1
|
Basu A, Tekade K, Singh A, Das PN, Prasad NG. Experimental evolution for improved postinfection survival selects for increased disease resistance in Drosophila melanogaster. Evolution 2024; 78:1831-1843. [PMID: 39212194 DOI: 10.1093/evolut/qpae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Disease resistance (defined as the host capacity to limit systemic infection intensity) and disease tolerance (defined as the host capacity to limit infection-induced damage) are 2 complementary defense strategies that help the hosts maximize their survival and fitness when infected with pathogens and parasites. In addition to the underlying physiological mechanisms, the existing theory postulates that these 2 strategies differ in terms of the conditions under which each strategy evolves in the host populations, their evolutionary dynamics, and the ecological and epidemiological consequences of their evolution. Here, we explored if one or both of these strategies evolve when host populations are subjected to selection for increased postinfection survival. We experimentally evolved Drosophila melanogaster populations, selecting for the flies that survived an infection with the entomopathogen Enterococcus faecalis. We found that the host populations evolved increased disease resistance in response to selection for increased survival. This was despite the physiological costs associated with increased resistance, the expression of which varied with the phase of infection. We did not find evidence of any change in disease tolerance in the evolved host populations.
Collapse
Affiliation(s)
- Aabeer Basu
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kimaya Tekade
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Aparajita Singh
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Paresh Nath Das
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Nagaraj Guru Prasad
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
2
|
Lalande LD, Bourgoin G, Carbillet J, Cheynel L, Debias F, Ferté H, Gaillard JM, Garcia R, Lemaître JF, Palme R, Pellerin M, Peroz C, Rey B, Vuarin P, Gilot-Fromont E. Early-life glucocorticoids accelerate lymphocyte count senescence in roe deer. Gen Comp Endocrinol 2024; 357:114595. [PMID: 39059616 DOI: 10.1016/j.ygcen.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Immunosenescence corresponds to the progressive decline of immune functions with increasing age. Although it is critical to understand what modulates such a decline, the ecological and physiological drivers of immunosenescence remain poorly understood in the wild. Among them, the level of glucocorticoids (GCs) during early life are good candidates to modulate immunosenescence patterns because these hormones can have long-term consequences on individual physiology. Indeed, GCs act as regulators of energy allocation to ensure allostasis, are part of the stress response triggered by unpredictable events and have immunosuppressive effects when chronically elevated. We used longitudinal data collected over two decades in two populations of roe deer (Capreolus capreolus) to test whether higher baseline GC levels measured within the first year of life were associated with a more pronounced immunosenescence and parasite susceptibility. We first assessed immunosenescence trajectories in these populations facing contrasting environmental conditions. Then, we found that juvenile GC levels can modulate lymphocyte trajectory. Lymphocyte depletion was accelerated late in life when GCs were elevated early in life. Although the exact mechanism remains to be elucidated, it could involve a role of GCs on thymic characteristics. In addition, elevated GC levels in juveniles were associated with a higher abundance of lung parasites during adulthood for individuals born during bad years, suggesting short-term negative effects of GCs on juvenile immunity, having in turn long-lasting consequences on adult parasite load, depending on juvenile environmental conditions. These findings offer promising research directions in assessing the carry-over consequences of GCs on life-history traits in the wild.
Collapse
Affiliation(s)
- Lucas D Lalande
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France.
| | - Gilles Bourgoin
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France
| | - Jeffrey Carbillet
- Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Louise Cheynel
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire d'Écologie des Hydrosystèmes Naturels et Anthropisés UMR 5023, F-69622 Villeurbanne, France
| | - François Debias
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Hubert Ferté
- Université de Reims, Épidémio-Surveillance et Circulation de Parasites dans les Environnements UR 7510, 55100 Reims, France
| | - Jean-Michel Gaillard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rebecca Garcia
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Jean-François Lemaître
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Maryline Pellerin
- Office Français de la Biodiversité, Direction de la Recherche et de l'Appui Scientifique, Service Conservation et Gestion Durable des Espèces Exploités, 52210 Châteauvillain, France
| | - Carole Peroz
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France
| | - Benjamin Rey
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Pauline Vuarin
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France; Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France.
| |
Collapse
|
3
|
Basu A, Gupta V, Tekade K, Prasad NG. Idiosyncratic effects of bacterial infection on female fecundity in Drosophila melanogaster. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100098. [PMID: 39417034 PMCID: PMC11480512 DOI: 10.1016/j.cris.2024.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Existing theories make different predictions regarding the effect of a pathogenic infection on the host capacity to reproduce. Terminal investment theory suggests that due to the increased risk of mortality, and the associated risk of losing future opportunity to reproduce, infected individuals would increase their investment towards reproduction. Life-history theory posits that due to energetic and resource costs associated with mounting an immune defense, hosts would decrease their investment towards reproduction, and reallocate resources towards defense and survival. Additionally, Somatic damage incurred by the host due to the infection is also expected to compromise the host capacity to reproduce. We explored these possibilities in Drosophila melanogaster females experimentally infected with pathogenic bacteria. We tested if the effect of infection on female fecundity is pathogen specific, determined by infection outcome, and variable between individual infected females. We observed that the mean, population level change in post-infection female fecundity was pathogen specific, but not correlated with mortality risk. Furthermore, infection outcome, i.e., if the infected female died or survived the infection, had no effect on fecundity at this level. At individual resolution, females that died after infection exhibited greater variation in fecundity compared to ones that survived the infection. This increased variation was bidirectional, with some females reproducing in excess while others reproducing less compared to the controls. Altogether, our results suggest that post-infection female fecundity is unlikely to be driven by risk of mortality and is probably determined by the precise physiological changes that an infected female undergoes when infected by a specific pathogen.
Collapse
Affiliation(s)
- Aabeer Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, PO Manauli, Punjab, 140306, India
| | | | | | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, PO Manauli, Punjab, 140306, India
| |
Collapse
|
4
|
Douhard F, Matthey X, Marcon D, Coffre-Thomain C, Estivalet L, Serreau D, Guégnard F, Sallé G, Drame PM, Elleboudt F, Lecompte F, Adriaensen H. Evidence for a constitutive cost of host resistance on body fat growth in ewe lambs from lines selected for resistance or susceptibility to experimental infections with Haemonchus contortus. Int J Parasitol 2024:S0020-7519(24)00172-3. [PMID: 39332660 DOI: 10.1016/j.ijpara.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/19/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Although benefits of selection for host resistance to gastro-intestinal nematodes have long been recognized, its costs on production traits remain unclear. A main difficulty when studying those costs is to disentangle genetic effects due to selection from plastic responses induced by infection. Putative costs of host resistance have been extensively investigated in growing sheep. However, while most of those studies have relied on live weight to assess body growth, more comprehensive assessments accounting for body composition are advocated to detect trade-offs. In this study we used 90 female lambs from lines divergently selected on resistance to Haemonchus contortus that we experimentally infected (n = 60) or not (n = 30) under controlled conditions. As those conditions were defined to enable uninfected lambs to fully express their growth potential, we sought to precisely identify the effects of selection for host resistance on health traits and on growth traits. We assessed muscular and fat growth based on repeated measurements with dorsal ultrasonography for all lambs on farm, and with whole-body computed tomography (CT) scans for a subgroup of 18 infected lambs. Lambs achieved a high growth rate, including infected ones despite their high worm burden (confirmed at necropsy in the subgroup). As expected, lambs from the resistant (R) line were less infected than those from the susceptible (S) line. However, the clear pathogenic effects observed on muscular growth and voluntary feed intake were similar between lines. In contrast, a line difference in body fat was supported both by dorsal and volumetric CT measurements. Specifically, lower fat in the R line compared with the S line was observed equally in infected and uninfected groups, thus providing evidence for a constitutive cost of host resistance. Although this cost is not necessarily disadvantageous in nutrient-rich environments exposing animals to excess fat deposition, its consequences in nutrient-scarce environments may be important to promote sustainable breeding strategies for host resistance.
Collapse
Affiliation(s)
- Frédéric Douhard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France.
| | - Xavier Matthey
- UMR INRAE/ENVT 1225 IHAP, UMT Santé des Petits Ruminants, Ecole Nationale Vétérinaire de Toulouse, Toulouse cedex 03, France
| | | | | | | | | | | | | | - Papa Moussa Drame
- INRAE, CNRS, Université de Tours, PRC, 37380 Nouzilly, France; INRAE, Université de Tours, CHU de Tours, PIXANIM, 37380 Nouzilly, France
| | - Frédéric Elleboudt
- INRAE, CNRS, Université de Tours, PRC, 37380 Nouzilly, France; INRAE, Université de Tours, CHU de Tours, PIXANIM, 37380 Nouzilly, France
| | - François Lecompte
- INRAE, CNRS, Université de Tours, PRC, 37380 Nouzilly, France; INRAE, Université de Tours, CHU de Tours, PIXANIM, 37380 Nouzilly, France
| | - Hans Adriaensen
- INRAE, CNRS, Université de Tours, PRC, 37380 Nouzilly, France; INRAE, Université de Tours, CHU de Tours, PIXANIM, 37380 Nouzilly, France
| |
Collapse
|
5
|
Basu A, Singh A, Sehgal S, Madaan T, Prasad NG. Starvation increases susceptibility to bacterial infection and promotes systemic pathogen proliferation in Drosophila melanogaster females. J Invertebr Pathol 2024; 207:108209. [PMID: 39322010 DOI: 10.1016/j.jip.2024.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Defense against pathogens and parasites requires substantial investment of energy and resources on part of the host. This makes the host immune function dependent on availability and accessibility of resources. A resource deprived host is therefore expected to be more susceptible to infections, although empirical results do not always align with this prediction. Limiting host access to resources can additionally impact within-host pathogen numbers, either directly by altering the amount of resources available to the pathogens for proliferation or indirectly by altering the efficiency of the host immune system. We tested for the effects of host starvation (complete deprivation of resources) on susceptibility to bacterial pathogens, and within-host pathogen proliferation, in Drosophila melanogaster females. Our results show that starvation increases post-infection mortality of the host, but in a pathogen-specific manner. This increase in mortality is always accompanied by increased within-host pathogen proliferation. We therefore propose that starvation compromises host resistance to bacterial infections in Drosophila melanogaster females thereby increasing susceptibility to infections.
Collapse
Affiliation(s)
- Aabeer Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| | - Aparajita Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| | - Suhaas Sehgal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India; Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland(2).
| | - Tanvi Madaan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India; Institute of Science and Technology Austria, Klosterneuburg, Austria(2).
