1
|
Matume ND, Tebit DM, Bessong PO. HIV-1 subtype C predicted co-receptor tropism in Africa: an individual sequence level meta-analysis. AIDS Res Ther 2020; 17:5. [PMID: 32033571 PMCID: PMC7006146 DOI: 10.1186/s12981-020-0263-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background Entry inhibitors, such as Maraviroc, hold promise as components of HIV treatment and/or pre-exposure prophylaxis in Africa. Maraviroc inhibits the interaction between HIV Envelope gp120 V3-loop and CCR5 coreceptor. HIV-1 subtype C (HIV-1-C) is predominant in Southern Africa and preferably uses CCR5 co-receptor. Therefore, a significant proportion of HIV-1-C CXCR4 utilizing viruses (X4) may compromise the effectiveness of Maraviroc. This analysis examined coreceptor preferences in early and chronic HIV-1-C infections across Africa. Methods African HIV-1-C Envelope gp120 V3-loop sequences sampled from 1988 to 2014 were retrieved from Los Alamos HIV Sequence Database. Sequences from early infections (< 186 days post infection) and chronic infections (> 186 days post infection) were analysed for predicted co-receptor preferences using Geno2Pheno [Coreceptor] 10% FPR, Phenoseq-C, and PSSMsinsi web tools. V3-loop diversity was determined, and viral subtype was confirmed by phylogenetic analysis. National treatment guidelines across Africa were reviewed for Maraviroc recommendation. Results Sequences from early (n = 6316) and chronic (n = 7338) HIV-1-C infected individuals from 10 and 15 African countries respectively were available for analyses. Overall, 518/6316 (8.2%; 95% CI 0.7–9.3) of early sequences were X4, with Ethiopia and Malawi having more than 10% each. For chronic infections, 8.3% (95% CI 2.4–16.2) sequences were X4 viruses, with Ethiopia, Tanzania, and Zimbabwe having more than 10% each. For sequences from early chronic infections (< 1 year post infection), the prevalence of X4 viruses was 8.5% (95% CI 2.6–11.2). In late chronic infections (≥ 5 years post infection), X4 viruses were observed in 36% (95% CI − 16.3 to 49.9), with two countries having relatively high X4 viruses: South Africa (43%) and Malawi (24%). The V3-loop amino acid sequence were more variable in X4 viruses in chronic infections compared to acute infections, with South Africa, Ethiopia and Zimbabwe showing the highest levels of V3-loop diversity. All sequences were phylogenetically confirmed as HIV-1-C and clustered according to their co-receptor tropism. In Africa, Maraviroc is registered only in South Africa and Uganda. Conclusions Our analyses illustrate that X4 viruses are present in significantly similar proportions in early and early chronic HIV-1 subtype C infected individuals across Africa. In contrast, in late chronic infections, X4 viruses increase 3–5 folds. We can draw two inferences from our observations: (1) to enhance the utility of Maraviroc in chronic HIV subtype C infections in Africa, prior virus co-receptor determination is needed; (2) on the flip side, research on the efficacy of CXCR4 antagonists for HIV-1-C infections is encouraged. Currently, the use of Maraviroc is very limited in Africa.
