1
|
Noren SR. Building Cetacean Locomotor Muscles throughout Ontogeny to Support High-Performance Swimming into Adulthood. Integr Comp Biol 2023; 63:785-795. [PMID: 36990644 DOI: 10.1093/icb/icad011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The demands on the locomotor muscles at birth are different for cetaceans than terrestrial mammals. Cetacean muscles do not need to support postural costs as the neonate transitions from the womb because water's buoyant force supports body weight. Rather, neonatal cetacean muscles must sustain locomotion under hypoxic conditions as the neonate accompanies its mother swimming underwater. Despite disparate demands at birth, cetaceans like terrestrial mammals require postnatal development to attain mature musculature. Neonatal cetaceans have a low proportion of muscle mass, and their locomotor muscles have lower mitochondrial density, myoglobin content (Mb), and buffering capacity than those found in the adult locomotor muscle. For example, the locomotor muscle of the neonatal bottlenose dolphin has only 10 and 65% of the Mb and buffering capacity, respectively, found in the adult locomotor muscle. The maturation period required to achieve mature Mb and buffering capacity in the locomotor muscle varies across cetacean species from 0.75 to 4 and 1.17 to 3.4 years, respectively. The truncated nursing interval of harbor porpoises and sub-ice travel of beluga whales may be drivers for faster muscle maturation in these species. Despite these postnatal changes in the locomotor muscle, ontogenetic changes in locomotor muscle fiber type seem to be rare in cetaceans. Regardless, the underdeveloped aerobic and anaerobic capacities of the locomotor muscle of immature dolphins result in diminished thrusting capability and swim performance. Size-specific stroke amplitudes (23-26% of body length) of 0-3-month-old dolphins are significantly smaller than those of >10-month-olds (29-30% of body length), and 0-1-month-olds only achieve 37 and 52% of the mean and maximum swim speed of adults, respectively. Until swim performance improves with muscle maturation, young cetaceans are precluded from achieving their pod's swim speeds, which could have demographic consequences when fleeing anthropogenic disturbances.
Collapse
Affiliation(s)
- S R Noren
- Institute of Marine Sciences, University of California Santa Cruz Center for Ocean Health, 115 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
2
|
Arregui M, Singleton EM, Saavedra P, Pabst DA, Moore MJ, Sierra E, Rivero MA, Câmara N, Niemeyer M, Fahlman A, McLellan WA, Bernaldo de Quirós Y. Myoglobin Concentration and Oxygen Stores in Different Functional Muscle Groups from Three Small Cetacean Species. Animals (Basel) 2021; 11:ani11020451. [PMID: 33572177 PMCID: PMC7915992 DOI: 10.3390/ani11020451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Marine mammals display several physiological adaptations to their marine environment. Higher myoglobin concentrations in their muscles compared to terrestrial mammals allow them to increase their onboard oxygen stores, enhancing the time available to dive. Most previous studies have calculated cetaceans’ onboard oxygen stores by assuming the myoglobin concentration of a single muscle to be representative of all the muscles in the body. In this study, we analyzed this assumption by comparing it to a more precise method that weighs all body muscles and measures myoglobin concentration in different functional groups. Abstract Compared with terrestrial mammals, marine mammals possess increased muscle myoglobin concentrations (Mb concentration, g Mb · 100g−1 muscle), enhancing their onboard oxygen (O2) stores and their aerobic dive limit. Although myoglobin is not homogeneously distributed, cetacean muscle O2 stores have been often determined by measuring Mb concentration from a single muscle sample (longissimus dorsi) and multiplying that value by the animal’s locomotor muscle or total muscle mass. This study serves to determine the accuracy of previous cetacean muscle O2 stores calculations. For that, body muscles from three delphinid species: Delphinus delphis, Stenella coeruleoalba, and Stenella frontalis, were dissected and weighed. Mb concentration was calculated from six muscles/muscle groups (epaxial, hypaxial and rectus abdominis; mastohumeralis; sternohyoideus; and dorsal scalenus), each representative of different functional groups (locomotion powering swimming, pectoral fin movement, feeding and respiration, respectively). Results demonstrated that the Mb concentration was heterogeneously distributed, being significantly higher in locomotor muscles. Locomotor muscles were the major contributors to total muscle O2 stores (mean 92.8%) due to their high Mb concentration and large muscle masses. Compared to this method, previous studies assuming homogenous Mb concentration distribution likely underestimated total muscle O2 stores by 10% when only considering locomotor muscles and overestimated them by 13% when total muscle mass was considered.