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| |
Collapse
|
6
|
Mauritsson K, Jonsson T. A new mechanistic model for individual growth applied to insects under ad libitum conditions. PLoS One 2024; 19:e0309664. [PMID: 39231173 PMCID: PMC11373858 DOI: 10.1371/journal.pone.0309664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Metabolic theories in ecology interpret ecological patterns at different levels through the lens of metabolism, typically applying allometric power scaling laws to describe rates of energy use. This requires a sound theory for metabolism at the individual level. Commonly used mechanistic growth models lack some potentially important aspects and fail to accurately capture a growth pattern often observed in insects. Recently, a new model (MGM-the Maintenance-Growth Model) was developed for ontogenetic and post-mature growth, based on an energy balance that expresses growth as the net result of assimilation and metabolic costs for maintenance and feeding. The most important contributions of MGM are: 1) the division of maintenance costs into a non-negotiable and a negotiable part, potentially resulting in maintenance costs that increase faster than linearly with mass and are regulated in response to food restriction; 2) differentiated energy allocation strategies between sexes and 3) explicit description of costs for finding and processing food. MGM may also account for effects of body composition and type of growth at the cellular level. The model was here calibrated and evaluated using empirical data from an experiment on house crickets growing under ad libitum conditions. The procedure involved parameter estimations from the literature and collected data, using statistical models to account for individual variation in parameter values. It was found that ingestion rate cannot be generally described by a simple allometry, here requiring a more complex description after maturity. Neither could feeding costs be related to ingestion rate in a simplistic manner. By the unusual feature of maintenance costs increasing faster than linearly with body mass, MGM could well capture the differentiated growth patterns of male and female crickets. Some other mechanistic growth models have been able to provide good predictions of insect growth during early ontogeny, but MGM may accurately describe the trajectory until terminated growth.
Collapse
Affiliation(s)
- Karl Mauritsson
- Ecological Modelling Group, School of Bioscience, University of Skövde, Skövde, Sweden
- Ecological and Environmental Modeling, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Tomas Jonsson
- Ecological Modelling Group, School of Bioscience, University of Skövde, Skövde, Sweden
- Ecological and Environmental Modeling, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Chen J, Yu X, Yu K, Chen B, Qin Z, Liao Z, Ma Y, Xu L, Wang Y. Potential adaptation of scleractinian coral Pocillopora damicornis during hypo-salinity stress caused by extreme pre-flood rainfall over south China. ENVIRONMENTAL RESEARCH 2024; 262:119848. [PMID: 39216737 DOI: 10.1016/j.envres.2024.119848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Global warming intensifies the water cycle, resulting in significant increases in precipitation and river runoff, which brings severe hypo-salinity stress to nearshore coral reefs. Ecological investigations have found that some corals exhibit remarkable adaptability to hypo-salinity stress during mass-bleaching events. However, the exact cause of this phenomenon remains unclear. To elucidate the potential molecular mechanism leading to high tolerance to hypo-salinity stress, Pocillopora damicornis was used as a research object in this study. We compared the differences in transcriptional responses and symbiotic microbiomes between bleaching and unbleaching P. damicornis during hypo-salinity stress caused by extreme pre-flood rainfall over South China in 2022. The results showed that: (1) Under hypo-salinity stress, the coral genes related to immune defense and cellular stress were significantly upregulated in bleaching corals, indicating more severe immune damage and stress, and the Symbiodiniaceae had no significant gene enrichment. Conversely, metabolic genes related to glycolysis/gluconeogenesis were significantly downregulated in unbleaching corals, whereas Symbiodiniaceae genes related to oxidative phosphorylation were significantly upregulated to meet the energy requirements of coral holobiont; (2) C1d was the dominant Symbiodiniaceae subclade in all samples, with no significant difference between the two groups; (3) The symbiotic bacterial community structure was reorganized under hypo-salinity stress. The abundance of opportunistic bacteria increased significantly in bleaching coral, whereas the relative abundance of probiotics was higher in unbleaching coral. This may be due to severe immune damage, making the coral more susceptible to opportunistic infection and bleaching. These results suggest that long-term hypo-salinity acclimation in the Pearl River Estuary enhances the tolerance of some corals to hypo-salinity stress. Corals with higher tolerance may reduce energy consumption by slowing down their metabolism, improve the energy metabolism of Symbiodiniaceae to meet the energy requirements of the coral holobiont, and alter the structure of symbiotic bacterial communities to avoid bleaching.
Collapse
Affiliation(s)
- Junling Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Nanning Normal University, Nanning, China
| | - Yuling Ma
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China.
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| |
Collapse
|
8
|
Prato A, Fernando Santos E, Mendes Ferreira H, Akemi Oi C, Santos do Nascimento F, Rantala MJ, Krams I, Rodrigues de Souza A. Immune response in paper wasp workers: Task matters more than age. JOURNAL OF INSECT PHYSIOLOGY 2024; 154:104629. [PMID: 38430966 DOI: 10.1016/j.jinsphys.2024.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Workers of social hymenopterans (ants, bees and wasps) display specific tasks depending on whether they are younger or older. The relative importance of behavior and age in modulating immune function has seldom been addressed. We compared the strength of encapsulation-melanization immune response (hereafter melanotic encapsulation) in paper wasps displaying age polyethism or experimentally prevented from behavioral specialization. Foragers of Polybia paulista had higher melanotic encapsulation than guards, regardless of their age. Nevertheless, melanotic encapsulation decreased with age when wasps were prevented from behavioral specialization. Thus, in this species, worker melanotic encapsulation seems more sensitive to task than age. Foraging is considered one of the riskier behaviors in terms of pathogen exposure, so upregulating melanotic encapsulation in foragers can possibly improve both individual and colony-level resistance against infections.
Collapse
Affiliation(s)
- Amanda Prato
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil.
| | - Eduardo Fernando Santos
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, Brasil
| | | | - Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium; Center for Biodiversity and Environmental Research, Department of Genetics and Evolution, UCL, London, United Kingdom
| | - Fábio Santos do Nascimento
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil
| | | | - Indrikis Krams
- Department of Biotechnology, Daugavpils University, Latvia; Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Latvia; Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - André Rodrigues de Souza
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
9
|
Herzog I, Wohlsein P, Preuss A, Gorb SN, Pigeault R, Ewers C, Prenger-Berninghoff E, Siebert U, Lehnert K. Heartworm and seal louse: Trends in prevalence, characterisation of impact and transmission pathways in a unique parasite assembly on seals in the North and Baltic Sea. Int J Parasitol Parasites Wildl 2024; 23:100898. [PMID: 38283886 PMCID: PMC10818207 DOI: 10.1016/j.ijppaw.2023.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
The ectoparasitic seal louse, Echinophthirius horridus infects harbour (Phoca vitulina) and grey seals (Halichoerus grypus) in the North and Baltic Sea. The endoparasitic heartworm Acanthocheilonema spirocauda parasitizes the right heart and blood vessels of harbour seals. The complete lifecycle of the heartworm is not entirely understood although the seal louse is assumed to serve as vector for its transmission. Knowledge about the impact of both parasite species on host health are scarce. In this study, necropsy data and archived parasites of harbour and grey seals in German waters were analysed to determine long-term seal louse (SLP) and heartworm prevalence (HWP) from 2014 to 2021. Histology, microbiology and scanning electron microscopy (SEM) were applied on seal louse infected and uninfected skin to investigate associated lesions and the health impact. During the study period, HWP in harbour seals was 13%, the SLP in harbour seals was 4% and in grey seals 10%. HWP of harbour seals was significantly higher during the winter months compared to the summer. SLP in adults was significantly higher in comparison to juvenile harbour seals. SLP varied significantly between grey seals from the North and Baltic Sea. Filarial nematodes were detected in the haemocoel, pharynx, and intestine of E. horridus highlighting the seal louse as vector for heartworms. Alopecia and folliculitis were associated with the attachment posture of E. horridus and microbiological investigations isolated bacteria commonly associated with folliculitis.
Collapse
Affiliation(s)
- Insa Herzog
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstraße 6, 25761, Büsum, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine, Bünteweg 2, 30559, Hannover, Germany
| | - Anika Preuss
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1–9, 24118, Kiel, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1–9, 24118, Kiel, Germany
| | - Rémi Pigeault
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstraße 6, 25761, Büsum, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Ellen Prenger-Berninghoff
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1–9, 24118, Kiel, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstraße 6, 25761, Büsum, Germany
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstraße 6, 25761, Büsum, Germany
| |
Collapse
|
10
|
Duerwachter MA, Lewis EL, French SS, Husak JF. Sex-specific effects of immune challenges on green anole lizard metabolism. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:264-271. [PMID: 38213098 DOI: 10.1002/jez.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
Immune responses can increase survival, but they can also incur a variety of costs that may lead to phenotypic trade-offs. The nature of trade-offs between immune activity and other components of the phenotype can vary and depend on the type and magnitude of immune challenge, as well as the energetic costs of simultaneously expressing other traits. There may also be sex-specific differences in both immune activity and trade-offs, particularly with regard to energy expenditure that might differ between males and females during the breeding season. Females are generally expected to invest less in nonspecific immune responses compared to males due to differences in the allocation of resources to reproduction, which may lead to sex differences in the metabolic costs of immunity. We tested for sex-specific differences in metabolic costs of different types of immune challenges in Anolis carolinensis lizards, including lipopolysaccharide (LPS) injection and wounding. We also tested for differences in immune prioritization by measuring bacterial killing ability (BKA). We predicted males would show a greater increase in metabolism after immune challenges, with combined immune challenges eliciting the greatest response. Furthermore, we predicted that metabolic costs would result in decreased BKA. LPS injection increased the resting metabolic rate (RMR) of males but not females. Wounding did not affect RMR of either sex. However, there was an inverse relationship between BKA and wound healing in LPS-injected lizards, suggesting dynamic tradeoffs among metabolism and components of the immune system.
Collapse
Affiliation(s)
| | - Erin L Lewis
- Department of Biology, Utah State University, Logan, Utah, USA
| | | | - Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
11
|
Taiwo G, Morenikeji OB, Idowu M, Sidney T, Adekunle A, Cervantes AP, Peters S, Ogunade IM. Characterization of rumen microbiome and immune genes expression of crossbred beef steers with divergent residual feed intake phenotypes. BMC Genomics 2024; 25:245. [PMID: 38443809 PMCID: PMC10913640 DOI: 10.1186/s12864-024-10150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
We investigated whole blood and hepatic mRNA expressions of immune genes and rumen microbiome of crossbred beef steers with divergent residual feed intake phenotype to identify relevant biological processes underpinning feed efficiency in beef cattle. Low-RFI beef steers (n = 20; RFI = - 1.83 kg/d) and high-RFI beef steers (n = 20; RFI = + 2.12 kg/d) were identified from a group of 108 growing crossbred beef steers (average BW = 282 ± 30.4 kg) fed a high-forage total mixed ration after a 70-d performance testing period. At the end of the 70-d testing period, liver biopsies and blood samples were collected for total RNA extraction and cDNA synthesis. Rumen fluid samples were also collected for analysis of the rumen microbial community. The mRNA expression of 84 genes related to innate and adaptive immunity was analyzed using pathway-focused PCR-based arrays. Differentially expressed genes were determined using P-value ≤ 0.05 and fold change (FC) ≥ 1.5 (in whole blood) or ≥ 2.0 (in the liver). Gene ontology analysis of the differentially expressed genes revealed that pathways related to pattern recognition receptor activity, positive regulation of phagocytosis, positive regulation of vitamin metabolic process, vascular endothelial growth factor production, positive regulation of epithelial tube formation and T-helper cell differentiation were significantly enriched (FDR < 0.05) in low-RFI steers. In the rumen, the relative abundance of PeH15, Arthrobacter, Moryella, Weissella, and Muribaculaceae was enriched in low-RFI steers, while Methanobrevibacter, Bacteroidales_BS11_gut_group, Bacteroides and Clostridium_sensu_stricto_1 were reduced. In conclusion, our study found that low-RFI beef steers exhibit increased mRNA expression of genes related to immune cell functions in whole blood and liver tissues, specifically those involved in pathogen recognition and phagocytosis regulation. Additionally, these low-RFI steers showed differences in the relative abundance of some microbial taxa which may partially account for their improved feed efficiency compared to high-RFI steers.
