of a Baculovirus and the Cost of Virulence. Am Nat 2015; 186:797-806. [PMID: 26655986 DOI: 10.1086/683798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A pathogen's ability to persist in the environment is an ecologically important trait, and variation in this trait may promote coexistence of different pathogen strains. We asked whether naturally occurring isolates of the baculovirus that infects gypsy moth larvae varied in their overwinter environmental transmission and whether this variation was consistent with a trade-off or an upper limit to virulence that might promote pathogen diversity. We used experimental manipulations to replicate the natural overwinter infection process, using 16 field-collected isolates. Virus isolates varied substantially in the fraction of larvae infected, leading to differences in overwinter transmission rates. Furthermore, isolates that killed more larvae also had higher rates of early larval death in which no infectious particles were produced, consistent with a cost of high virulence. Our results thus support the existence of a cost that could impose an upper limit to virulence even in a highly virulent pathogen.
Collapse
|
19
|
Vasanthakrishnan RB, de Las Heras A, Scortti M, Deshayes C, Colegrave N, Vázquez-Boland JA. PrfA regulation offsets the cost of Listeria virulence outside the host. Environ Microbiol 2015; 17:4566-79. [PMID: 26178789 PMCID: PMC4737189 DOI: 10.1111/1462-2920.12980] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/26/2015] [Accepted: 07/05/2015] [Indexed: 12/12/2022]
Abstract
Virulence traits are essential for pathogen fitness, but whether they affect microbial performance in the environment, where they are not needed, remains experimentally unconfirmed. We investigated this question with the facultative pathogen Listeria monocytogenes and its PrfA virulence regulon. PrfA‐regulated genes are activated intracellularly (PrfA ‘ON’) but shut down outside the host (PrfA ‘OFF’). Using a mutant PrfA regulator locked ON (PrfA*) and thus causing PrfA‐controlled genes to be constitutively activated, we show that virulence gene expression significantly impairs the listerial growth rate (μ) and maximum growth (A) in rich medium. Deletion analysis of the PrfA regulon and complementation of a L. monocytogenes mutant lacking all PrfA‐regulated genes with PrfA* indicated that the growth reduction was specifically due to the unneeded virulence determinants and not to pleiotropic regulatory effects of PrfA ON. No PrfA*‐associated fitness disadvantage was observed in infected eukaryotic cells, where PrfA‐regulated virulence gene expression is critical for survival. Microcosm experiments demonstrated that the constitutively virulent state strongly impaired L. monocytogenes performance in soil, the natural habitat of these bacteria. Our findings provide empirical proof that virulence carries a significant cost to the pathogen. They also experimentally substantiate the assumed, although not proven, key role of virulence gene regulation systems in suppressing the cost of bacterial virulence outside the host.
Collapse
Affiliation(s)
- Radhakrishnan B Vasanthakrishnan
- Microbial Pathogenesis Group, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aitor de Las Heras
- Microbial Pathogenesis Group, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Mariela Scortti
- Microbial Pathogenesis Group, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Caroline Deshayes
- Microbial Pathogenesis Group, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Nick Colegrave
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, UK
| | - José A Vázquez-Boland
- Microbial Pathogenesis Group, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,The Roslin Institute, University of Edinburgh, Edinburgh, UK.,Centre for Immunity, Infection & Evolution, University of Edinburgh, Edinburgh, UK.,Grupo de Patogenómica Bacteriana, Universidad de León, León, Spain
| |
Collapse
|
20
|
Abstract
Why is it that some parasites cause high levels of host damage (i.e. virulence) whereas others are relatively benign? There are now numerous reviews of virulence evolution in the literature but it is nevertheless still difficult to find a comprehensive treatment of the theory and data on the subject that is easily accessible to non-specialists. Here we attempt to do so by distilling the vast theoretical literature on the topic into a set of relatively few robust predictions. We then provide a comprehensive assessment of the available empirical literature that tests these predictions. Our results show that there have been some notable successes in integrating theory and data but also that theory and empiricism in this field do not ‘speak’ to each other very well. We offer a few suggestions for how the connection between the two might be improved.