Collapse
|
2
|
Pace of Coreceptor Tropism Switch in HIV-1-Infected Individuals after Recent Infection. J Virol 2017; 91:JVI.00793-17. [PMID: 28659473 DOI: 10.1128/jvi.00793-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/08/2017] [Indexed: 11/20/2022] Open
Abstract
HIV-1 entry into target cells influences several aspects of HIV-1 pathogenesis, including viral tropism, HIV-1 transmission and disease progression, and response to entry inhibitors. The evolution from CCR5- to CXCR4-using strains in a given human host is still unpredictable. Here we analyzed timing and predictors for coreceptor evolution among recently HIV-1-infected individuals. Proviral DNA was longitudinally evaluated in 66 individuals using Geno2pheno[coreceptor] Demographics, viral load, CD4+ and CD8+ T cell counts, CCR5Δ32 polymorphisms, GB virus C (GBV-C) coinfection, and HLA profiles were also evaluated. Ultradeep sequencing was performed on initial samples from 11 selected individuals. A tropism switch from CCR5- to CXCR4-using strains was identified in 9/49 (18.4%) individuals. Only a low baseline false-positive rate (FPR) was found to be a significant tropism switch predictor. No minor CXCR4-using variants were identified in initial samples of 4 of 5 R5/non-R5 switchers. Logistic regression analysis showed that patients with an FPR of >40.6% at baseline presented a stable FPR over time whereas lower FPRs tend to progressively decay, leading to emergence of CXCR4-using strains, with a mean evolution time of 27.29 months (range, 8.90 to 64.62). An FPR threshold above 40.6% determined by logistic regression analysis may make it unnecessary to further determine tropism for prediction of disease progression related to emergence of X4 strains or use of CCR5 antagonists. The detection of variants with intermediate FPRs and progressive FPR decay over time not only strengthens the power of Geno2pheno in predicting HIV tropism but also indirectly confirms a continuous evolution from earlier R5 variants toward CXCR4-using strains.IMPORTANCE The introduction of CCR5 antagonists in the antiretroviral arsenal has sparked interest in coreceptors utilized by HIV-1. Despite concentrated efforts, viral and human host features predicting tropism switch are still poorly understood. Limited longitudinal data are available to assess the influence that these factors have on predicting tropism switch and disease progression. The present study describes longitudinal tropism evolution in a group of recently HIV-infected individuals to determine the prevalence and potential correlates of tropism switch. We demonstrated here that a low baseline FPR determined by the Geno2pheno[coreceptor] algorithm can predict tropism evolution from CCR5 to CXCR4 coreceptor use.
Collapse
|
3
|
Abstract
This review outlines how mathematical models have been helpful, and continue to be so, for obtaining insights into the in vivo dynamics of HIV infection. The review starts with a discussion of a basic mathematical model that has been frequently used to study HIV dynamics. Some crucial results are described, including the estimation of key parameters that characterize the infection, and the generation of influential theories which argued that in vivo virus evolution is a key player in HIV pathogenesis. Subsequently, more recent concepts are reviewed that have relevance for disease progression, including the multiple infection of cells and the direct cell-to-cell transmission of the virus through the formation of virological synapses. These are important mechanisms that can influence the rate at which HIV spreads through its target cell population, which is tightly linked to the rate at which the disease progresses towards AIDS.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA, 926967, USA,
| |
Collapse
|
4
|
Weinberger AD, Perelson AS. Persistence and emergence of X4 virus in HIV infection. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2011; 8:605-626. [PMID: 21631149 PMCID: PMC3118547 DOI: 10.3934/mbe.2011.8.605] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Approximately 50% of late-stage HIV patients develop CXCR4-tropic (X4) virus in addition to CCR5-tropic (R5) virus. X4 emergence occurs with a sharp decline in CD4+ T cell counts and accelerated time to AIDS. Why this phenotypic switch to X4 occurs is not well understood. Previously, we used numerical simulations of a mathematical model to show that across much of parameter space a promising new class of antiretroviral treatments, CCR5 inhibitors, can accelerate X4 emergence and immunodeficiency. Here, we show that mathematical model to be a minimal activation-based HIV model that produces a spontaneous switch to X4 virus at a clinically-representative time point, while also matching in vivo data showing X4 and R5 coexisting and competing to infect memory CD4+ T cells. Our analysis shows that X4 avoids competitive exclusion from an initially fitter R5 virus due to X4v unique ability to productively infect nave CD4+ T cells. We further justify the generalized conditions under which this minimal model holds, implying that a phenotypic switch can even occur when the fraction of activated nave CD4+ T cells increases at a slower rate than the fraction of activated memory CD4+ T cells. We find that it is the ratio of the fractions of activated nave and memory CD4+ T cells that must increase above a threshold to produce a switch. This occurs as the concentration of CD4+ T cells drops beneath a threshold. Thus, highly active antiretroviral therapy (HAART), which increases CD4+ T cell counts and decreases cellular activation levels, inhibits X4 viral growth. However, we show here that even in the simplest dual-strain framework, competition between R5 and X4 viruses often results in accelerated X4 emergence in response to CCR5 inhibition, further highlighting the potential danger of anti-CCR5 monotherapy in multi-strain HIV infection.