Collapse
Affiliation(s)
- Godstime Taiwo
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA
| | - Olanrewaju B Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, 300 Campus Drive, 16701, Bradford, PA, USA.
| | - Modoluwamu Idowu
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA
| | - Taylor Sidney
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA
| | - Ajiboye Adekunle
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA
| | | | - Sunday Peters
- Department of Animal Science, Berry College, Mount Berry, GA, USA
| | - Ibukun M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA.
| |
Collapse
|
12
|
Csata E, Pérez-Escudero A, Laury E, Leitner H, Latil G, Heinze J, Simpson SJ, Cremer S, Dussutour A. Fungal infection alters collective nutritional intake of ant colonies. Curr Biol 2024; 34:902-909.e6. [PMID: 38307022 DOI: 10.1016/j.cub.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
In animals, parasitic infections impose significant fitness costs.1,2,3,4,5,6 Infected animals can alter their feeding behavior to resist infection,7,8,9,10,11,12 but parasites can manipulate animal foraging behavior to their own benefits.13,14,15,16 How nutrition influences host-parasite interactions is not well understood, as studies have mainly focused on the host and less on the parasite.9,12,17,18,19,20,21,22,23 We used the nutritional geometry framework24 to investigate the role of amino acids (AA) and carbohydrates (C) in a host-parasite system: the Argentine ant, Linepithema humile, and the entomopathogenic fungus, Metarhizium brunneum. First, using 18 diets varying in AA:C composition, we established that the fungus performed best on the high-amino-acid diet 1:4. Second, we found that the fungus reached this optimal diet when given various diet pairings, revealing its ability to cope with nutritional challenges. Third, we showed that the optimal fungal diet reduced the lifespan of healthy ants when compared with a high-carbohydrate diet but had no effect on infected ants. Fourth, we revealed that infected ant colonies, given a choice between the optimal fungal diet and a high-carbohydrate diet, chose the optimal fungal diet, whereas healthy colonies avoided it. Lastly, by disentangling fungal infection from host immune response, we demonstrated that infected ants foraged on the optimal fungal diet in response to immune activation and not as a result of parasite manipulation. Therefore, we revealed that infected ant colonies chose a diet that is costly for survival in the long term but beneficial in the short term-a form of collective self-medication.
Collapse
Affiliation(s)
- Enikő Csata
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland; Institute for Zoology, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany.
| | - Alfonso Pérez-Escudero
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Emmanuel Laury
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Hanna Leitner
- ISTA (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Gérard Latil
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Jürgen Heinze
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sylvia Cremer
- ISTA (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Audrey Dussutour
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
13
|
Critchlow JT, Prakash A, Zhong KY, Tate AT. Mapping the functional form of the trade-off between infection resistance and reproductive fitness under dysregulated immune signaling. PLoS Pathog 2024; 20:e1012049. [PMID: 38408106 PMCID: PMC10919860 DOI: 10.1371/journal.ppat.1012049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/07/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Immune responses benefit organismal fitness by clearing parasites but also exact costs associated with immunopathology and energetic investment. Hosts manage these costs by tightly regulating the induction of immune signaling to curtail excessive responses and restore homeostasis. Despite the theoretical importance of turning off the immune response to mitigate these costs, experimentally connecting variation in the negative regulation of immune responses to organismal fitness remains a frontier in evolutionary immunology. In this study, we used a dose-response approach to manipulate the RNAi-mediated knockdown efficiency of cactus (IκBα), a central regulator of Toll pathway signal transduction in flour beetles (Tribolium castaneum). By titrating cactus activity across four distinct levels, we derived the shape of the relationship between immune response investment and traits associated with host fitness, including infection susceptibility, lifespan, fecundity, body mass, and gut homeostasis. Cactus knock-down increased the overall magnitude of inducible immune responses and delayed their resolution in a dsRNA dose-dependent manner, promoting survival and resistance following bacterial infection. However, these benefits were counterbalanced by dsRNA dose-dependent costs to lifespan, fecundity, body mass, and gut integrity. Our results allowed us to move beyond the qualitative identification of a trade-off between immune investment and fitness to actually derive its functional form. This approach paves the way to quantitatively compare the evolution and impact of distinct regulatory elements on life-history trade-offs and fitness, filling a crucial gap in our conceptual and theoretical models of immune signaling network evolution and the maintenance of natural variation in immune systems.
Collapse
Affiliation(s)
- Justin T Critchlow
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Arun Prakash
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Katherine Y Zhong
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
14
|
Yu X, Yu K, Chen B, Liao Z, Liang J, Qin Z, Gao X. Metabolic and immune costs balance during natural acclimation of corals in fluctuating environments. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106284. [PMID: 38048660 DOI: 10.1016/j.marenvres.2023.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Epigenetic modifications based on DNA methylation can rapidly improve the potential of corals to adapt to environmental pressures by increasing their phenotypic plasticity, a factor important for scleractinian corals to adapt to future global warming. However, the extent to which corals develop similar adaptive mechanisms and their specific adaptation processes remain unclear. Here, to reveal the regulatory mechanism by which DNA methylation improves thermal tolerance in Pocillopora damicornis under fluctuating environments, we analyzed genome-wide DNA methylation signatures in P. damicornis and compared the differences in the methylation and transcriptional responses of P. damicornis from fluctuating and stable environments using whole-genome bisulfite sequencing and nanopore-based RNA sequencingtranscriptome sequencing. We discovered low methylation levels in P. damicornis (average methylation 4.14%), with CpG accounting for 74.88%, CHH for 13.27%, and CHG for 11.85% of this methylation. However, methylation levels did not change between coral samples from the fluctuating and stable environments. The varied methylation levels in different regions of the gene revealed that the overall methylation level of the gene body was relatively high and showed a bimodal methylation pattern. Methylation occurs primarily in exons rather than introns within the gene body In P. damicornis, there was only a weak correlation between methylation and transcriptional changes at the individual gene level, and the methylation and gene expression levels generally exhibited a bell-shaped relationship, which we speculate may be due to the specificity of cnidarian species. Correlation analysis between methylation levels and the transcriptome revealed that the highest proportion of the top 20 enriched KEGG pathways was related to immunity. Additionally, P. damicornis collected from a high-temperature pool had a lower metabolic rate than those collected from a low-temperature pool. We hypothesize that the dynamic balance of energy-expenditure costs between immunity and metabolism is an important strategy for increasing P. damicornis tolerance. The fluctuating environment of high-temperature pools may increase the heat tolerance in corals by increasing their immunity and thus lowering their metabolism.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xu Gao
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
15
|
Vommaro ML, Zanchi C, Angelone T, Giglio A, Kurtz J. Herbicide exposure alters the effect of the enthomopathogen Beauveria bassiana on immune gene expression in mealworm beetles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122662. [PMID: 37778488 DOI: 10.1016/j.envpol.2023.122662] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Concerns have grown worldwide about the potentially far-reaching effects of herbicides on functional biodiversity in agroecosystems. Repeated applications over time can lead to accumulation of residues in soil, water, and food and may have negative impacts on non-target organisms. However, the effects of herbicide residues on interspecific relationships, such as host-pathogen interactions, are poorly studied. In this study, we evaluated the effects of two different concentrations of a commercial pendimethalin-based formulation (PND), the residual contamination (S, 13 ppm) in treated soils and the maximum residue level allowed by the European Commission in cereals (EU, 0.05 ppm). We tested the effect of PND on the biological interaction between the mealworm beetle Tenebrio molitor Linnaeus, 1758 and the entomopathogenic fungus Beauveria bassiana Vuillemin, 1912 (Bb, strain KVL 03-144) at two concentrations (LC50 5 × 105 conidia mL-1 and LC100 1 × 107 conidia mL-1). We checked the survival of beetles exposed to PND or/and inoculated with B. bassiana, the expression of four antimicrobial peptides (AMPs), and finally how PND affects in vitro germination of fungus. The exposure to PND had no significant effects on the survival of either control or Bb-exposed beetles. In the mealworm beetle, upregulation of gene expression of the inducible AMPs Tenecin 1, 2, and 4 was observed in PND-treated beetles after inoculation with Bb, while the levels of the non-inducible AMP Tenecin 3 were similar between treatments. In conclusion, our findings demonstrate that admitted residual doses of currently used herbicides modify an important component of the inducible immune response of an insect. This did not translate into an effect on the survival to B. bassiana in our system. However, residual doses of the herbicide at 13 ppm may temporarily affect fungal germination. These results raise questions about the compatibility of bioinsecticides with synthetic pesticides and the effects of herbicide residues on host-pathogen interactions.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy; Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany.
| | - Caroline Zanchi
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany; Institute for Biology, Freie Universität Berlin, Königin-Luise Str. 1-3, 14 195, Berlin, Germany
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Joachim Kurtz
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany
| |
Collapse
|
16
|
Zhang L, Goodman CL, Ringbauer JA, Jiang X, Lv W, Xie D, Reall T, Stanley D. Trade-Offs among Immune Mechanisms: Bacterial-Challenged Spodoptera frugiperda Larvae Reduce Nodulation Reactions during Behavioral Fever. INSECTS 2023; 14:864. [PMID: 37999063 PMCID: PMC10671956 DOI: 10.3390/insects14110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Insect innate immunity is composed of cellular and humoral reactions, the former acting via circulating hemocytes and the latter via immune signaling that lead to the production of antimicrobial peptides and phenol oxidase-driven melanization. Cellular immunity involves direct interactions between circulating hemocytes and invaders; it includes internalization and killing microbes (phagocytosis) and formation of bacterial-laden microaggregates which coalesce into nodules that are melanized and attached to body walls or organs. Nodulation can entail investing millions of hemocytes which must be replaced. We hypothesized that biologically costly hemocyte-based immunity is traded off for behavioral fevers in infected larvae of fall armyworms, Spodoptera frugiperda, that were allowed to fever. We tested our hypothesis by infecting larvae with the Gram-negative bacterium, Serratia marcescens, placing them in thermal gradients (TGs) and recording their selected body temperatures. While control larvae selected about 30 °C, the experimental larvae selected up 41 °C. We found that 4 h fevers, but not 2, 6 or 24 h fevers, led to increased larval survival. Co-injections of S. marcescens with the prostaglandin (PG) biosynthesis inhibitor indomethacin (INDO) blocked the fevers, which was reversed after co-injections of SM+INDO+Arachidonic acid, a precursor to PG biosynthesis, confirming that PGs mediate fever reactions. These and other experimental outcomes support our hypothesis that costly hemocyte-based immunity is traded off for behavioral fevers in infected larvae under appropriate conditions.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (W.L.); (D.X.)
| | - Cynthia L. Goodman
- Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, Columbia, MO 65203, USA; (C.L.G.); (J.A.R.J.)
| | - Joseph A. Ringbauer
- Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, Columbia, MO 65203, USA; (C.L.G.); (J.A.R.J.)
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (W.L.); (D.X.)
| | - Weixiang Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (W.L.); (D.X.)