Collapse
Affiliation(s)
- Marina Arregui
- Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, C/Transmontaña s/n, 35413 Las Palmas, Spain; (M.A.); (M.A.R.); (N.C.); (Y.B.d.Q.)
| | - Emily M. Singleton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA; (E.M.S.); (D.A.P.); (W.A.M.)
| | - Pedro Saavedra
- Department of Mathematics, Campus de Tafira s/n, University of Las Palmas de Gran Canaria, 35017 Las Palmas, Spain;
| | - D. Ann Pabst
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA; (E.M.S.); (D.A.P.); (W.A.M.)
| | - Michael J. Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;
| | - Eva Sierra
- Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, C/Transmontaña s/n, 35413 Las Palmas, Spain; (M.A.); (M.A.R.); (N.C.); (Y.B.d.Q.)
- Correspondence: ; Tel.: +34-928-4597-08
| | - Miguel A. Rivero
- Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, C/Transmontaña s/n, 35413 Las Palmas, Spain; (M.A.); (M.A.R.); (N.C.); (Y.B.d.Q.)
| | - Nakita Câmara
- Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, C/Transmontaña s/n, 35413 Las Palmas, Spain; (M.A.); (M.A.R.); (N.C.); (Y.B.d.Q.)
| | - Misty Niemeyer
- International Fund for Animal Welfare, Yarmouth Port, MA 02675, USA;
| | - Andreas Fahlman
- Global Diving Research Inc., Ottawa, ON K2J 5E8, Canada;
- Fundación Oceanogràphic, Department of Research, Ciutat de les Arts i de les Ciències, Carrer d’Eduardo Primo Yúfera, 1B, 46013 Valencia, Spain
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5892, Corpus Christi, TX 78412, USA
| | - William A. McLellan
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA; (E.M.S.); (D.A.P.); (W.A.M.)
| | - Yara Bernaldo de Quirós
- Atlantic Center for Cetacean Research, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, C/Transmontaña s/n, 35413 Las Palmas, Spain; (M.A.); (M.A.R.); (N.C.); (Y.B.d.Q.)
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Unit 5892, Corpus Christi, TX 78412, USA
| |
Collapse
|
3
|
Kroeger JP, McLellan WA, Arthur LH, Velten BP, Singleton EM, Kinsey ST, Pabst DA. Locomotor muscle morphology of three species of pelagic delphinids. J Morphol 2020; 281:170-182. [DOI: 10.1002/jmor.21089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/31/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Jacqueline P. Kroeger
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - William A. McLellan
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - Logan H. Arthur
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - Brandy P. Velten
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - Emily M. Singleton
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - Stephen T. Kinsey
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| | - D. Ann Pabst
- Department of Biology and Marine BiologyUniversity of North Carolina Wilmington Wilmington North Carolina
| |
Collapse
|
4
|
Noren SR, West K. Muscle biochemistry of a pelagic delphinid (Stenella longirostris longirostris): insight into fishery-induced separation of mothers and calves. J Exp Biol 2017; 220:1490-1496. [DOI: 10.1242/jeb.153668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/01/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The length of time required for postnatal maturation of the locomotor muscle (longissimus dorsi) biochemistry [myoglobin (Mb) content and buffering capacity] in marine mammals typically varies with nursing duration, but it can be accelerated by species-specific behavioral demands, such as deep-diving and sub-ice transit. We examined how the swimming demands of a pelagic lifestyle influence postnatal maturation of Mb and buffering capacity in spinner dolphins (Stenella longirostris longirostris). Mb content of newborn (1.16±0.07 g Mb per 100 g wet muscle mass, n=6) and juvenile (2.77±0.22 g per 100 g, n=4) spinner dolphins were only 19% and 46% of adult levels (6.00±0.74 g per 100 g, n=6), respectively. At birth, buffering capacity was 52.70±4.48 slykes (n=6) and increased to 78.53±1.91 slykes (n=6) once a body length of 141 cm was achieved, representing 1.6- to 2.0-year-old dolphins. Based on the age of weaning (1.3–1.6 years post-partum), muscle maturation occurred just after weaning as described for coastal bottlenose dolphins (Tursiops truncatus). Thus, a pelagic lifestyle does not promote rapid maturation of muscle biochemistry. Rather, it promotes enhanced muscle biochemistry: newborn and adult spinner dolphins had four- and two-times greater Mb contents than newborn and adult bottlenose dolphins, respectively. Indeed, adult levels rivaled those of deep-diving cetaceans. Nonetheless, the relatively underdeveloped muscle biochemistry of calves likely contributes to documented mother–calf separations for spinner dolphins chased by the tuna purse-seine fishery.