Collapse
Affiliation(s)
- Ariel D Weinberger
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, United States.
| | | |
Collapse
|
5
|
The R5 to X4 Coreceptor Switch: A Dead-End Path, or a Strategic Maneuver? Bull Math Biol 2011; 73:2339-56. [DOI: 10.1007/s11538-010-9625-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 11/09/2009] [Indexed: 01/14/2023]
|
6
|
ALIZON S, BOLDIN B. Within-host viral evolution in a heterogeneous environment: insights into the HIV co-receptor switch. J Evol Biol 2010; 23:2625-35. [DOI: 10.1111/j.1420-9101.2010.02139.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
van Marle G, Church DL, Nunweiler KD, Cannon K, Wainberg MA, Gill MJ. Higher levels of Zidovudine resistant HIV in the colon compared to blood and other gastrointestinal compartments in HIV infection. Retrovirology 2010; 7:74. [PMID: 20836880 PMCID: PMC2949729 DOI: 10.1186/1742-4690-7-74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/13/2010] [Indexed: 12/11/2022] Open
Abstract
Background The gut-associated lymphoid tissue (GALT) is the largest lymphoid organ infected by human immunodeficiency virus type 1 (HIV-1). It serves as a viral reservoir and host-pathogen interface in infection. This study examined whether different parts of the gut and peripheral blood lymphocytes (PBL) contain different drug-resistant HIV-1 variants. Methods Gut biopsies (esophagus, stomach, duodenum and colon) and PBL were obtained from 8 HIV-1 infected preHAART (highly active antiretroviral therapy) patients at three visits over 18 months. Patients received AZT, ddI or combinations of AZT/ddI. HIV-1 Reverse transcriptase (RT)-coding sequences were amplified from viral DNA obtained from gut tissues and PBL, using nested PCR. The PCR fragments were cloned and sequenced. The resulting sequences were subjected to phylogenetic analyses, and antiretroviral drug mutations were identified. Results Phylogenetic and drug mutation analyses revealed differential distribution of drug resistant mutations in the gut within patients. The level of drug-resistance conferred by the RT sequences was significantly different between different gut tissues and PBL, and varied with antiretroviral therapy. The sequences conferring the highest level of drug-resistance to AZT were found in the colon. Conclusion This study confirms that different drug-resistant HIV-1 variants are present in different gut tissues, and it is the first report to document that particular gut tissues may select for drug resistant HIV-1 variants.
Collapse
Affiliation(s)
- Guido van Marle
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
8
|
Different tempo and anatomic location of dual-tropic and X4 virus emergence in a model of R5 simian-human immunodeficiency virus infection. J Virol 2010; 84:340-51. [PMID: 19846515 DOI: 10.1128/jvi.01865-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported coreceptor switch in rhesus macaques inoculated intravenously with R5 simian-human immunodeficiency virus SF162P3N (SHIV(SF162P3N)). Whether R5-to-X4 virus evolution occurs in mucosally infected animals and in which anatomic site the switch occurs, however, were not addressed. We herein report a change in coreceptor preference in macaques infected intrarectally with SHIV(SF162P3N). The switch occurred in infected animals with high levels of virus replication and undetectable antiviral antibody response and required sequence changes in the V3 loop of the gp120 envelope protein. X4 virus emergence was associated with an accelerated drop in peripheral CD4(+) T-cell count but followed rather than preceded the onset of CD4(+) T-cell loss. The conditions, genotypic requirements, and patterns of coreceptor switch in intrarectally infected animals were thus remarkably consistent with those found in macaques infected intravenously. They also overlapped with those reported for humans, suggestive of a common mechanism for coreceptor switch in the two hosts. Furthermore, two independent R5-to-X4 evolutionary pathways were identified in one infected animal, giving rise to dual-tropic and X4 viruses which differed in switch kinetics and tissue localization. The dual-tropic switch event predominated early, and the virus established infection in multiple tissues sites. In contrast, the switch to X4 virus occurred later, initiating and expanding mainly in peripheral lymph nodes. These findings help define R5 SHIV(SF162P3N) infection of rhesus macaques as a model to study the mechanistic basis, dynamics, and sites of HIV-1 coreceptor switch.