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong 637002, China
| | - Dianjie Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (W.L.); (D.X.)
| | - Tamra Reall
- MU Extension, University of Missouri, Kansas City, MO 64014, USA;
| | - David Stanley
- Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, Columbia, MO 65203, USA; (C.L.G.); (J.A.R.J.)
| |
Collapse
|
17
|
Mauritsson K, Jonsson T. A new flexible model for maintenance and feeding expenses that improves description of individual growth in insects. Sci Rep 2023; 13:16751. [PMID: 37798309 PMCID: PMC10556006 DOI: 10.1038/s41598-023-43743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolic theories in ecology interpret ecological patterns at different levels through the lens of metabolism, typically applying allometric scaling to describe energy use. This requires a sound theory for individual metabolism. Common mechanistic growth models, such as 'von Bertalanffy', 'dynamic energy budgets' and the 'ontogenetic growth model' lack some potentially important aspects, especially regarding regulation of somatic maintenance. We develop a model for ontogenetic growth of animals, applicable to ad libitum and food limited conditions, based on an energy balance that expresses growth as the net result of assimilation and metabolic costs for maintenance, feeding and food processing. The most important contribution is the division of maintenance into a 'non-negotiable' and a 'negotiable' part, potentially resulting in hyperallometric scaling of maintenance and downregulated maintenance under food restriction. The model can also account for effects of body composition and type of growth at the cellular level. Common mechanistic growth models often fail to fully capture growth of insects. However, our model was able to capture empirical growth patterns observed in house crickets.
Collapse
Affiliation(s)
- Karl Mauritsson
- Ecological Modelling Group, School of Bioscience, University of Skövde, Skövde, Sweden.
- Ecological and Environmental Modeling, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| | - Tomas Jonsson
- Ecological Modelling Group, School of Bioscience, University of Skövde, Skövde, Sweden
- Ecological and Environmental Modeling, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
18
|
Koller KK, Kernbach ME, Reese D, Unnasch TR, Martin LB. House Sparrows Vary Seasonally in Their Ability to Transmit West Nile Virus. Physiol Biochem Zool 2023; 96:332-341. [PMID: 37713719 DOI: 10.1086/725888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
AbstractSeasonality in infectious disease prevalence is predominantly attributed to changes in exogenous risk factors. For vectored pathogens, high abundance, activity, and/or diversity of vectors can exacerbate disease risk for hosts. Conversely, many host defenses, particularly immune responses, are seasonally variable. Seasonality in host defenses has been attributed, in part, to the proximate (i.e., metabolic) and ultimate (i.e., reproductive fitness) costs of defense. In this study, our goal was to discern whether any seasonality is observable in how a common avian host, the house sparrow (Passer domesticus), copes with a common zoonotic arbovirus, the West Nile virus (WNV), when hosts are studied under controlled conditions. We hypothesized that if host biorhythms play a role in vector-borne disease seasonality, birds would be most vulnerable to WNV when breeding and/or molting (i.e., when other costly physiological activities are underway) and thus most transmissive of WNV at these times of year (unless birds died from infection). Overall, the results only partly supported our hypothesis. Birds were most transmissive of WNV in fall (after their molt is complete and when WNV is most prevalent in the environment), but WNV resistance, WNV tolerance, and WNV-dependent mortality did not vary among seasons. These results collectively imply that natural arboviral cycles could be partially underpinned by endogenous physiological changes in hosts. However, other disease systems warrant study, as this result could be specific to the nonnative and highly commensal nature of the house sparrow or a consequence of the relative recency of the arrival of WNV to the United States.
Collapse
|
19
|
Critchlow JT, Prakash A, Zhong KY, Tate AT. Mapping the functional form of the trade-off between infection resistance and reproductive fitness under dysregulated immune signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552815. [PMID: 37645726 PMCID: PMC10461925 DOI: 10.1101/2023.08.10.552815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Immune responses benefit organismal fitness by clearing parasites but also exact costs associated with immunopathology and energetic investment. Hosts manage these costs by tightly regulating the induction of immune signaling to curtail excessive responses and restore homeostasis. Despite the theoretical importance of turning off the immune response to mitigate these costs, experimentally connecting variation in the negative regulation of immune responses to organismal fitness remains a frontier in evolutionary immunology. In this study, we used a dose-response approach to manipulate the RNAi-mediated knockdown efficiency of cactus (IκBα), a central regulator of Toll pathway signal transduction in flour beetles (Tribolium castaneum). By titrating cactus activity along a continuous gradient, we derived the shape of the relationship between immune response investment and traits associated with host fitness, including infection susceptibility, lifespan, fecundity, body mass, and gut homeostasis. Cactus knock-down increased the overall magintude of inducible immune responses and delayed their resolution in a dsRNA dose-dependent manner, promoting survival and resistance following bacterial infection. However, these benefits were counterbalanced by dsRNA dose-dependent costs to lifespan, fecundity, body mass, and gut integrity. Our results allowed us to move beyond the qualitative identification of a trade-off between immune investment and fitness to actually derive its functional form. This approach paves the way to quantitatively compare the evolution and impact of distinct regulatory elements on life-history trade-offs and fitness, filling a crucial gap in our conceptual and theoretical models of immune signaling network evolution and the maintenance of natural variation in immune systems.
Collapse
Affiliation(s)
- Justin T. Critchlow
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Arun Prakash
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Katherine Y. Zhong
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ann T. Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
20
|
Phillips SR. MHC-B Diversity and Signs of Respiratory Illness in Wild, East African Chimpanzees ( Pan troglodytes schweinfurthii ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551731. [PMID: 37577711 PMCID: PMC10418158 DOI: 10.1101/2023.08.02.551731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Many traits, intrinsic and extrinsic to an organism, contribute to interindividual variation in immunity in wild habitats. The vertebrate Major Histocompatibility Complex (MHC) includes genes encoding antigen-presenting molecules that are highly variable, and that variation often predicts susceptibility/resistance to and recovery from pathogen infection. I compare MHC-B variation at two long-term chimpanzee research sites, Kibale National Park in Uganda and Gombe National Park in Tanzania. Using decades of respiratory health data available for these chimpanzees, I test hypotheses associated with maintenance of diversity at MHC loci, including heterozygote, divergent allele, and rare allele advantage hypotheses, and predictions for unique function of MHC-B in great apes. I found, despite confirmation of recent shared ancestry between Kibale and Gombe chimpanzees, including an overlapping MHC-B allele repertoire and similar MHC-B phenotype compositions, chimpanzees from the two research sites experienced differences in the occurrence of respiratory signs and had different associations of MHC-B diversity with signs of respiratory illness. Kibale chimpanzees with heterozygous genotypes and different peptide-binding supertypes were observed less often with respiratory signs than those homozygous or possessing the same supertypes, but this same association was not observed among Gombe chimpanzees. Gombe chimpanzees with specific MHC-B phenotypes that enable engagement of Natural Killer (NK) cells were observed more often with respiratory signs than chimpanzees with other phenotypes, but this was not observed at Kanyawara. This study emphasizes local adaptation in shaping genetic and phenotypic traits in different infectious disease contexts, even among close genetic relatives of the same subspecies, and highlights utility for continued and simultaneous tracking of host immune genes and specific pathogens in wild species.
Collapse
|
21
|
Rutkowski NAJ, McNamara KB, Jones TM, Foo YZ. Trans-generational immune priming is not mediated by the sex of the parent primed: a meta-analysis of invertebrate data. Biol Rev Camb Philos Soc 2023; 98:1100-1117. [PMID: 36879482 DOI: 10.1111/brv.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Traditionally, only vertebrates were thought capable of acquired immune responses, such as the ability to transfer immunological experience vertically to their offspring (known as trans-generational immune priming, TGIP). Increasing evidence challenges this belief and it is now clear that invertebrates also have the ability to exhibit functionally equivalent TGIP. This has led to a surge in papers exploring invertebrate TGIP, with most focusing on the costs, benefits or factors that affect the evolution of this trait. Whilst many studies have found support for the phenomenon, not all studies do, and there is considerable variation in the strength of positive results. To address this, we conducted a meta-analysis to answer the question: what is the overall effect of TGIP in invertebrates? Then, to understand the specific factors that affect its presence and intensity, we conducted a moderator analysis. Our results corroborate that TGIP occurs in invertebrates (demonstrated by a large, positive effect size). The strength of the positive effect was related to if and how offspring were immune challenged (i.e. whether they were challenged with the same or different insult as their parents or not challenged at all). Interestingly, there was no effect of the ecology or life history of the species or the sex of the parent or the offspring primed, and responses were comparable across different immune elicitors. Our publication bias testing suggests that the literature may suffer from some level of positive-result bias. However, even after accounting for potential bias, our effect size remains positive. Publication bias testing can be influenced by diversity in the data set, which was considerable in our data, even after moderator analysis. It is therefore conceivable that differences among studies could be caused by other moderators that were unable to be included in our meta-analysis. Nonetheless, our results suggest that TGIP does occur in invertebrates, whilst providing some potential avenues to examine the factors that account for variation in effect sizes.
Collapse
Affiliation(s)
- Nicola-Anne J Rutkowski
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Kathryn B McNamara
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Therésa M Jones
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology & School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| |
Collapse
|
22
|
Morimoto J, Wenzel M, Derous D, Henry Y, Colinet H. The transcriptomic signature of responses to larval crowding in Drosophila melanogaster. INSECT SCIENCE 2023; 30:539-554. [PMID: 36115064 PMCID: PMC10947363 DOI: 10.1111/1744-7917.13113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Intraspecific competition at the larval stage is an important ecological factor affecting life-history, adaptation and evolutionary trajectory in holometabolous insects. However, the molecular pathways underpinning these ecological processes are poorly characterized. We reared Drosophila melanogaster at three egg densities (5, 60, and 300 eggs/mL) and sequenced the transcriptomes of pooled third-instar larvae. We also examined emergence time, egg-to-adult viability, adult mass, and adult sex-ratio at each density. Medium crowding had minor detrimental effects on adult phenotypes compared to low density and yielded 24 differentially expressed genes (DEGs), including several chitinase enzymes. In contrast, high crowding had substantial detrimental effects on adult phenotypes and yielded 2107 DEGs. Among these, upregulated gene sets were enriched in sugar, steroid and amino acid metabolism as well as DNA replication pathways, whereas downregulated gene sets were enriched in ABC transporters, taurine, Toll/Imd signaling, and P450 xenobiotics metabolism pathways. Overall, our findings show that larval crowding has a large consistent effect on several molecular pathways (i.e., core responses) with few pathways displaying density-specific regulation (i.e., idiosyncratic responses). This provides important insights into how holometabolous insects respond to intraspecific competition during development.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
- Programa de Pós‐graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
- Institute of MathematicsKing's CollegeUniversity of AberdeenAberdeenUnited Kingdom
| | - Marius Wenzel
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Davina Derous
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Youn Henry
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)—UMR 6553University of RennesRennesFrance
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Herve Colinet
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)—UMR 6553University of RennesRennesFrance
| |
Collapse
|
23
|
Bronikowski AM, Hedrick AR, Kutz GA, Holden KG, Reinke B, Iverson JB. Sex-specific innate immunity and ageing in long-lived fresh water turtles (Kinosternon flavescens: Kinosternidae). Immun Ageing 2023; 20:11. [PMID: 36894996 PMCID: PMC9997018 DOI: 10.1186/s12979-023-00335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The progressive deregulation of the immune system with age, termed immunosenescence, has been well studied in mammalian systems, but studies of immune function in long-lived, wild, non-mammalian populations are scarce. In this study we leverage a 38-year mark-recapture study to quantify the relationships among age, sex, survival, reproductive output and the innate immune system in a long-lived reptile, yellow mud turtles (Kinosternon flavescens; Testudines; Kinosternidae). METHODS We estimated rates of survival and age-specific mortality by sex based on mark-recapture data for 1530 adult females and 860 adult males over 38 years of captures. We analyzed bactericidal competence (BC), and two immune responses to foreign red blood cells - natural antibody-mediated haemagglutination (NAbs), and complement-mediated haemolysis ability (Lys) - in 200 adults (102 females; 98 males) that ranged from 7 to 58 years of age captured in May 2018 during their emergence from brumation, and for which reproductive output and long-term mark-recapture data were available. RESULTS We found that females are smaller and live longer than males in this population, but the rate of accelerating mortality across adulthood is the same for both sexes. In contrast, males exhibited higher innate immunity than females for all three immune variables we measured. All immune responses also varied inversely with age, indicating immunosenescence. For females that reproduced in the preceding reproductive season, egg mass (and therefore total clutch mass) increased with age,. In addition to immunosenescence of bactericidal competence, females that produced smaller clutches also had lower bactericidal competence. CONCLUSIONS Contrary to the general vertebrate pattern of lower immune responses in males than females (possibly reflecting the suppressive effects of androgens), we found higher levels of all three immune variables in males. In addition, contrary to previous work that found no evidence of immunosenescence in painted turtles or red-eared slider turtles, we found a decrease in bactericidal competence, lysis ability, and natural antibodies with age in yellow mud turtles.