Collapse
Affiliation(s)
- Shawn R. Noren
- Institute of Marine Science, University of California, Santa Cruz, Center for Ocean Health, 100 Shaffer Road, Santa Cruz, CA 95060, USA
| | - Kristi West
- College of Natural and Computational Sciences, Hawaii Pacific University, 45-045 Kamehameha Hwy., Kaneohe, HI 96744, USA
| |
Collapse
|
5
|
Orbach DN, Marshall CD, Würsig B, Mesnick SL. Variation in Female Reproductive Tract Morphology of the Common Bottlenose Dolphin (Tursiops truncatus). Anat Rec (Hoboken) 2016; 299:520-37. [PMID: 26788790 DOI: 10.1002/ar.23318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/08/2015] [Accepted: 12/13/2015] [Indexed: 11/07/2022]
Abstract
Cetaceans exhibit vaginal folds, unusual protrusions of the vaginal wall into the vaginal lumen. Inconsistent terminology and a lack of anatomical landmarks in the literature have hindered comparative studies of the form and function of vaginal folds. Our objectives are to: (1) develop a standardized measurement protocol for the reproductive tracts of female cetaceans, (2) assess variation in morphometrics within the common bottlenose dolphin (Tursiops truncatus), and (3) determine if vaginal muscle is skeletal, and therefore of somatic origin in this species. We selected 15 measurements to characterize female reproductive tracts and evaluated variability using fresh or frozen-thawed specimens from southeastern USA representing a range of sexual maturity states and reproductive states (n = 18 specimens). Presence of skeletal muscle and variation in the density of muscle banding were assessed using 90 histological samples (n = 5 specimens). Analyses of the gross morphological data revealed that the dolphins generally had one large vaginal fold that bisected the vaginal lumen. Vaginal morphology was similar for sexually mature and immature specimens and across reproductive states. The histological data revealed that the vaginal musculature consisted of smooth muscle, consistent with other mammals, leading us to conclude that vaginal contractions are likely under autonomic rather than somatic control. No differences were found in the density of smooth muscle banding among vaginal regions or sexual maturity states. Our systematic protocol lays the foundation for evaluating the function (e.g., sexual selection, natural selection) and evolution of vaginal folds.
Collapse
Affiliation(s)
- Dara N Orbach
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas
| | - Christopher D Marshall
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas.,Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas
| | - Bernd Würsig
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas.,Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas
| | - Sarah L Mesnick
- National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center, La Jolla, California
| |
Collapse
|
6
|
Cartwright R, Newton C, West KM, Rice J, Niemeyer M, Burek K, Wilson A, Wall AN, Remonida-Bennett J, Tejeda A, Messi S, Marcial-Hernandez L. Tracking the Development of Muscular Myoglobin Stores in Mysticete Calves. PLoS One 2016; 11:e0145893. [PMID: 26788728 PMCID: PMC4720374 DOI: 10.1371/journal.pone.0145893] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022] Open
Abstract
For marine mammals, the ability to tolerate apnea and make extended dives is a defining adaptive trait, facilitating the exploitation of marine food resources. Elevated levels of myoglobin within the muscles are a consistent hallmark of this trait, allowing oxygen collected at the surface to be stored in the muscles and subsequently used to support extended dives. In mysticetes, the largest of marine predators, details on muscular myoglobin levels are limited. The developmental trajectory of muscular myoglobin stores has yet to be documented and any physiological links between early behavior and the development of muscular myoglobin stores remain unknown. In this study, we used muscle tissue samples from stranded mysticetes to investigate these issues. Samples from three different age cohorts and three species of mysticetes were included (total sample size = 18). Results indicate that in mysticete calves, muscle myoglobin stores comprise only a small percentage (17–23%) of conspecific adult myoglobin complements. Development of elevated myoglobin levels is protracted over the course of extended maturation in mysticetes. Additionally, comparisons of myoglobin levels between and within muscles, along with details of interspecific differences in rates of accumulation of myoglobin in very young mysticetes, suggest that levels of exercise may influence the rate of development of myoglobin stores in young mysticetes. This new information infers a close interplay between the physiology, ontogeny and early life history of young mysticetes and provides new insight into the pressures that may shape adaptive strategies in migratory mysticetes. Furthermore, the study highlights the vulnerability of specific age cohorts to impending changes in the availability of foraging habitat and marine resources.