Collapse
|
21
|
Rapid evolution of virulence leading to host extinction under host-parasite coevolution. BMC Evol Biol 2015; 15:112. [PMID: 26070343 PMCID: PMC4464865 DOI: 10.1186/s12862-015-0407-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/02/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Host-parasite coevolution is predicted to result in changes in the virulence of the parasite in order to maximise its reproductive success and transmission potential, either via direct host-to-host transfer or through the environment. The majority of coevolution experiments, however, do not allow for environmental transmission or persistence of long lived parasite stages, in spite of the fact that these may be critical for the evolutionary success of spore forming parasites under natural conditions. We carried out a coevolution experiment using the red flour beetle, Tribolium castaneum, and its natural microsporidian parasite, Paranosema whitei. Beetles and their environment, inclusive of spores released into it, were transferred from generation to generation. We additionally took a modelling approach to further assess the importance of transmissive parasite stages on virulence evolution. RESULTS In all parasite treatments of the experiment, coevolution resulted in extinction of the host population, with a pronounced increase in virulence being seen. Our modelling approach highlighted the presence of environmental transmissive parasite stages as being critical to the trajectory of virulence evolution in this system. CONCLUSIONS The extinction of host populations was unexpected, particularly as parasite virulence is often seen to decrease in host-parasite coevolution. This, in combination with the increase in virulence and results obtained from the model, suggest that the inclusion of transmissive parasite stages is important to improving our understanding of virulence evolution.
Collapse
|
22
|
The alternate role of direct and environmental transmission in fungal infectious disease in wildlife: threats for biodiversity conservation. Sci Rep 2015; 5:10368. [PMID: 25992836 PMCID: PMC4438611 DOI: 10.1038/srep10368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/09/2015] [Indexed: 11/26/2022] Open
Abstract
Emerging fungal pathogens have substantial consequences for infected hosts, as revealed by the global decline of amphibian species from the chytrid fungus. According to the “curse of the Pharaoh” hypothesis, free-living infectious stages typical of fungal pathogens lengthen the timespan of transmission. Free-living infectious stages whose lifespan exceeds the infection time of their hosts are not constrained by virulence, enabling them to persist at high levels and continue transmitting to further sensitive hosts. Using the only Mesomycetozoea fungal species that can be cultured, Sphaerothecum destruens, we obtained tractable data on infectivity and pathogen life cycle for the first time. Here, based on the outcomes of a set of infectious trials and combined with an epidemiological model, we show a high level of dependence on direct transmission in crowded, confined environments and establish that incubation rate and length of infection dictate the epidemic dynamics of fungal disease. The spread of Mesomycetozoea in the wild raise ecological concerns for a range of susceptible species including birds, amphibians and mammals. Our results shed light on the risks associated with farming conditions and highlight the additional risk posed by invasive species that are highly abundant and can act as infectious reservoir hosts.
Collapse
|
23
|
Tutanchamun: Evidenzbasierte Paleopathologie vs. „Fluch des Pharao“. DER PATHOLOGE 2015; 36:186-92. [DOI: 10.1007/s00292-014-1940-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Handel A, Lebarbenchon C, Stallknecht D, Rohani P. Trade-offs between and within scales: environmental persistence and within-host fitness of avian influenza viruses. Proc Biol Sci 2015; 281:rspb.2013.3051. [PMID: 24898369 DOI: 10.1098/rspb.2013.3051] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Trade-offs between different components of a pathogen's replication and transmission cycle are thought to be common. A number of studies have identified trade-offs that emerge across scales, reflecting the tension between strategies that optimize within-host proliferation and large-scale population spread. Most of these studies are theoretical in nature, with direct experimental tests of such cross-scale trade-offs still rare. Here, we report an analysis of avian influenza A viruses across scales, focusing on the phenotype of temperature-dependent viral persistence. Taking advantage of a unique dataset that reports both environmental virus decay rates and strain-specific viral kinetics from duck challenge experiments, we show that the temperature-dependent environmental decay rate of a strain does not impact within-host virus load. Hence, for this phenotype, the scales of within-host infection dynamics and between-host environmental persistence do not seem to interact: viral fitness may be optimized on each scale without cross-scale trade-offs. Instead, we confirm the existence of a temperature-dependent persistence trade-off on a single scale, with some strains favouring environmental persistence in water at low temperatures while others reduce sensitivity to increasing temperatures. We show that this temperature-dependent trade-off is a robust phenomenon and does not depend on the details of data analysis. Our findings suggest that viruses might employ different environmental persistence strategies, which facilitates the coexistence of diverse strains in ecological niches. We conclude that a better understanding of the transmission and evolutionary dynamics of influenza A viruses probably requires empirical information regarding both within-host dynamics and environmental traits, integrated within a combined ecological and within-host framework.