Collapse
Affiliation(s)
- Anne M. Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
- Department of Integrative Biology, Kellogg Biological Station, Michigan State University, 3700 E. Gull Lake Rd., Hickory Corners, MI 49060 USA
| | - Ashley R. Hedrick
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Greta A. Kutz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Kaitlyn G. Holden
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Beth Reinke
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625 USA
| | - John B. Iverson
- Department of Biology, Earlham College, Richmond, IN 47374 USA
| |
Collapse
|
24
|
Sasser KT, Weber JN. A Call For More Ecologically And Evolutionarily Relevant Studies of Immune Costs. Evol Ecol 2023; 37:203-214. [PMID: 37608798 PMCID: PMC10443930 DOI: 10.1007/s10682-022-10213-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/02/2022] [Indexed: 11/04/2022]
Abstract
What are the relative costs and benefits of mounting immune responses? Practitioners of ecoimmunology have grappled with this central question since the field's inception with the main tension being how to make tractable methodological choices that maintain the ecological relevance of induced and measured immune costs. Here, we point out two methodological approaches that we feel are underrepresented in the field, describe risks associated with neglecting these methods, and suggest modern techniques that maximize both the diversity and ecological relevance of collected data. First, it is commonly assumed that frequently used and experimentally convenient immune stimulants will induce ecologically relevant immune responses in study organisms. This can be a dangerous assumption. Even if a stimulant's general immune response properties are well characterized, it is critical to also measure the type and scale of immune responses induced by live pathogens. Second, patterns of immune defenses evolve like other traits, thus a comparative approach is essential to understand what forces shape immune variation. Finally, we describe modern genetic and immunological approaches that will soon become essential tools for ecoimmunologists, and present case studies that exemplify the utility of our recommendations.
Collapse
Affiliation(s)
- Kristofer Trey Sasser
- University of Alaska Anchorage, Anchorage, AK, USA. Current address: University of Wisconsin, Madison, WI, USA
- 430 Lincoln Dr, Birge Hall, Madison WI, 53706
| | - Jesse N Weber
- University of Wisconsin, Madison, WI, USA
- 430 Lincoln Dr, Birge Hall, Madison WI, 53706
| |
Collapse
|
25
|
Loulou A, Mastore M, Caramella S, Bhat AH, Brivio MF, Machado RAR, Kallel S. Entomopathogenic potential of bacteria associated with soil-borne nematodes and insect immune responses to their infection. PLoS One 2023; 18:e0280675. [PMID: 36689436 PMCID: PMC10045567 DOI: 10.1371/journal.pone.0280675] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Soil-borne nematodes establish close associations with several bacterial species. Whether they confer benefits to their hosts has been investigated in only a few nematode-bacteria systems. Their ecological function, therefore, remains poorly understood. In this study, we isolated several bacterial species from rhabditid nematodes, molecularly identified them, evaluated their entomopathogenic potential on Galleria mellonella larvae, and measured immune responses of G. mellonella larvae to their infection. Bacteria were isolated from Acrobeloides sp., A. bodenheimeri, Heterorhabditis bacteriophora, Oscheius tipulae, and Pristionchus maupasi nematodes. They were identified as Acinetobacter sp., Alcaligenes sp., Bacillus cereus, Enterobacter sp., Kaistia sp., Lysinibacillus fusiformis, Morganella morganii subsp. morganii, Klebsiella quasipneumoniae subsp. quasipneumoniae, and Pseudomonas aeruginosa. All bacterial strains were found to be highly entomopathogenic as they killed at least 53.33% G. mellonella larvae within 72h post-infection, at a dose of 106 CFU/larvae. Among them, Lysinibacillus fusiformis, Enterobacter sp., Acinetobacter sp., and K. quasipneumoniae subsp. quasipneumoniae were the most entomopathogenic bacteria. Insects strongly responded to bacterial infection. However, their responses were apparently little effective to counteract bacterial infection. Our study, therefore, shows that bacteria associated with soil-borne nematodes have entomopathogenic capacities. From an applied perspective, our study motivates more research to determine the potential of these bacterial strains as biocontrol agents in environmentally friendly and sustainable agriculture.
Collapse
Affiliation(s)
- Ameni Loulou
- Department of Plant Health and Environment, Laboratory of Bio-Aggressor and Integrated Protection in Agriculture, National Agronomic Institute of Tunisia, University of Carthage, Tunis, Tunisia
| | - Maristella Mastore
- Department of Theoretical and Applied Sciences, Laboratory of Comparative Immunology and Parasitology, University of Insubria, Varese, Italy
| | - Sara Caramella
- Department of Theoretical and Applied Sciences, Laboratory of Comparative Immunology and Parasitology, University of Insubria, Varese, Italy
| | - Aashaq Hussain Bhat
- Faculty of Sciences, Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maurizio Francesco Brivio
- Department of Theoretical and Applied Sciences, Laboratory of Comparative Immunology and Parasitology, University of Insubria, Varese, Italy
| | - Ricardo A. R. Machado
- Faculty of Sciences, Experimental Biology Research Group, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sadreddine Kallel
- Department of Plant Health and Environment, Laboratory of Bio-Aggressor and Integrated Protection in Agriculture, National Agronomic Institute of Tunisia, University of Carthage, Tunis, Tunisia
| |
Collapse
|
26
|
Zilio G, Nørgaard LS, Gougat-Barbera C, Hall MD, Fronhofer EA, Kaltz O. Travelling with a parasite: the evolution of resistance and dispersal syndromes during experimental range expansion. Proc Biol Sci 2023; 290:20221966. [PMID: 36598014 PMCID: PMC9811632 DOI: 10.1098/rspb.2022.1966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 01/05/2023] Open
Abstract
Rapid evolutionary change during range expansions can lead to diverging range core and front populations, with the emergence of dispersal syndromes (coupled responses in dispersal and life-history traits). Besides intraspecific effects, range expansions may be impacted by interspecific interactions such as parasitism. Yet, despite the potentially large impact of parasites imposing additional selective pressures on the host, their role on range expansions remains largely unexplored. Using microcosm populations of the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata, we studied experimental range expansions under parasite presence or absence. We found that the interaction of range expansion and parasite treatments affected the evolution of host dispersal syndromes. Namely, front populations showed different associations of population growth parameters and swimming behaviours than core populations, indicating divergent evolution. Parasitism reshaped trait associations, with hosts evolved in the presence of the parasite exhibiting overall increased resistance and reduced dispersal. Nonetheless, when comparing infected range core and front populations, we found a positive association, suggesting joint evolution of resistance and dispersal at the front. We conclude that host-parasite interactions during range expansions can change evolutionary trajectories; this in turn may feedback on the ecological dynamics of the range expansion and parasite epidemics.
Collapse
Affiliation(s)
- Giacomo Zilio
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier 34000, France
| | - Louise S. Nørgaard
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne 3800, Australia
| | | | - Matthew D. Hall
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne 3800, Australia
| | | | - Oliver Kaltz
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier 34000, France
| |
Collapse
|
27
|
Wang Z, Fan X, Li Z, Guo L, Ren Y, Li Q. Comparative analysis for immune response of coelomic fluid from coelom and polian vesicle in Apostichopus japonicus to Vibrio splendidus infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 4:100074. [PMID: 36618076 PMCID: PMC9811217 DOI: 10.1016/j.fsirep.2022.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
The polian vesicle and coelom of sea cucumber Apostichopus japonicus were full of coelomic fluid in which many types of coelomocytes with different functions were suspended. Our previous work has indicated the differences of coelomocytes between two sites mainly in subtype proportion, non-specific immune enzymes activities and several immune-related genes expression levels in healthy A. japonicus. However, the functional similarities and differences of coelomic fluid in two sites including the coelom and polian vesicle after pathogenic infection still remain unclear. Here, we investigated the changes of the total coelomocyte density (TCD) and differential coelomocyte density (DCD) after pathogen infection by Vibrio splendidus in coelom and polian vesicle. After infected by V. splendidus, the TCD in the coelom and polian vesicle rapidly declined at 12 h, and then the TCD in the coelom showed a stably ascending trend, while the TCD in the polian vesicle reached a peak at 24 h post infection (hpi), and then showed a continuously decline trend from 24 hpi to 72 hpi followed by a slow elevation until recovering the normal level from 72 hpi to 96 hpi. Then the activities of acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD) were determined to evaluate the response of cell-free coelomic fluid to V. splendidus infection. The activities of ACP, AKP and CAT showed similar trends in the coelom and polian vesicle. The SOD activity significantly increased in the polian vesicle, whereas it exhibited a decreasing trend in the coelom. Finally, the expression profiles of nine immune-related genes including Aj-MyD88, Aj-IRAK4, Aj-i-Lys, Aj-Rel, Aj-p50, Aj-DMBT1, Aj-CDC, Aj-Rrp15 and Aj-Fibrinogen C were detected after V. splendidus challenge. The results suggested all the detected genes were significantly up-regulated both in the coelom and polian vesicle, and the expression levels of these genes in two sites shared similar trends except Aj-MyD88 and Aj-DMBT1. This research provides a new insight into the differentially immune roles of coelomic fluid and coelomocytes in polian vesicle and coelom response to bacterial infections and supplements comprehensive resources for better understanding the innate immune response of A. japonicus.