Collapse
Affiliation(s)
- Rachel Cartwright
- California State University Channel Islands, Camarillo, California, United States of America
- The Keiki Kohola Project, Lahaina, Hawaii, United States of America
- * E-mail:
| | - Cori Newton
- California State University Channel Islands, Camarillo, California, United States of America
| | - Kristi M. West
- Hawaii Pacific University Stranding Program, College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, Hawaii, United States of America
| | - Jim Rice
- Oregon Marine Mammal Stranding Network, Marine Mammal Institute, Oregon State University, Newport, Oregon, United States of America
| | - Misty Niemeyer
- International Fund for Animal Welfare, Yarmouth Port, Massachusetts, United States of America
| | - Kathryn Burek
- Alaska Veterinary Pathology Services, Eagle River, Alaska, United States of America
| | - Andrew Wilson
- California State University Channel Islands, Camarillo, California, United States of America
| | - Alison N. Wall
- California State University Channel Islands, Camarillo, California, United States of America
| | - Jean Remonida-Bennett
- California State University Channel Islands, Camarillo, California, United States of America
| | - Areli Tejeda
- California State University Channel Islands, Camarillo, California, United States of America
| | - Sarah Messi
- California State University Channel Islands, Camarillo, California, United States of America
| | - Lila Marcial-Hernandez
- California State University Channel Islands, Camarillo, California, United States of America
| |
Collapse
|
7
|
Kielhorn CE, Dillaman RM, Kinsey ST, McLellan WA, Mark Gay D, Dearolf JL, Ann Pabst D. Locomotor muscle profile of a deep (Kogia breviceps) versus shallow (Tursiops truncatus) diving cetacean. J Morphol 2013; 274:663-75. [DOI: 10.1002/jmor.20124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/31/2012] [Accepted: 12/16/2012] [Indexed: 01/08/2023]
|
8
|
Velten BP, Dillaman RM, Kinsey ST, McLellan WA, Pabst DA. Novel locomotor muscle design in extreme deep-diving whales. J Exp Biol 2013; 216:1862-71. [DOI: 10.1242/jeb.081323] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Summary
Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations and are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (Vmt). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (Ziphius cavirostris, Cuvier and Mesoplodon densirostris, Blainville) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus, Gray) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of these cetaceans to determine whether they (a) shared muscle design features with other deep-divers and (b) performed dives within their calculated ADLs. Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinter's fiber-type profile, composed of approximately 80% fast-twitch (Type II) fibers with low Vmt. Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber-type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both cetaceans carry sufficient onboard oxygen to aerobically support their dives.
Collapse
|
9
|
Priester C, Morton LC, Kinsey ST, Watanabe WO, Dillaman RM. Growth patterns and nuclear distribution in white muscle fibers from black sea bass, Centropristis striata: evidence for the influence of diffusion. ACTA ACUST UNITED AC 2011; 214:1230-9. [PMID: 21430198 DOI: 10.1242/jeb.053199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study investigated the influence of fiber size on the distribution of nuclei and fiber growth patterns in white muscle of black sea bass, Centropristis striata, ranging in body mass from 0.45 to 4840 g. Nuclei were counted in 1 μm optical sections using confocal microscopy of DAPIand Acridine-Orange-stained muscle fibers. Mean fiber diameter increased from 36±0.87 μm in the 0.45 g fish to 280±5.47 μm in the 1885 g fish. Growth beyond 2000 g triggered the recruitment of smaller fibers, thus significantly reducing mean fiber diameter. Nuclei in the smaller fibers were exclusively subsarcolemmal (SS), whereas in larger fibers nuclei were more numerous and included intermyofibrillar (IM) nuclei. There was a significant effect of body mass on nuclear domain size (F=118.71, d.f.=3, P<0.0001), which increased to a maximum in fish of medium size (282-1885 g) and then decreased in large fish (>2000 g). Although an increase in the number of nuclei during fiber growth can help preserve the myonuclear domain, the appearance of IM nuclei during hypertrophic growth seems to be aimed at maintaining short effective diffusion distances for nuclear substrates and products. If only SS nuclei were present throughout growth, the diffusion distance would increase in proportion to the radius of the fibers. These observations are consistent with the hypothesis that changes in nuclear distribution and fiber growth patterns are mechanisms for avoiding diffusion limitation during animal growth.