Collapse
|
9
|
Compartmentalization of the gut viral reservoir in HIV-1 infected patients. Retrovirology 2007; 4:87. [PMID: 18053211 PMCID: PMC2217557 DOI: 10.1186/1742-4690-4-87] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 12/04/2007] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recently there has been an increasing interest and appreciation for the gut as both a viral reservoir as well as an important host-pathogen interface in human immunodefiency virus type 1 (HIV-1) infection. The gut associated lymphoid tissue (GALT) is the largest lymphoid organ infected by HIV-1. In this study we examined if different HIV-1 quasispecies are found in different parts of the gut of HIV-1 infected individuals. RESULTS Gut biopsies (esophagus, stomach, duodenum and colorectum) were obtained from eight HIV-1 infected preHAART (highly active antiretroviral therapy) patients. HIV-1 Nef and Reverse transcriptase (RT) encoding sequences were obtained through nested PCR amplification from DNA isolated from the gut biopsy tissues. The PCR fragments were cloned and sequenced. The resulting sequences were subjected to various phylogenetic analyses. Expression of the nef gene and viral RNA in the different gut tissues was determined using real-time RT-PCR. Phylogenetic analysis of the Nef protein-encoding region revealed compartmentalization of viral replication in the gut within patients. Viral diversity in both the Nef and RT encoding region varied in different parts of the gut. Moreover, increased nef gene expression (p < 0.05) and higher levels of viral genome were observed in the colorectum (p < 0.05). These differences could reflect an adaptation of HIV-1 to the various tissues. CONCLUSION Our results indicated that different HIV-1 quasispecies populate different parts of the gut, and that viral replication in the gut is compartmentalized. These observations underscore the importance of the gut as a host-pathogen interface in HIV-1 infection.
Collapse
|
10
|
Mugwagwa T, Witten G. Coreceptor switching in HIV-1 subtype B and subtype C. Bull Math Biol 2006; 69:55-75. [PMID: 17086370 DOI: 10.1007/s11538-006-9137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 09/26/2005] [Indexed: 10/24/2022]
Abstract
We use a mathematical model to determine the factors affecting the delayed or rare coreceptor switch in HIV-1 subtype C infected individuals. The model takes into account the two main target cells for the CXCR4-tropic and CCR5-tropic virus and includes the the lytic and non-lytic immune responses. Computer-based simulations and a sensitivity analysis of the model predict that a persistent immune response suppresses the CXCR4-tropic virus to low levels and hence preventing a phenotypic switch. However, not only should the immune response be persistent, but it should have an efficient lytic immune response rather that an efficient non-lytic response. In addition, we also find that the availability of macrophage cells and enhanced viral kinetics are also crucial for the dominance of the R5 strain. We suggest that an altered host environment probably as a result of immune activation may explain the difference in coreceptor switching kinetics between HIV-1 subtype B and subtype C individuals.
Collapse
Affiliation(s)
- T Mugwagwa
- Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | | |
Collapse
|
11
|
Quiñones-Mateu ME, Arts EJ. Virus fitness: concept, quantification, and application to HIV population dynamics. Curr Top Microbiol Immunol 2006; 299:83-140. [PMID: 16568897 DOI: 10.1007/3-540-26397-7_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Viral fitness has been broadly studied during the past three decades, mainly to test evolutionary models and population theories difficult to analyze and interpret with more complex organisms. More recent studies, however, are focused in the role of fitness on viral transmission, pathogenesis, and drug resistance. Here, we used human immunodeficiency virus (HIV) as one of the most relevant models to evaluate the importance of viral quasispecies and fitness in HIV evolution, population dynamics, disease progression, and potential clinical implications.