Collapse
Affiliation(s)
- Zhenhui Wang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xuyuan Fan
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China,College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Zhen Li
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Liyuan Guo
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China,College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yuan Ren
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China,School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qiang Li
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China,Corresponding author.
| |
Collapse
|
28
|
Li J, Sun K, Dai W, Leng H, Feng J. Divergence in interspecific and intersubspecific gene expression between two closely related horseshoe bats ( Rhinolophus). J Mammal 2022. [DOI: 10.1093/jmammal/gyac103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Closely related species have been used as representative systems to investigate the genetic mechanisms involved in the early stages of species differentiation. Previous studies have indicated that variation in gene expression might be a sensitive indicator of initial species divergence, although the role of expression divergence, and especially that associated with phenotypic variation remained relatively undefined. For three organs (cochlea, brain, and liver) from two closely related bat species (Rhinolophus siamensis and R. episcopus), the interspecific and intersubspecific gene expression profiles were compared using transcriptomics in this study. Striking organ specificity of expression was observed, and expression profiles exhibited similarities between cochlea and brain tissues. Numerous differentially expressed genes (DEGs) were identified for each organ in the interspecific comparison (cochlea/brain/liver: 1,069/647/692) and intersubspecific comparison (608/528/368). Functional enrichment analysis indicated vital variation in expression related to the immune system, ion activities, neuronal function, and multisensory system regulation in both comparisons. DEGs relevant to the variation in echolocation calls (RF) were found, and some of them were involved in the pivotal patterns of expression variation. The regulation of immune, ion channel, neural activity, and sophisticated sensory functions at the expression level might be key mechanisms in the early species divergence of bats, and the expression variation related to acoustical signal could have played a crucial part. This study expands our knowledge of gene expression and patterns of variation for three key organs to echolocation at both the interspecific and intersubspecific levels. Further, the framework described here provides insight into the genetic basis of phenotypic variation during the incipient stage of species differentiation.
Collapse
Affiliation(s)
- Jun Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- Key Laboratory of Vegetation Ecology, Ministry of Education , Changchun 130024 , China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun 130117 , China
- College of Life Science, Jilin Agricultural University , Changchun 130118 , China
| |
Collapse
|
29
|
Letendre C, Rios‐Villamil A, Williams A, Rapkin J, Sakaluk SK, House CM, Hunt J. Evolution of immune function in response to dietary macronutrients in male and female decorated crickets. J Evol Biol 2022; 35:1465-1474. [PMID: 36129960 PMCID: PMC9826279 DOI: 10.1111/jeb.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023]
Abstract
Although dietary macronutrients are known to regulate insect immunity, few studies have examined their evolutionary effects. Here, we evaluate this relationship in the cricket Gryllodes sigillatus by maintaining replicate populations on four diets differing in protein (P) to carbohydrate (C) ratio (P- or C-biased) and nutritional content (low- or high-nutrition) for >37 generations. We split each population into two; one maintained on their evolution diet and the other switched to their ancestral diet. We also maintained populations exclusively on the ancestral diet (baseline). After three generations, we measured three immune parameters in males and females from each population. Immunity was higher on P-biased than C-biased diets and on low- versus high-nutrition diets, although the latter was most likely driven by compensatory feeding. These patterns persisted in populations switched to their ancestral diet, indicating genetic divergence. Crickets evolving on C-biased diets had lower immunity than the baseline, whereas their P-biased counterparts had similar or higher immunity than the baseline, indicating that populations evolved with dietary manipulation. Although females exhibited superior immunity for all assays, the sexes showed similar immune changes across diets. Our work highlights the important role that macronutrient intake plays in the evolution of immunity in the sexes.
Collapse
Affiliation(s)
- Corinne Letendre
- School of ScienceWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Alejandro Rios‐Villamil
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Alexandria Williams
- School of ScienceWestern Sydney UniversityRichmondNew South WalesAustralia,Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - James Rapkin
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Scott K. Sakaluk
- School of Biological SciencesIllinois State UniversityNormalIllinoisUSA
| | - Clarissa M. House
- School of ScienceWestern Sydney UniversityRichmondNew South WalesAustralia
| | - John Hunt
- School of ScienceWestern Sydney UniversityRichmondNew South WalesAustralia,Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynUK
| |
Collapse
|
30
|
Armitage SAO, Milutinović B. Editorial overview: Evolutionary ecology of insect immunity. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100948. [PMID: 35777617 DOI: 10.1016/j.cois.2022.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Sophie A O Armitage
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany.
| | - Barbara Milutinović
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
31
|
Decomposing virulence to understand bacterial clearance in persistent infections. Nat Commun 2022; 13:5023. [PMID: 36028497 PMCID: PMC9418333 DOI: 10.1038/s41467-022-32118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/15/2022] [Indexed: 11/08/2022] Open
Abstract
Following an infection, hosts cannot always clear the pathogen, instead either dying or surviving with a persistent infection. Such variation is ecologically and evolutionarily important because it can affect infection prevalence and transmission, and virulence evolution. However, the factors causing variation in infection outcomes, and the relationship between clearance and virulence are not well understood. Here we show that sustained persistent infection and clearance are both possible outcomes across bacterial species showing a range of virulence in Drosophila melanogaster. Variation in virulence arises because of differences in the two components of virulence: bacterial infection intensity inside the host (exploitation), and the amount of damage caused per bacterium (per parasite pathogenicity). As early-phase exploitation increased, clearance rates later in the infection decreased, whereas there was no apparent effect of per parasite pathogenicity on clearance rates. Variation in infection outcomes is thereby determined by how virulence - and its components - relate to the rate of pathogen clearance. Taken together we demonstrate that the virulence decomposition framework is broadly applicable and can provide valuable insights into host-pathogen interactions.
Collapse
|
32
|
Nath Das P, Kumar Basu A, Guru Prasad N. Increasing adult density compromises survival following bacterial infections in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 141:104415. [PMID: 35753428 DOI: 10.1016/j.jinsphys.2022.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The density-dependent prophylaxis hypothesis predicts that risk of pathogen transmission increases with increase in population density, and in response to this, organisms mount a prophylactic immune response when exposed to high density. This prophylactic response is expected to help organisms improve their chances of survival when exposed to pathogens. Alternatively, organisms living at high densities can exhibit compromised defense against pathogens due to lack of resources and density associated physiological stress; the crowding stress hypothesis. We housed adult Drosophila melanogaster flies at different densities and measured the effect this has on their post-infection survival and resistance to starvation. We find that flies housed at higher densities show greater mortality after being infected with bacterial pathogens, while also exhibiting increased resistance to starvation. Our results are more in line with the crowding stress hypothesis that postulates a compromised immune system when hosts are subjected to high densities.
Collapse
Affiliation(s)
- Paresh Nath Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, India
| | - Aabeer Kumar Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, India
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, India.
| |
Collapse
|
33
|
Gordon KE, Wolfner MF, Lazzaro BP. A single mating is sufficient to induce persistent reduction of immune defense in mated female Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 140:104414. [PMID: 35728669 PMCID: PMC10162487 DOI: 10.1016/j.jinsphys.2022.104414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 05/07/2023]
Abstract
In many species, female reproductive investment comes at a cost to immunity and resistance to infection. Mated Drosophila melanogaster females are more susceptible to bacterial infection than unmated females. Transfer of the male seminal fluid protein Sex Peptide reduces female post-mating immune defense. Sex Peptide is known to cause both short- and long-term changes to female physiology and behavior. While previous studies showed that females were less resistant to bacterial infection as soon as 2.5 h and as long as 26.5 h after mating, it is unknown whether this is a binary switch from mated to unmated state or whether females can recover to unmated levels of immunity. It is additionally unknown whether repeated mating causes progressive reduction in defense capacity. We compared the immune defense of mated females when infected at 2, 4, 7, or 10 days after mating to that of unmated females and saw no recovery of immune capacity regardless of the length of time between mating and infection. Because D. melanogaster females can mate multiply, we additionally tested whether a second mating, and therefore a second transfer of seminal fluids, caused deeper reduction in immune performance. We found that females mated either once or twice before infection survived at equal proportions, both with significantly lower probability than unmated females. We conclude that a single mating event is sufficient to persistently suppress the female immune system. Interestingly, we observed that induced levels of expression of genes encoding antimicrobial peptides (AMPs) decreased with age in both experiments, partially obscuring the effects of mating. Collectively, the data indicate that being reproductively active versus reproductively inactive are alternative binary states with respect to female D. melanogaster immunity. The establishment of a suppressed immune status in reproductively active females can inform our understanding of the regulation of immune defense and the mechanisms of physiological trade-offs.
Collapse
Affiliation(s)
- Kathleen E Gordon
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | - Mariana F Wolfner
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Brian P Lazzaro
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Hine BC, Acton GA, Elks DJ, Niemeyer DDO, Bell AM, Colditz IG, Ingham AB, Smith JL. Targeting improved resilience in Merino sheep - Correlations between immune competence and health and fitness traits. Animal 2022; 16:100544. [PMID: 35777298 DOI: 10.1016/j.animal.2022.100544] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/01/2022] Open
Abstract
Resilience can be defined as the ability of an animal to remain productive in the face of diverse environmental challenges. Several factors contribute to an animal's resilience including its ability to resist disease, cope with climatic extremes and respond to stressors. Immune competence, a proxy trait for general disease resistance, is expected to contribute to an animal's resilience. This research aimed to develop a practical method to assess immune competence in Merino sheep which would not restrict the future sale of tested animals, and to estimate genetic parameters associated with the novel trait. We also aimed to explore associations between immune competence and other industry-relevant disease resistance and fitness-related traits and to assess the ability of immune competence phenotypes to predict health outcomes. Here, the ability of Merino wethers (n = 1 339) to mount both an antibody-mediated and cell-mediated immune response was used to define their immune competence phenotype. For that purpose, antigens in a commercial vaccine were administered at the commencement of weaning and their responses were assessed. Univariate sire models were used to estimate variance components and heritabilities for immune competence and its component traits. Bivariate sire models were used to estimate genetic correlations between immune competence and a range of disease resistance and fitness-related traits. The heritability of immune competence and its component traits, antibody-mediated immune response and cell-mediated immune response were estimated at 0.49 ± 0.14, 0.52 ± 0.14 and 0.36 ± 0.11, respectively. Immune competence was favourably genetically correlated with breech flystrike incidence (-0.44 ± 0.39), worm egg count (-0.19 ± 0.23), dag score (-0.26 ± 0.31) and fitness compromise (-0.35 ± 0.24) but not fleece rot (0.17 ± 0.23). Results suggest that selection for immune competence has the potential to improve the resilience of Merino sheep; however, due to the large standard errors associated with correlation estimates reported here, further studies will be required in larger populations to validate associations between immune competence and disease resistance and fitness traits in Australian Merino sheep.