Collapse
Affiliation(s)
- Carolina Priester
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403, USA.
| | | | | | | | | |
Collapse
|
10
|
Thompson JT, Bartol IK, Baksi AE, Li KY, Krueger PS. The ontogeny of muscle structure and locomotory function in the long-finned squid Doryteuthis pealeii. J Exp Biol 2010; 213:1079-91. [DOI: 10.1242/jeb.034553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Understanding the extent to which changes in muscle form and function underlie ontogenetic changes in locomotory behaviors and performance is important in understanding the evolution of musculoskeletal systems and also the ecology of different life stages. We explored ontogenetic changes in the structure, myosin heavy chain (MHC) expression and contractile properties of the circular muscles that provide power for jet locomotion in the long-finned squid Doryteuthis pealeii. The circular muscle fibers of newly hatched paralarvae had different sizes, shapes, thick filament lengths, thin:thick filament ratio, myofilament organization and sarcoplasmic reticulum (SR) distribution than those of adults. Viewed in cross section, most circular muscle cells were roughly triangular or ovoid in shape with a core of mitochondria; however, numerous muscle cells with crescent or other unusual cross-sectional shapes and muscle cells with unequal distributions of mitochondria were present in the paralarvae. The frequency of these muscle cells relative to ‘normal’ circular muscle cells ranged from 1:6 to 1:10 among the 19 paralarvae we surveyed. The thick filaments of the two types of circular fibers, superficial mitochondria-rich (SMR) and central mitochondria-poor (CMP), differed slightly in length among paralarvae with thick filament lengths of 0.83±0.15 μm and 0.71±0.1 μm for the SMR and CMP fibers, respectively (P 0.05; ANOVA). During ontogeny the thick filament lengths of both the CMP and SMR fibers increased significantly to 1.78±0.27 μm and 3.12±0.56 μm, respectively, in adults (P<0.0001 for both comparisons; ANOVA with Tukey's highly significant difference post hoc tests). When sectioned parallel to their long axes, the SMR and CMP fibers of both paralarvae and adults exhibited the myofilament arrangements typical of obliquely striated muscle cells but the angle of obliquity of the dense bodies was 22.8±2.4 deg. and 4.6±0.87 deg. for paralarvae and adults, respectively. There were also differences in the distribution of the anastomosing network of SR. In paralarvae, the outer and central zones of SR were well developed but the intramyoplasmic zone was greatly reduced in some cells or was scattered non-uniformly across the myoplasm. Whereas in adults the intramyoplasmic SR region was composed primarily of flattened tubules, it was composed primarily of rounded vesicles or tubules when present in the paralarvae. The ontogenetic differences in circular muscle structure were correlated with significant differences in their contractile properties. In brief tetanus at 20°C, the mean unloaded shortening velocity of the paralarval circular muscle preparations was 9.1 L0 s−1 (where L0 was the preparation length that generated the peak isometric stress), nearly twice that measured in other studies for the CMP fibers of adults. The mean peak isometric stress was 119±15 mN mm−2 physiological cross section, nearly half that measured for the CMP fibers of adults. Reverse transcriptase-polymerase chain reaction analysis of paralarval and adult mantle samples revealed very similar expression patterns of the two known isoforms of squid MHC. The ontogenetic differences in the structure and physiology of the circular muscles may result in more rapid mantle movements during locomotion. This prediction is consistent with jet pulse durations observed in other studies, with shorter jet pulses providing hydrodynamic advantages for paralarvae.