Collapse
Affiliation(s)
- Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, The University of Georgia, Athens, GA 30602, USA
| | - Camille Lebarbenchon
- University of Reunion Island, Avenue René Cassin, Saint-Denis Cedex 97715, Reunion Island
| | - David Stallknecht
- Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Pejman Rohani
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Wasik BR, Bhushan A, Ogbunugafor CB, Turner PE. Delayed transmission selects for increased survival of vesicular stomatitis virus. Evolution 2014; 69:117-25. [PMID: 25311513 DOI: 10.1111/evo.12544] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
Abstract
Life-history theory predicts that traits for survival and reproduction cannot be simultaneously maximized in evolving populations. For this reason, in obligate parasites such as infectious viruses, selection for improved between-host survival during transmission may lead to evolution of decreased within-host reproduction. We tested this idea using experimental evolution of RNA virus populations, passaged under differing transmission times in the laboratory. A single ancestral genotype of vesicular stomatitis virus (VSV), a negative-sense RNA Rhabdovirus, was used to found multiple virus lineages evolved in either ordinary 24-h cell-culture passage, or in delayed passages of 48 h. After 30 passages (120 generations of viral evolution), we observed that delayed transmission selected for improved extracellular survival, which traded-off with lowered viral fecundity (slower exponential population growth and smaller mean plaque size). To further examine the confirmed evolutionary trade-off, we obtained consensus whole-genome sequences of evolved virus populations, to infer phenotype-genotype associations. Results implied that increased virus survival did not occur via convergence; rather, improved virion stability was gained via independent mutations in various VSV structural proteins. Our study suggests that RNA viruses can evolve different molecular solutions for enhanced survival despite their limited genetic architecture, but suffer generalized reproductive trade-offs that limit overall fitness gains.
Collapse
Affiliation(s)
- Brian R Wasik
- Current Address: Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14583
| | | | | | | |
Collapse
|
26
|
The evolution of life history trade-offs in viruses. Curr Opin Virol 2014; 8:79-84. [DOI: 10.1016/j.coviro.2014.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 11/15/2022]
|
27
|
McGee LW, Aitchison EW, Caudle SB, Morrison AJ, Zheng L, Yang W, Rokyta DR. Payoffs, not tradeoffs, in the adaptation of a virus to ostensibly conflicting selective pressures. PLoS Genet 2014; 10:e1004611. [PMID: 25275498 PMCID: PMC4183430 DOI: 10.1371/journal.pgen.1004611] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/16/2014] [Indexed: 12/16/2022] Open
Abstract
The genetic architecture of many phenotypic traits is such that genes often contribute to multiple traits, and mutations in these genes can therefore affect multiple phenotypes. These pleiotropic interactions often manifest as tradeoffs between traits where improvement in one property entails a cost in another. The life cycles of many pathogens include periods of growth within a host punctuated with transmission events, such as passage through a digestive tract or a passive stage of exposure in the environment. Populations exposed to such fluctuating selective pressures are expected to acquire mutations showing tradeoffs between reproduction within and survival outside of a host. We selected for individual mutations under fluctuating selective pressures for a ssDNA microvirid bacteriophage by alternating selection for increased growth rate with selection on biophysical properties of the phage capsid in high-temperature or low-pH conditions. Surprisingly, none of the seven unique mutations identified showed a pleiotropic cost; they all improved both growth rate and pH or temperature stability, suggesting that single mutations even in a simple genetic system can simultaneously improve two distinct traits. Selection on growth rate alone revealed tradeoffs, but some mutations still benefited both traits. Tradeoffs were therefore prevalent when selection acted on a single trait, but payoffs resulted when multiple traits were selected for simultaneously. We employed a molecular-dynamics simulation method to determine the mechanisms underlying beneficial effects for three heat-shock mutations. All three mutations significantly enhanced the affinities of protein-protein interfacial bindings, thereby improving capsid stability. The ancestral residues at the mutation sites did not contribute to protein-protein interfacial binding, indicating that these sites acquired a new function. Computational models, such as those used here, may be used in future work not only as predictive tools for mutational effects on protein stability but, ultimately, for evolution.