Collapse
Affiliation(s)
- B C Hine
- CSIRO Agriculture & Food, F.D. McMaster Laboratory, Chiswick, New England Highway, Armidale, NSW 2350, Australia.
| | - G A Acton
- CSIRO Agriculture & Food, F.D. McMaster Laboratory, Chiswick, New England Highway, Armidale, NSW 2350, Australia
| | - D J Elks
- CSIRO Agriculture & Food, F.D. McMaster Laboratory, Chiswick, New England Highway, Armidale, NSW 2350, Australia
| | - D D O Niemeyer
- CSIRO Agriculture & Food, F.D. McMaster Laboratory, Chiswick, New England Highway, Armidale, NSW 2350, Australia
| | - A M Bell
- CSIRO Agriculture & Food, F.D. McMaster Laboratory, Chiswick, New England Highway, Armidale, NSW 2350, Australia
| | - I G Colditz
- CSIRO Agriculture & Food, F.D. McMaster Laboratory, Chiswick, New England Highway, Armidale, NSW 2350, Australia
| | - A B Ingham
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, QLD 4067, Australia
| | - J L Smith
- CSIRO Agriculture & Food, F.D. McMaster Laboratory, Chiswick, New England Highway, Armidale, NSW 2350, Australia
| |
Collapse
|
35
|
Klemme I, Debes PV, Primmer CR, Härkönen LS, Erkinaro J, Hyvärinen P, Karvonen A. Host developmental stage effects on parasite resistance and tolerance. Am Nat 2022; 200:646-661. [DOI: 10.1086/721159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Lu J, Yao T, Shi S, Ye L. Effects of acute ammonia nitrogen exposure on metabolic and immunological responses in the Hong Kong oyster Crassostrea hongkongensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113518. [PMID: 35447473 DOI: 10.1016/j.ecoenv.2022.113518] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Ammonia nitrogen, a major oxygen-consuming pollutant in the environment, can adversely affect aquatic organisms such as fish, bivalves, and crustaceans. We investigated the toxic effects of ammonia nitrogen on the Hong Kong oyster, Crassostrea hongkongensis, using flow cytometry and 1H nuclear magnetic resonance metabolomics. Exposure to ammonia nitrogen caused time- and concentration-dependent alterations in various immune parameters in hemocytes and impaired the metabolic profiles of the gills. We observed changes in the rate of apoptosis, esterase activity, lysosomal mass, hemocyte counts, phagocytic activity, and mitochondrial mass. Exposure affected metabolic pathways involved in energy metabolism, osmotic balance, and oxidative stress. We concluded that ammonia nitrogen induces metabolic and hematological dysfunction in C. hongkongensis, and our findings provide insights into the biochemical defense strategies of bivalves exposed to acute high-concentration ammonia nitrogen.
Collapse
Affiliation(s)
- Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shaokun Shi
- Shenzhen Fisheries Development Research Center, Shenzhen, China
| | - Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| |
Collapse
|
37
|
Sieksmeyer T, He S, Esparza-Mora MA, Jiang S, Petrašiūnaitė V, Kuropka B, Banasiak R, Julseth MJ, Weise C, Johnston PR, Rodríguez-Rojas A, McMahon DP. Eating in a losing cause: limited benefit of modified macronutrient consumption following infection in the oriental cockroach Blatta orientalis. BMC Ecol Evol 2022; 22:67. [PMID: 35585501 PMCID: PMC9118584 DOI: 10.1186/s12862-022-02007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Host-pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection. RESULTS We find that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches significantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited effect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on different diets, regardless of infection status. CONCLUSIONS We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide significant immune protection in B. orientalis, suggesting that the host's dietary shift might also result from random rather than directed behaviour. The lack of an apparent benefit of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted.
Collapse
Affiliation(s)
- Thorben Sieksmeyer
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany.,Department of Biotechnology, German Institute of Food Technology (DIL e.V.), Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany
| | - Shulin He
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - M Alejandra Esparza-Mora
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Shixiong Jiang
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Vesta Petrašiūnaitė
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Ronald Banasiak
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Mara Jean Julseth
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Paul R Johnston
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, 14195, Berlin, Germany
| | - Alexandro Rodríguez-Rojas
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Internal Medicine, Vetmeduni Vienna, Veterinaerplätz 1, 1210, Vienna, Austria
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany. .,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany.
| |
Collapse
|
38
|
Dias PAD, Coyohua-Fuentes A, Chavira-Ramírez DR, Canales-Espinosa D, Rangel-Negrín A. Correlates of hormonal modulation in mantled howler monkey males, Alouatta palliata. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178:17-28. [PMID: 36787731 DOI: 10.1002/ajpa.24464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES The study of hormone modulation may offer important insight into the responses of individuals to environmental challenges. Here we studied C-peptide, thyroid hormone (T3), glucocorticoid (GC), and testosterone (T) metabolites of mantled howler males to assess: 1) correlations among hormones; 2) individual and temporal variation in hormone concentrations; and 3) the influence of ecological, climatic, behavioral, social, and reproductive factors on hormone variation. METHODS We studied 10 adult males at La Flor de Catemaco (Mexico) from January 2012 to December 2016. We collected information on food availability; ambient temperature; time budgets; male involvement in mating, agonistic interactions, and interactions with extragroup males. We analyzed C-peptide concentrations in urine samples and T3, GC, and T in fecal samples. RESULTS C-peptide was negatively correlated with other hormones, whereas T3, GC, and T were positively related. Hormonal variation was unrelated to individual or yearly differences. Food availability was positively related to C-peptide and T3, and negatively related to GC. Involvement in mating was positively related to T3 and T, whereas the rate agonistic interactions was positively related to GC and T. The rate of interactions with extragroup males was positively related to T. When males mated, the increase in C-peptide and the decrease in GC with increasing food availability were less notable. CONCLUSIONS Hormonal variation in mantled howler monkey males is generally stable, but it is influenced by several factors. Our results offer a broad picture of the hormonal modulation of mantled howler monkey males in response to diverse challenges.
Collapse
Affiliation(s)
- Pedro Américo D Dias
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | | | - David Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Domingo Canales-Espinosa
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| | - Ariadna Rangel-Negrín
- Primate Behavioral Ecology Lab, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
39
|
Letendre C, Duffield KR, Sadd BM, Sakaluk SK, House CM, Hunt J. Genetic covariance in immune measures and pathogen resistance in decorated crickets is sex and pathogen specific. J Anim Ecol 2022; 91:1471-1488. [PMID: 35470433 PMCID: PMC9545791 DOI: 10.1111/1365-2656.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/21/2022] [Indexed: 12/05/2022]
Abstract
Insects are important models for studying immunity in an ecological and evolutionary context. Yet, most empirical work on the insect immune system has come from phenotypic studies meaning we have a limited understanding of the genetic architecture of immune function in the sexes. We use nine highly inbred lines to thoroughly examine the genetic relationships between a suite of commonly used immune assays (haemocyte count, implant encapsulation, total phenoloxidase activity, antibacterial zone of inhibition and pathogen clearance) and resistance to infection by three generalist insect pathogens (the gram‐negative bacterium Serratia marcescens, the gram‐positive bacterium Bacillus cereus and the fungus Metarhizium robertsii) in male and female Gryllodes sigillatus. There were consistent positive genetic correlations between haemocyte count, antibacterial and phenoloxidase activity and resistance to S. marcescens in both sexes, but these relationships were less consistent for resistance to B. cereus and M. robertsii. In addition, the clearance of S. marcescens was genetically correlated with the resistance to all three pathogens in both sexes. Genetic correlations between resistances to the different pathogen species were inconsistent, indicating that resistance to one pathogen does not necessarily mean resistance to another. Finally, while there is ample genetic (co)variance in immune assays and pathogen resistance, these genetic estimates differed across the sexes and many of these measures were not genetically correlated across the sexes, suggesting that these measures could evolve independently in the sexes. Our finding that the genetic architecture of immune function is sex and pathogen specific suggests that the evolution of immune function in male and female G. sigillatus is likely to be complex. Similar quantitative genetic studies that measure a large number of assays and resistance to multiple pathogens in both sexes are needed to ascertain if this complexity extends to other species.
Collapse
Affiliation(s)
- Corinne Letendre
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, New South Wales, Australia
| | - Kristin R Duffield
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America.,Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, United States of America
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Scott K Sakaluk
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, New South Wales, Australia
| | - John Hunt
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, New South Wales, Australia.,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Tremough Campus, Penryn, Cornwall, United Kingdom
| |
Collapse
|
40
|
Intersection between parental investment, transgenerational immunity, and termite sociality in the face of disease: a theoretical approach. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03128-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
41
|
Rogers EJ, McGuire L, Longstaffe FJ, Clerc J, Kunkel E, Fraser E. Relating wing morphology and immune function to patterns of partial and differential bat migration using stable isotopes. J Anim Ecol 2022; 91:858-869. [PMID: 35218220 DOI: 10.1111/1365-2656.13681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Migration is energetically expensive and is predicted to drive similar morphological adaptations and physiological trade-offs in migratory bats and birds. Previous studies suggest that fixed traits like wing morphology vary among species and individuals according to selective pressures on flight, while immune defenses can vary flexibly within individuals as energy is variably reallocated throughout the year. We assessed intraspecific variation in wing morphology and immune function in silver-haired bats (Lasionycteris noctivagans), a species that follows both partial and differential migration patterns. We hypothesized that if bats experience energy constraints associated with migration, then wing morphology and immune function should vary based on migratory tendency (sedentary or migratory) and migration distance. We predicted that long-distance migrants would have reduced immune function and more migration-adapted wing shapes compared to resident or short-distance migrating bats. We estimated breeding latitude of spring migrants using stable hydrogen isotope techniques. Our sample consisted primarily of male bats, which we categorized as residents, long-distance northern migrants, short-distance northern migrants, and southern migrants (apparent breeding location south of capture site). Controlling for individual condition and capture date, we related wing characteristics and immune indices among groups. Some, but not all, aspects of wing form and immune function varied between migrants and residents. Long-distance northern migrants had larger wings than short-distance northern migrants and lower wing loading than southern migrants. Compared with resident bats, short-distance northern migrants had reduced IgG while southern migrants had heightened neutrophils and neutrophil-to-lymphocyte ratios. Body fat, aspect ratio, wing tip shape, and bacteria killing ability did not vary with migration status or distance. In general, male silver-haired bats do not appear to mediate migration costs by substantially downregulating immune defenses or to be under stronger selection for wing forms adapted for fast, energy-efficient flight. Such phenotypic changes may be more adaptive for female silver-haired bats, which migrate farther and are more constrained by time in spring than males. Adaptations for aerial hawking and the use of heterothermy by migrating bats may also reduce the energetic cost of migration and the need for more substantial morphological and physiological trade-offs.
Collapse
Affiliation(s)
- Elizabeth J Rogers
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Organismic and Evolutionary Biology Program, University of Massachusetts, Amherst, MA, USA
| | - Liam McGuire
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Fred J Longstaffe
- Department of Earth Sciences, The University of Western Ontario, London, ON, Canada
| | - Jeff Clerc
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Normandeau Associates Inc, Gainesville, FL, USA
| | - Emma Kunkel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Erin Fraser
- Environmental Science Program, Memorial University of Newfoundland (Grenfell Campus), Corner Brook, NL, Canada
| |
Collapse
|
42
|
Drew GC, King KC. More or Less? The Effect of Symbiont Density in Protective Mutualisms. Am Nat 2021; 199:443-454. [DOI: 10.1086/718593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
43
|
Downie AE, Mayer A, Metcalf CJE, Graham AL. Optimal immune specificity at the intersection of host life history and parasite epidemiology. PLoS Comput Biol 2021; 17:e1009714. [PMID: 34932551 PMCID: PMC8730424 DOI: 10.1371/journal.pcbi.1009714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/05/2022] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Hosts diverge widely in how, and how well, they defend themselves against infection and immunopathology. Why are hosts so heterogeneous? Both epidemiology and life history are commonly hypothesized to influence host immune strategy, but the relationship between immune strategy and each factor has commonly been investigated in isolation. Here, we show that interactions between life history and epidemiology are crucial for determining optimal immune specificity and sensitivity. We propose a demographically-structured population dynamics model, in which we explore sensitivity and specificity of immune responses when epidemiological risks vary with age. We find that variation in life history traits associated with both reproduction and longevity alters optimal immune strategies-but the magnitude and sometimes even direction of these effects depends on how epidemiological risks vary across life. An especially compelling example that explains previously-puzzling empirical observations is that depending on whether infection risk declines or rises at reproductive maturity, later reproductive maturity can select for either greater or lower immune specificity, potentially illustrating why studies of lifespan and immune variation across taxa have been inconclusive. Thus, the sign of selection on the life history-immune specificity relationship can be reversed in different epidemiological contexts. Drawing on published life history data from a variety of chordate taxa, we generate testable predictions for this facet of the optimal immune strategy. Our results shed light on the causes of the heterogeneity found in immune defenses both within and among species and the ultimate variability of the relationship between life history and immune specificity.