Collapse
Affiliation(s)
- M E Quiñones-Mateu
- Department of Molecular Genetics, Section Virology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NN10, Cleveland, OH 44195, USA.
| | | |
Collapse
|
12
|
Regoes RR, Bonhoeffer S. The HIV coreceptor switch: a population dynamical perspective. Trends Microbiol 2005; 13:269-77. [PMID: 15936659 DOI: 10.1016/j.tim.2005.04.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Revised: 04/05/2005] [Accepted: 04/21/2005] [Indexed: 11/30/2022]
Abstract
Over the course of infection, the coreceptor usage of the HIV virus changes from a preference for CCR5 to a preference for CXCR4 in approximately 50% of infected individuals. The change in coreceptor usage is the result of the complex interaction of the viral population with various cell populations of the immune system. Although many of the molecular processes involved in viral attachment and entry have been resolved, the population dynamical mechanisms leading to the emergence of CXCR4-using HIV variants in some infected individuals are not yet understood. Here, we review various hypotheses that have been proposed to explain the change of HIV coreceptor usage in the course of infection, and conclude that any corroboration or rejection of these hypotheses requires a quantitative analysis of the interaction between the virus and immune cells.
Collapse
Affiliation(s)
- Roland R Regoes
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
13
|
Abstract
The human immunodeficiency virus (HIV) infects a wide range of human cells. Cell entry is mediated through the CD4 receptor and a variety of coreceptors, most importantly the chemokine receptors CCR5 and CXCR4. Some antiretroviral agents selectively inhibit different HIV phenotypes depending on their coreceptor usage. Here, we analyse mathematical models, which describe the in vivo interaction of HIV phenotypes, differing in their coreceptor usage, with two target cell types (naive and memory CD4+ T cells). In particular, we investigate how the selection pressures on CCR5- and CXCR4-using HIV variants change as a result of treatment with coreceptor-specific antiretroviral agents. Our main result is that CXCR4 inhibitors increase the selection pressure in favor of the emergence of CCR5-using variants, thus selecting for coexistence of CXCR4- and CCR5-using variants, whereas CCR5 inhibitors increase the selection pressure against CCR5-using variants, thus selecting against coexistence. These results shed new light on the potential risks and benefits of coreceptor inhibitors.
Collapse
Affiliation(s)
- Roland Regoes
- Ecology and Evolution, Swiss Federal Institute of Technology Zurich, ETH Zentrum NW, CH-8092, Zurich, Switzerland
| | | |
Collapse
|
14
|
Arnaout RA, Nowak MA, Wodarz D. HIV-1 dynamics revisited: biphasic decay by cytotoxic T lymphocyte killing? Proc Biol Sci 2000; 267:1347-54. [PMID: 10972131 PMCID: PMC1690670 DOI: 10.1098/rspb.2000.1149] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The biphasic decay of blood viraemia in patients being treated for human immunodeficiency virus type 1 (HIV-1) infection has been explained as the decay of two distinct populations of cells: the rapid death of productively infected cells followed by the much slower elimination of a second population the identity of which remains unknown. Here we advance an alternative explanation based on the immune response against a single population of infected cells. We show that the biphasic decay can be explained simply, without invoking multiple compartments: viral load falls quickly while cytotoxic T lymphocytes (CTL) are still abundant, and more slowly as CTL disappear. We propose a method to test this idea, and develop a framework that is readily applicable to treatment of other infections.
Collapse
Affiliation(s)
- R A Arnaout
- Theoretical Biology Program, Institute for Advanced Study, Princeton, NJ 08540, USA.
| | | | | |
Collapse
|
15
|
Wodarz D, Page KM, Arnaout RA, Thomsen AR, Lifson JD, Nowak MA. A new theory of cytotoxic T-lymphocyte memory: implications for HIV treatment. Philos Trans R Soc Lond B Biol Sci 2000; 355:329-43. [PMID: 10794051 PMCID: PMC1692738 DOI: 10.1098/rstb.2000.0570] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We use simple mathematical models to examine the dynamics of primary and secondary cytotoxic T-lymphocyte (CTL) responses to viral infections. In particular, we are interested in conditions required to resolve the infection and to protect the host upon secondary challenge. While protection against reinfection is only effective in a restricted set of circumstances, we find that resolution of the primary infection requires persistence of CTL precursors (GTLp), as well as a fast rate of activation of the CTLp. Since these are commonly the defining characteristics of CTL memory, we propose that CTL memory may have evolved in order to clear the virus during primary challenge. We show experimental data from lymphocytic choriomeningitis virus infection in mice, supporting our theory on CTL memory. We adapt our models to HIV and find that immune impairment during the primary phase of the infection may result in the failure to establish CTL memory which in turn leads to viral persistence. Based on our models we suggest conceptual treatment regimes which ensure establishment of CTL memory. This would allow the immune response to control HIV in the long term in the absence of continued therapy.