Collapse
Affiliation(s)
- Lindsey W. McGee
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Erick W. Aitchison
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - S. Brian Caudle
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Anneliese J. Morrison
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Lianqing Zheng
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Wei Yang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Darin R. Rokyta
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
28
|
Castel M, Mailleret L, Andrivon D, Ravigné V, Hamelin FM. Allee Effects and the Evolution of Polymorphism in Cyclic Parthenogens. Am Nat 2014; 183:E75-88. [DOI: 10.1086/674828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
29
|
Handel A, Brown J, Stallknecht D, Rohani P. A multi-scale analysis of influenza A virus fitness trade-offs due to temperature-dependent virus persistence. PLoS Comput Biol 2013; 9:e1002989. [PMID: 23555223 PMCID: PMC3605121 DOI: 10.1371/journal.pcbi.1002989] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/04/2013] [Indexed: 01/13/2023] Open
Abstract
Successful replication within an infected host and successful transmission between hosts are key to the continued spread of most pathogens. Competing selection pressures exerted at these different scales can lead to evolutionary trade-offs between the determinants of fitness within and between hosts. Here, we examine such a trade-off in the context of influenza A viruses and the differential pressures exerted by temperature-dependent virus persistence. For a panel of avian influenza A virus strains, we find evidence for a trade-off between the persistence at high versus low temperatures. Combining a within-host model of influenza infection dynamics with a between-host transmission model, we study how such a trade-off affects virus fitness on the host population level. We show that conclusions regarding overall fitness are affected by the type of link assumed between the within- and between-host levels and the main route of transmission (direct or environmental). The relative importance of virulence and immune response mediated virus clearance are also found to influence the fitness impacts of virus persistence at low versus high temperatures. Based on our results, we predict that if transmission occurs mainly directly and scales linearly with virus load, and virulence or immune responses are negligible, the evolutionary pressure for influenza viruses to evolve toward good persistence at high within-host temperatures dominates. For all other scenarios, influenza viruses with good environmental persistence at low temperatures seem to be favored. It has recently been suggested that for avian influenza viruses, prolonged persistence in the environment plays an important role in the transmission between birds. In such situations, influenza virus strains may face a trade-off: they need to persist well in the environment at low temperatures, but they also need to do well inside an infected bird at higher temperatures. Here, we analyze how potential trade-offs on these two scales interact to determine overall fitness of the virus. We find that the link between infection dynamics within a host and virus shedding and transmission is crucial in determining the relative advantage of good low-temperature versus high-temperature persistence. We also find that the role of virus-induced mortality, the immune response and the route of transmission affect the balance between optimal low-temperature and high-temperature persistence.
Collapse
Affiliation(s)
- Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, Georgia, United States of America.
| | | | | | | |
Collapse
|
30
|
Brandon Ogbunugafor C, Alto BW, Overton TM, Bhushan A, Morales NM, Turner PE. Evolution of increased survival in RNA viruses specialized on cancer-derived cells. Am Nat 2013; 181:585-95. [PMID: 23594543 DOI: 10.1086/670052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Viruses and other pathogens can diverge in their evolved host-use strategies because of exposure to different host types and conflicts between within-host reproduction and between-host survival. Most host-pathogen studies have emphasized the role of intrahost reproduction in the evolution of pathogen virulence, whereas the role of extra-host survival has received less attention. Here, we examine the evolution of free-living virion survival in RNA virus populations differing in their histories of host use. To do so, we used lineages of vesicular stomatitis virus (VSV) that were experimentally evolved in laboratory tissue culture for 100 generations on cancer-derived cells, noncancerous cells, or alternating passages of the two host types. We observed that free-living survival improved when VSV populations specialized on human epithelial carcinoma (HeLa) cells, whereas this trait was not associated with selection on noncancer cells or combinations of the cell types. We attributed this finding to shorter-lived HeLa monolayers and/or rapid cell-to-cell spread of viruses on HeLa cells in tissue culture, both of which could select for enhanced virus stability between host-cell replenishment. We also showed evidence that increases in virion survival were associated with decreases in virulence, which suggests a trade-off between survival and virulence for the VSV populations on one cell type. Our results shed new light on the causes and consequences of "sit and wait" infection strategies in RNA viruses.