Collapse
Affiliation(s)
- J. T. Thompson
- Department of Biology, Franklin & Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | - I. K. Bartol
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - A. E. Baksi
- Department of Biology, Franklin & Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | - K. Y. Li
- Department of Biology, Franklin & Marshall College, PO Box 3003, Lancaster, PA 17604-3003, USA
| | - P. S. Krueger
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
11
|
Cotten PB, Piscitelli MA, McLellan WA, Rommel SA, Dearolf JL, Pabst DA. The gross morphology and histochemistry of respiratory muscles in bottlenose dolphins, Tursiops truncatus. J Morphol 2009; 269:1520-38. [PMID: 18777569 DOI: 10.1002/jmor.10668] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most mammals possess stamina because their locomotor and respiratory (i.e., ventilatory) systems are mechanically coupled. These systems are decoupled, however, in bottlenose dolphins (Tursiops truncatus) as they swim on a breath hold. Locomotion and ventilation are coupled only during their brief surfacing event, when they respire explosively (up to 90% of total lung volume in approximately 0.3 s) (Ridgway et al. 1969 Science 166:1651-1654). The predominantly slow-twitch fiber profile of their diaphragm (Dearolf 2003 J Morphol 256:79-88) suggests that this muscle does not likely power their rapid ventilatory event. Based on Bramble's (1989 Amer Zool 29:171-186) biomechanical model of locomotor-respiratory coupling in galloping mammals, it was hypothesized that locomotor muscles function to power ventilation in bottlenose dolphins. It was further hypothesized that these muscles would be composed predominantly of fast-twitch fibers to facilitate the bottlenose dolphin's rapid ventilation. The gross morphology of craniocervical (scalenus, sternocephalicus, sternohyoid), thoracic (intercostals, transverse thoracis), and lumbopelvic (hypaxialis, rectus abdominis, abdominal obliques) muscles (n = 7) and the fiber-type profiles (n = 6) of selected muscles (scalenus, sternocephalicus, sternohyoid, rectus abdominis) of bottlenose dolphins were investigated. Physical manipulations of excised thoracic units were carried out to investigate potential actions of these muscles. Results suggest that the craniocervical muscles act to draw the sternum and associated ribs craniodorsally, which flares the ribs laterally, and increases the thoracic cavity volume required for inspiration. The lumbopelvic muscles act to draw the sternum and caudal ribs caudally, which decreases the volumes of the thoracic and abdominal cavities required for expiration. All muscles investigated were composed predominantly of fast-twitch fibers (range 61-88% by area) and appear histochemically poised for rapid contraction. These combined results suggest that dolphins utilize muscles, similar to those used by galloping mammals, to power their explosive ventilation.
Collapse
Affiliation(s)
- Pamela B Cotten
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403, USA
| | | | | | | | | | | |
Collapse
|
12
|
Etnier SA, McLellan WA, Blum J, Pabst DA. Ontogenetic changes in the structural stiffness of the tailstock of bottlenose dolphins (Tursiops truncatus). J Exp Biol 2008; 211:3205-13. [DOI: 10.1242/jeb.012468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
SUMMARY
Late-term fetal bottlenose dolphins (Tursiops truncatus) are bent ventrolaterally en utero, requiring extreme flexibility of the axial skeleton and associated soft tissues. At birth, neonatal dolphins must immediately swim to the surface to breath, yet the dorsoventral oscillations used during locomotion may be compromised by the lateral flexibility evident in the fetus. The unique fetal position of dolphins, coupled with their need to swim at birth, places conflicting mechanical demands on the tailstock. Our previous research demonstrated that neonatal dolphins possess laterally placed, axial muscles that are functionally specialized to actively maintain the straightened posture of the tailstock. Here, we investigated the development of passive lateral stability in the tailstock of bottlenose dolphins by performing whole-body bending tests on an ontogenetic series of stranded dolphin specimens (N=15), including fetuses, neonates and juveniles (total length 58–171 cm). Structural stiffness increased,while overall body curvature decreased, with increasing body length. Scaling analyses suggest that increased structural stiffness is due to increases in size and probably changes in the passive material properties of the tailstock through ontogeny. The neutral zone was approximately constant with increasing size, while the relative neutral zone (neutral zone/total length) decreased. The lateral stability of the tailstock appears to be controlled by a combination of active and passive systems and the role of these systems varies through ontogeny. While neonates use active, muscular mechanisms to limit lateral deformations of the tailstock, the stability of the maturing tailstock is due primarily to its passive tissue properties.
Collapse
Affiliation(s)
- S. A. Etnier
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208,USA
| | - W. A. McLellan
- Biology and Marine Biology, University of North Carolina Wilmington,Wilmington, NC 28403, USA
| | - J. Blum
- Mathematics and Statistics, University of North Carolina Wilmington,Wilmington, NC 28403, USA
| | - D. A. Pabst
- Biology and Marine Biology, University of North Carolina Wilmington,Wilmington, NC 28403, USA
| |
Collapse
|
13
|
Noren SR, Biedenbach G, Redfern JV, Edwards EF. Hitching a ride: the formation locomotion strategy of dolphin calves. Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2007.01353.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|