Collapse
Affiliation(s)
- D Wodarz
- Institute for Advanced Study, Princeton, NJ 08540, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Altes HK, Jansen VA. Intra-host competition between nef-defective escape mutants and wild-type human immunodeficiency virus type 1. Proc Biol Sci 2000; 267:183-9. [PMID: 10687825 PMCID: PMC1690508 DOI: 10.1098/rspb.2000.0985] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Various forms of nef genes with deletions at conserved positions along the sequence have been reported to persist in human immunodeficiency virus type 1 infected patients. We investigate the forces maintaining such variants in the proviral population. The main selection pressures are preservation of function and host immune response. The crippled Nef protein might have fewer epitopes, and as such be less visible to the specific immune response, but it will lose some function. Does a trade-off between avoidance of the immune response and loss of function explain the dynamics of the crippled virus found in the patients? To answer this question, we formulated a deterministic model of the virus-host interactions. We found that when the crippled protein presents few epitopes and suffers little loss of function, the two viral types can coexist. Otherwise, the wild-type comes to prevail. The mutant form might initially dominate, but as the selective pressure by the CD84+ T cells decreases over the course of infection, the advantage for the crippled form of losing epitopes disappears. Hence, we go from a situation of coexistence of wild-type and mutant, to a situation of only full-length nef. The results are discussed in the context of the suggested use of live attenuated vaccines having deletions in nef.
Collapse
Affiliation(s)
- H K Altes
- Wellcome Trust Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, UK.
| | | |
Collapse
|
17
|
Callaway DS, Ribeiro RM, Nowak MA. Virus phenotype switching and disease progression in HIV-1 infection. Proc Biol Sci 1999; 266:2523-30. [PMID: 10693824 PMCID: PMC1690483 DOI: 10.1098/rspb.1999.0955] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
One of the phenotypic distinctions between different strains of human immunodeficiency virus type 1 (HIV-1) has to do with the ability to cause target cells to form large multinucleate bodies known as syncytia. There are two phenotypes according to this characterization: syncytium-inducing (SI) and non-syncytium-inducing (NSI). NSI strains are usually present throughout infection, while SI strains are typically seen at the beginning of the infection and near the onset of AIDS. The late emergence of SI strains is referred to as phenotype switching. In this paper we analyse the factors that lead to phenotype switching and contribute to the dynamics of disease progression. We show that a strong immune system selects for NSI strains while a weak immune system favours SI strains. The model explicitly accounts for the fact that CD4+ cells are both targets of HIV infection and crucial for activating immune responses against HIV In such a model, SI strains can emerge after a long and variable period of NSI dominated infection. Furthermore, versions of the model which do not explicitly account for HIV-specific, activated CD4+ cells do not exhibit phenotype switching, emphasizing the critical importance of this pool of cells.
Collapse
Affiliation(s)
- D S Callaway
- The Wellcome Trust Centre for the Epidemiology of Infectious Diseases, Department of Zoology, University of Oxford, UK
| | | | | |
Collapse
|
18
|
Abstract
Human immunodeficiency virus (HIV) disease progression is characterized by a slow but steady decline in the number of CD4+ T cells. It results in the development of AIDS when the immune response collapses and the virus grows uncontrolled. Pathogenicity of HIV may be due to viral escape from cellular immune responses as well as virus-induced immune impairment. Here we discuss how the dynamic interactions between the virus population and the immune response may lead to the development of AIDS. In particular we argue that in vivo evolution of HIV may be the driving force successively weakening the immune system. This may lead to increased levels of viraemia as well as to the evolution of more virulent phenotypes which indicate progression to AIDS. These insights are important for understanding the disease process itself and for designing effective treatment regimes.
Collapse
Affiliation(s)
- D Wodarz
- Institute for Advanced Study, Princeton, NJ 08540, USA.
| | | |
Collapse
|