Collapse
Affiliation(s)
- C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Zhan J, McDonald BA. Experimental measures of pathogen competition and relative fitness. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:131-53. [PMID: 23767846 DOI: 10.1146/annurev-phyto-082712-102302] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Competition among pathogen strains for limited host resources can have a profound effect on pathogen evolution. A better understanding of the principles and consequences of competition can be useful in designing more sustainable disease management strategies. The competitive ability and relative fitness of a pathogen strain are determined by its intrinsic biological properties, the resistance and heterogeneity of the corresponding host population, the population density and genetic relatedness of the competing strains, and the physical environment. Competitive ability can be inferred indirectly from fitness components, such as basic reproduction rate or transmission rate. However, pathogen strains that exhibit higher fitness components when they infect a host alone may not exhibit a competitive advantage when they co-infect the same host. The most comprehensive measures of competitive ability and relative fitness come from calculating selection coefficients in a mixed infection in a field setting. Mark-release-recapture experiments can be used to estimate fitness costs associated with unnecessary virulence and fungicide resistance.
Collapse
Affiliation(s)
- Jiasui Zhan
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | | |
Collapse
|
32
|
King KC, Auld SKJR, Wilson PJ, James J, Little TJ. The bacterial parasite Pasteuria ramosa is not killed if it fails to infect: implications for coevolution. Ecol Evol 2012; 3:197-203. [PMID: 23467806 PMCID: PMC3586630 DOI: 10.1002/ece3.438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/18/2012] [Accepted: 10/29/2012] [Indexed: 12/02/2022] Open
Abstract
Strong selection on parasites, as well as on hosts, is crucial for fueling coevolutionary dynamics. Selection will be especially strong if parasites that encounter resistant hosts are destroyed and diluted from the local environment. We tested whether spores of the bacterial parasite Pasteuria ramosa were passed through the gut (the route of infection) of their host, Daphnia magna, and whether passaged spores remained viable for a “second chance” at infecting a new host. In particular, we tested if this viability (estimated via infectivity) depended on host genotype, whether or not the genotype was susceptible, and on initial parasite dose. Our results show that Pasteuria spores generally remain viable after passage through both susceptible and resistant Daphnia. Furthermore, these spores remained infectious even after being frozen for several weeks. If parasites can get a second chance at infecting hosts in the wild, selection for infection success in the first instance will be reduced. This could also weaken reciprocal selection on hosts and slow the coevolutionary process.
Collapse
Affiliation(s)
- Kayla C King
- Institute of Integrative Biology, University of Liverpool Crown Street, Liverpool, L69 7ZB, UK
| | | | | | | | | |
Collapse
|
33
|
Heineman RH, Brown SP. Experimental evolution of a bacteriophage virus reveals the trajectory of adaptation across a fecundity/longevity trade-off. PLoS One 2012; 7:e46322. [PMID: 23071555 PMCID: PMC3470554 DOI: 10.1371/journal.pone.0046322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Life history theory attempts to account for how organisms lead their lives, balancing the conflicting demands of reproduction and survival. Here, we track the genomic and phenotypic evolution of the bacteriophage virus T7 across a postulated fecundity/longevity constraint. We adapted T7 to a challenging survival environment (6M urea). Our evolved strain displayed a significant improvement in propagule survival, coupled with a significant loss of fecundity (reduced growth rate on host cells). However, the increased resistance to urea did not generalise to increased resistance against temperature stress, highlighting that propagule durability is environment dependent. Previous comparative studies predicted that changes in propagule resistance would be mediated by changes in capsid proteins or gene deletions. In contrast, we found that point mutations in internal core protein genes (6.7 and 16) were responsible for the increased urea resistance of our evolved strain. Prior to the emergence of the 6.7 and 16 mutations, a distinct set of 5-point mutations peaked at over 20% prevalence before attenuating, suggestive of negative epistatic interactions during adaptation. Our results illustrate that parasites can adapt to specific transmission environments, and that this adaptation can impose costs on the subsequent ability to exploit host cells, potentially constraining durable parasites to lower virulence.
Collapse
Affiliation(s)
- Richard H. Heineman
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Sam P. Brown
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- Centre for Infection, Immunity and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Ashrafian H. Familial epilepsy in the pharaohs of ancient Egypt's eighteenth dynasty. Epilepsy Behav 2012; 25:23-31. [PMID: 22980077 DOI: 10.1016/j.yebeh.2012.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/06/2012] [Accepted: 06/09/2012] [Indexed: 11/16/2022]
Abstract
The pharaohs of Egypt's famous eighteenth dynasty all died early of unknown causes. This paper comprehensively reviews and analyses the medical literature and current evidence available for the New Kingdom rulers - Tuthmosis IV, Amenhotep III, Akhenaten, Smenkhkare and Tutankhamun. The integration of these sources reveals that the eighteenth dynasty rulers may have suffered from an inherited condition that may explain their untimely deaths. The description of recurring strong religious visions, likely neurological disease and gynecomastia, supports the theory that these pharaohs may have suffered from a familial temporal epilepsy syndrome that ultimately led to their early downfall.