Collapse
Affiliation(s)
- Alexander E. Downie
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Andreas Mayer
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - C. Jessica E. Metcalf
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- School of Public and International Affairs, Princeton University, Princeton, New Jersey, United States of America
| | - Andrea L. Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
44
|
Shaw KS, Civitello DJ. Re-emphasizing mechanism in the community ecology of disease. Funct Ecol 2021; 35:2376-2386. [PMID: 37860273 PMCID: PMC10586721 DOI: 10.1111/1365-2435.13892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/11/2021] [Indexed: 11/29/2022]
Abstract
1. Hosts and their parasites exist within complex ecological communities. However, the role that non-focal community members, species which cannot be infected by a focal pathogen, may play in altering parasite transmission is often only studied in the lens of the "diversity-disease" relationship by focusing on species richness. This approach largely ignores mechanistic species interactions and risks collapsing our understanding of the community ecology of disease down to defining the prominence of "amplification" vs. "dilution" effects. 2. However, non-focal species vary in their traits, densities, and types of interactions with focal hosts and parasites. Therefore, a community ecology approach based on the mechanisms underlying parasite transmission, host harm, and dynamic species interactions may better advance our understanding of parasite transmission in complex communities. 3. Using the concept of the parasite's basic reproductive ratio, R0, as a generalizable framework, we examine several critical mechanisms by which interactions among hosts, parasites, and non-focal species modulate transmission and provide examples from relevant literature. 4. By focusing on the mechanism by which non-focal species impact transmission, we can emphasize the similarities among classic paradigms in the community ecology of disease, gain new insights into parasite invasion and persistence, community traits correlated with disease dilution or amplification, and the feasibility of biocontrol for parasites of conservation, agricultural, or human health concern.
Collapse
Affiliation(s)
- KS Shaw
- Department of Biology, Emory University, Atlanta, GA USA 30322
| | | |
Collapse
|
45
|
De Lisle SP, Bolnick DI. Male and female reproductive fitness costs of an immune response in natural populations . Evolution 2021; 75:2509-2523. [PMID: 33991339 PMCID: PMC8488946 DOI: 10.1111/evo.14266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022]
Abstract
Parasites can mediate host fitness both directly, via effects on survival and reproduction, or indirectly by inducing host immune defense with costly side-effects. The evolution of immune defense is determined by a complex interplay of costs and benefits of parasite infection and immune response, all of which may differ for male and female hosts in sexual lineages. Here, we examine fitness costs associated with an inducible immune defense in a fish-cestode host-parasite system. Cestode infection induces peritoneal fibrosis in threespine stickleback (Gasterosteus aculeatus), constraining cestode growth and sometimes encasing and killing the parasite. Surveying two wild populations of stickleback, we confirm that the presence of fibrosis scar tissue is associated with reduced parasite burden in both male and female fish. However, fibrotic fish had lower foraging success and reproductive fitness (reduced female egg production and male nesting success), indicating strong costs of the lingering immunopathology. Consistent with substantial sexually concordant fitness effects of immune response, we find alignment of multivariate selection across the sexes despite sexual antagonism over morphological shape. Although both sexes experienced costs of fibrosis, the net impacts are unequal because in the two study populations females had higher cestode exposure. To evaluate whether this difference in risk should drive sex-specific immune strategies, we analyze a quantitative genetic model of host immune response to a trophically transmitted parasite. The model and empirical data illustrate how shared costs and benefits of immune response lead to shared evolutionary interests of male and female hosts, despite unequal infection risks across the sexes.
Collapse
Affiliation(s)
- Stephen P. De Lisle
- Department of Ecology & Evolutionary Biology University of Connecticut Storrs, CT 06269
- Department of Biology, Evolutionary Ecology Unit, Lund University, Lund, Sweden
| | - Daniel I. Bolnick
- Department of Ecology & Evolutionary Biology University of Connecticut Storrs, CT 06269
| |
Collapse
|
46
|
Shahrestani P, King E, Ramezan R, Phillips M, Riddle M, Thornburg M, Greenspan Z, Estrella Y, Garcia K, Chowdhury P, Malarat G, Zhu M, Rottshaefer SM, Wraight S, Griggs M, Vandenberg J, Long AD, Clark AG, Lazzaro BP. The molecular architecture of Drosophila melanogaster defense against Beauveria bassiana explored through evolve and resequence and quantitative trait locus mapping. G3-GENES GENOMES GENETICS 2021; 11:6371870. [PMID: 34534291 PMCID: PMC8664422 DOI: 10.1093/g3journal/jkab324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/17/2021] [Indexed: 12/02/2022]
Abstract
Little is known about the genetic architecture of antifungal immunity in natural populations. Using two population genetic approaches, quantitative trait locus (QTL) mapping and evolve and resequence (E&R), we explored D. melanogaster immune defense against infection with the fungus Beauveria bassiana. The immune defense was highly variable both in the recombinant inbred lines from the Drosophila Synthetic Population Resource used for our QTL mapping and in the synthetic outbred populations used in our E&R study. Survivorship of infection improved dramatically over just 10 generations in the E&R study, and continued to increase for an additional nine generations, revealing a trade-off with uninfected longevity. Populations selected for increased defense against B. bassiana evolved cross resistance to a second, distinct B. bassiana strain but not to bacterial pathogens. The QTL mapping study revealed that sexual dimorphism in defense depends on host genotype, and the E&R study indicated that sexual dimorphism also depends on the specific pathogen to which the host is exposed. Both the QTL mapping and E&R experiments generated lists of potentially causal candidate genes, although these lists were nonoverlapping.
Collapse
Affiliation(s)
- Parvin Shahrestani
- Department of Biological Science, California State University Fullerton, Fullerton CA, 92831, USA
| | - Elizabeth King
- Division of Biological Sciences, University of Missouri, Columbia MO, 65211, USA
| | - Reza Ramezan
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo ON, N2L 3G1, Canada
| | - Mark Phillips
- Department of Integrative Biology, Oregon State University, Corvallis OR, 97331, USA
| | - Melissa Riddle
- Department of Biological Science, California State University Fullerton, Fullerton CA, 92831, USA
| | - Marisa Thornburg
- Department of Biological Science, California State University Fullerton, Fullerton CA, 92831, USA
| | - Zachary Greenspan
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA, 92692, USA
| | | | - Kelly Garcia
- Department of Entomology, Cornell University, Ithaca NY, 14853, USA
| | - Pratik Chowdhury
- Department of Entomology, Cornell University, Ithaca NY, 14853, USA
| | - Glen Malarat
- Department of Entomology, Cornell University, Ithaca NY, 14853, USA
| | - Ming Zhu
- Department of Entomology, Cornell University, Ithaca NY, 14853, USA
| | | | - Stephen Wraight
- USDA ARS Emerging Pets and Pathogens Research Unit, Robert W. Holley Center for Agriculture & Health, Ithaca NY, 14853, USA
| | - Michael Griggs
- USDA ARS Emerging Pets and Pathogens Research Unit, Robert W. Holley Center for Agriculture & Health, Ithaca NY, 14853, USA
| | - John Vandenberg
- USDA ARS Emerging Pets and Pathogens Research Unit, Robert W. Holley Center for Agriculture & Health, Ithaca NY, 14853, USA
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA, 92692, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY, 14853, USA
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca NY, 14853, USA
| |
Collapse
|
47
|
Cassidy ST, Chapa J, Tran TA, Dolezal N, Gerena C, Johnson G, Leyva A, Stein S, Wright CM, Keiser CN. Disease defences across levels of biological organization: individual and social immunity in acorn ants. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Segner H, Bailey C, Tafalla C, Bo J. Immunotoxicity of Xenobiotics in Fish: A Role for the Aryl Hydrocarbon Receptor (AhR)? Int J Mol Sci 2021; 22:ijms22179460. [PMID: 34502366 PMCID: PMC8430475 DOI: 10.3390/ijms22179460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen 361005, China
| |
Collapse
|
49
|
Gauzere J, Walling CA, Pick JL, Watt K, Jack P, Morris A, Morris S, Pemberton JM. The role of maternally transferred antibodies in maternal performance in red deer. Ecol Lett 2021; 24:2065-2076. [PMID: 34245475 DOI: 10.1111/ele.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 11/28/2022]
Abstract
Maternal effects are ubiquitous. Yet, the pathways through which maternal effects occur in wild mammals remain largely unknown. We hypothesise that maternal immune transfer is a key mechanism by which mothers can affect their offspring fitness, and that individual variation in maternally derived antibodies mainly depends on a mother's characteristics and the environmental conditions she experiences. To test this, we assayed six colostrum-derived antibodies in the plasma of 1447 neonates in a wild red deer population. Neonatal antibody levels were mainly affected by maternal genes, environmental variation and costs of prior reproductive investment. We found consistent heterogeneity in maternal performance across traits, with mothers producing the heaviest calves also having calves with more antibodies. Unexpectedly, antibody levels were not associated with calf survival. We provide a unique example of how evolutionary theory on maternal effects can be used to gain insight into the causes of maternal effects in wild populations.
Collapse
Affiliation(s)
- Julie Gauzere
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Craig A Walling
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Joel L Pick
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Kathryn Watt
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Penny Jack
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Alison Morris
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Sean Morris
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
50
|
St Leger RJ. Insects and their pathogens in a changing climate. J Invertebr Pathol 2021; 184:107644. [PMID: 34237297 DOI: 10.1016/j.jip.2021.107644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 01/02/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022]
Abstract
The complex nature of climate change-mediated multitrophic interaction is an underexplored area, but has the potential to dramatically shift transmission and distribution of many insects and their pathogens, placing some populations closer to the brink of extinction. However, for individual insect-pathogen interactions climate change will have complicated hard-to-anticipate impacts. Thus, both pathogen virulence and insect host immunity are intrinsically linked with generalized stress responses, and in both pathogen and host have extensive trade-offs with nutrition (e.g., host plant quality), growth and reproduction. Potentially alleviating or exasperating these impacts, some pathogens and hosts respond genetically and rapidly to environmental shifts. This review identifies many areas for future research including a particular need to identify how altered global warming interacts with other environmental changes and stressors, and how consistent these impacts are across pathogens and hosts. With that achieved we would be closer to producing an overarching framework to integrate knowledge on all environmental interplay and infectious disease events.
Collapse
Affiliation(s)
- Raymond J St Leger
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|