Collapse
Affiliation(s)
- Hutan Ashrafian
- Department of Surgery and Cancer, Imperial College London at St. Mary's Hospital Campus, London, UK.
| |
Collapse
|
35
|
Messinger SM, Ostling A. The influence of host demography, pathogen virulence, and relationships with pathogen virulence on the evolution of pathogen transmission in a spatial context. Evol Ecol 2012. [DOI: 10.1007/s10682-012-9594-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Boldin B, Kisdi É. ON THE EVOLUTIONARY DYNAMICS OF PATHOGENS WITH DIRECT AND ENVIRONMENTAL TRANSMISSION. Evolution 2012; 66:2514-27. [DOI: 10.1111/j.1558-5646.2012.01613.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Leung TLF, King KC, Wolinska J. Escape from the Red Queen: an overlooked scenario in coevolutionary studies. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2011.19873.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Barrett LG, Bell T, Dwyer G, Bergelson J. Cheating, trade-offs and the evolution of aggressiveness in a natural pathogen population. Ecol Lett 2011; 14:1149-57. [PMID: 21951910 DOI: 10.1111/j.1461-0248.2011.01687.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The evolutionary dynamics of pathogens are critically important for disease outcomes, prevalence and emergence. In this study we investigate ecological conditions that may promote the long-term maintenance of virulence polymorphisms in pathogen populations. Recent theory predicts that evolution towards increased virulence can be reversed if less-aggressive social 'cheats' exploit more aggressive 'cooperator' pathogens. However, there is no evidence that social exploitation operates within natural pathogen populations. We show that for the bacterium Pseudomonas syringae, major polymorphisms for pathogenicity are maintained at unexpectedly high frequencies in populations infecting the host Arabidopsis thaliana. Experiments reveal that less-aggressive strains substantially increase their growth potential in mixed infections and have a fitness advantage in non-host environments. These results suggest that niche differentiation can contribute to the maintenance of virulence polymorphisms, and that both within-host and between-host growth rates modulate cheating and cooperation in P. syringae populations.
Collapse
Affiliation(s)
- Luke G Barrett
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
39
|
Roche B, Drake JM, Rohani P. The curse of the Pharaoh revisited: evolutionary bi-stability in environmentally transmitted pathogens. Ecol Lett 2011; 14:569-75. [PMID: 21496194 DOI: 10.1111/j.1461-0248.2011.01619.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is increasingly evident that for a number of high-profile pathogens, transmission involves both direct and environmental pathways. Much of the distinguished evolutionary theory has, however, focused on each of transmission component separately. Herein, we use the framework of adaptive dynamics to study the evolutionary consequences of mixed transmission. We find that environmental transmission can select for increased virulence when direct transmission is low. Increasing the efficiency of direct transmission gives rise to an evolutionary bi-stability, with coexistence of different levels of virulence. We conclude that the overlooked contribution of environmental transmission may explain the curious appearance of high virulence in pathogens that are typically only moderately pathogenic, as observed for avian influenza viruses and cholera.
Collapse
Affiliation(s)
- Benjamin Roche
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
40
|
Staves PA, Knell RJ. Virulence and competitiveness: testing the relationship during inter- and intraspecific mixed infections. Evolution 2011; 64:2643-52. [PMID: 20394652 DOI: 10.1111/j.1558-5646.2010.00999.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the reasons why different parasites cause different degrees of harm to their hosts is an important objective in evolutionary biology. One group of models predicts that if hosts are infected with more than one strain or species of parasite, then competition between the parasites will select for higher virulence. While this idea makes intuitive sense, empirical data to support it are rare and equivocal. We investigated the relationship between fitness and virulence during both inter- and intraspecific competition for a fungal parasite of insects, Metarhizium anisopliae. Contrary to theoretical expectations, competition favored parasite strains with either a lower or a higher virulence depending on the competitor: when in interspecific competition with an entomopathogenic nematode, Steinernema feltiae, less virulent strains of the fungus were more successful, but when competing against conspecific fungi, more virulent strains were better competitors. We suggest that the nature of competition (direct via toxin production when competing against the nematode, indirect via exploitation of the host when competing against conspecific fungal strains) determines the relationship between virulence and competitive ability.
Collapse
Affiliation(s)
- Peter A Staves
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, United Kingdom.
| | | |
Collapse
|
41
|
Bonsall MB. Parasite replication and the evolutionary epidemiology of parasite virulence. PLoS One 2010; 5:e12440. [PMID: 20805976 PMCID: PMC2929189 DOI: 10.1371/journal.pone.0012440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/30/2010] [Indexed: 12/17/2022] Open
Abstract
Parasite virulence evolution is shaped by both within-host and population-level processes yet the link between these differing scales of infection is often neglected. Population structure and heterogeneity in both parasites and hosts will affect how hosts are exploited by pathogens and the intensity of infection. Here, it is shown how the degree of relatedness among parasites together with epidemiological parameters such as pathogen yield and longevity influence the evolution of virulence. Furthermore, the role of kin competition and the degree of cheating within highly structured parasite populations also influences parasite fitness and infectivity patterns. Understanding how the effects of within-host processes scale up to affect the epidemiology has importance for understanding host-pathogen interactions.
Collapse
Affiliation(s)
- Michael B Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
42
|
Messinger SM, Ostling A. The consequences of spatial structure for the evolution of pathogen transmission rate and virulence. Am Nat 2009; 174:441-54. [PMID: 19691436 DOI: 10.1086/605375] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The distribution of organisms in space can be an important mediator of species interactions, but its evolutionary effects on those interactions are only beginning to be explored. These effects may be especially relevant to pathogen-host interactions. A detailed understanding of how and when spatial structure will affect the evolution of pathogen traits is likely to aid our ability to control rapidly emerging infectious diseases. Here we review a growing body of theoretical studies suggesting that spatial structure can lead to the evolution of an intermediate pathogen transmission rate and virulence. We explain the results of these studies in terms of a competition-persistence trade-off. These studies strongly suggest that local host interactions, local host dispersal, and relatively low host reproduction rates create a host population spatial structure that enforces this trade-off and leads to the evolution of lower pathogen transmission rates and virulence. They also suggest that when spatial structure exists, it can dominate over the shape of the transmission-virulence trade-off in determining pathogen traits. We also identify important areas of future research, including quantifying pathogen fitness in a spatial context in order to gain a more mechanistic understanding of the effects of spatial structure and observationally and experimentally testing theoretical predictions.
Collapse
Affiliation(s)
- Susanna M Messinger
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
43
|
Barrett LG, Kniskern JM, Bodenhausen N, Zhang W, Bergelson J. Continua of specificity and virulence in plant host-pathogen interactions: causes and consequences. THE NEW PHYTOLOGIST 2009; 183:513-529. [PMID: 19563451 DOI: 10.1111/j.1469-8137.2009.02927.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ecological, evolutionary and molecular models of interactions between plant hosts and microbial pathogens are largely based around a concept of tightly coupled interactions between species pairs. However, highly pathogenic and obligate associations between host and pathogen species represent only a fraction of the diversity encountered in natural and managed systems. Instead, many pathogens can infect a wide range of hosts, and most hosts are exposed to more than one pathogen species, often simultaneously. Furthermore, outcomes of pathogen infection vary widely because host plants vary in resistance and tolerance to infection, while pathogens are also variable in their ability to grow on or within hosts. Environmental heterogeneity further increases the potential for variation in plant host-pathogen interactions by influencing the degree and fitness consequences of infection. Here, we describe these continua of specificity and virulence inherent within plant host-pathogen interactions. Using this framework, we describe and contrast the genetic and environmental mechanisms that underlie this variation, outline consequences for epidemiology and community structure, explore likely ecological and evolutionary drivers, and highlight several key areas for future research.
Collapse
Affiliation(s)
- Luke G Barrett
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, IL 60637, USA
| | - Joel M Kniskern
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, IL 60637, USA
| | - Natacha Bodenhausen
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, IL 60637, USA
| | - Wen Zhang
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, IL 60637, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
44
|
|
45
|
Surviving the bottleneck: transmission mutants and the evolution of microbial populations. Genetics 2008; 180:2193-200. [PMID: 18854584 DOI: 10.1534/genetics.108.093013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of microbial populations to increase fitness through fixation of mutants with an increased growth rate has been well described. In experimental studies, this is often the only way fitness can be increased. In natural settings, however, fitness can also be improved by increasing the ability of the microbe to transmit from one host to the next. For many pathogens, transmission includes a phase outside the host during which they need to survive before the chance of reinfecting a new host occurs. In such a situation, a reduced death rate during this phase will lead to improved fitness. Here, we compute the fixation probability of mutants that better survive the transmission bottleneck during the evolution of microbial populations. We derive analytical results that show that transmission mutants are often likely to occur and that their importance relative to growth mutants increases as the population decline during the transmission phase increases. We confirm our theoretical results with numerical simulations and suggest specific experiments that can be done to test our predictions.
Collapse
|
46
|
Alizon S, van Baalen M. Transmission–virulence trade-offs in vector-borne diseases. Theor Popul Biol 2008; 74:6-15. [DOI: 10.1016/j.tpb.2008.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 04/11/2008] [Accepted: 04/13/2008] [Indexed: 10/22/2022]
|
47
|
Giafis A, Bowers RG. The adaptive dynamics of the evolution of host resistance to indirectly transmitted microparasites. Math Biosci 2007; 210:668-79. [PMID: 17854843 DOI: 10.1016/j.mbs.2007.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 07/09/2007] [Accepted: 07/24/2007] [Indexed: 11/28/2022]
Abstract
We use adaptive dynamics and pairwise invadability plots to examine the evolutionary dynamics of host resistance to microparasitic infection transmitted indirectly via free stages. We investigate trade-offs between pathogen transmission rate and intrinsic growth rate. Adaptive dynamics distinguishes various evolutionary outcomes associated with repellors, attractors or branching points. We find criteria corresponding to these and demonstrate that a major factor deciding the evolutionary outcome is whether trade-offs are acceleratingly or deceleratingly costly. We compare and contrast two models and show how the differences between them lead to different evolutionary outcomes.
Collapse
Affiliation(s)
- Angela Giafis
- Department of Mathematical Sciences, Division of Applied Mathematics, The University of Liverpool, Liverpool, UK
| | | |
Collapse
|
48
|
Free-living pathogens: life-history constraints and strain competition. J Theor Biol 2007; 250:569-79. [PMID: 18062992 DOI: 10.1016/j.jtbi.2007.10.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/24/2007] [Accepted: 10/25/2007] [Indexed: 11/23/2022]
Abstract
Many pathogen life histories include a free-living stage, often with anatomical and physiological adaptations promoting persistence outside of host tissues. More durable particles presumably require that the pathogen metabolize more resources per particle. Therefore, we hypothesize functional dependencies, pleiotropic constraints, between the rate at which free-living particles decay outside of host tissues and other pathogen traits, including virulence, the probability of infecting a host upon contact, and pathogen reproduction within host tissues. Assuming that pathogen strains compete for hosts preemptively, we find patterns in trait dependencies predicting whether or not strain competition favors a highly persistent free-living stage.
Collapse
|
49
|
|
50
|
Kamo M, Sasaki A, Boots M. The role of trade-off shapes in the evolution of parasites in spatial host populations: an approximate analytical approach. J Theor Biol 2006; 244:588-96. [PMID: 17055535 DOI: 10.1016/j.jtbi.2006.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 07/18/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
Given the substantial changes in mixing in many populations, there is considerable interest in the role that spatial structure can play in the evolution of disease. Here we examine the role of different trade-off shapes in the evolution of parasites in a spatially structured host population where infection can occur locally or globally. We develop an approximate adaptive dynamic analytical approach, to examine how the evolutionarily stable (ES) virulence depends not only on the fraction of global infection/transmission but also on the shape of the trade-off between transmission and virulence. Our analysis can successfully predict the ES virulence found previously by simulation of the full system. The analysis confirms that when there is a linear trade-off between transmission and virulence spatial structure may lead to an ES virulence that increases as the proportion of global transmission increases. However, we also show that the ESS disappears above a threshold level of global infection, leading to maximization. In addition just below this threshold, there is the possibility of evolutionary bi-stabilities. When we assume the realistic trade-off between transmission and virulence that results in an ESS in the classical mixed model, we find that spatial structure can increase or decrease the ES virulence. A relatively high proportion of local infection reduces virulence but intermediate levels can select for higher virulence. Our work not only emphasizes the importance of spatial structure to the evolution of parasites, but also makes it clear that situations between the local and the global need to be considered. We also emphasize the key role that the shape of trade-offs plays in evolutionary outcomes.
Collapse
Affiliation(s)
- Masashi Kamo
- Advanced Industrial Science and Technology, Research Center for Chemical Risk Management, 305-8569, Onogawa 16-1, Tsukuba, Japan.
| | | | | |
Collapse
|