1
|
Hilbert ZA, Bednarek JM, Schwiesow MJW, Chung KY, Moreau CT, Brown JCS, Elde NC. Distinct pathways of adaptive evolution in Cryptococcus neoformans reveal a mutation in adenylyl cyclase with trade-offs for pathogenicity. Curr Biol 2023; 33:4136-4149.e9. [PMID: 37708888 PMCID: PMC10592076 DOI: 10.1016/j.cub.2023.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Pathogenic fungi populate a wide range of environments and infect a diversity of host species. Despite this substantial biological flexibility, the impact of interactions between fungi and their hosts on the evolution of pathogenicity remains unclear. We studied how repeated interactions between the fungus Cryptococcus neoformans and relevant environmental and mammalian host cells-amoeba and mouse macrophages-shape the evolution of this model fungal pathogen. First, using a collection of clinical and environmental isolates of C. neoformans, we characterized a range of survival phenotypes for these strains when exposed to host cells of different species. We then performed serial passages of an environmentally isolated C. neoformans strain through either amoeba or macrophages for ∼75 generations to observe how these interactions select for improved replication within hosts. In one adapted population, we identified a single point mutation in the adenylyl cyclase gene, CAC1, that swept to fixation and confers a strong competitive advantage for growth inside macrophages. Strikingly, this growth advantage in macrophages is inversely correlated with disease severity during mouse infections, suggesting that adaptation to specific host niches can markedly reduce the pathogenicity of these fungi. These results raise intriguing questions about the influence of cyclic AMP (cAMP) signaling on pathogenicity and highlight the role of seemingly small adaptive changes in promoting fundamental shifts in the intracellular behavior and virulence of these important human pathogens.
Collapse
Affiliation(s)
- Zoë A Hilbert
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Joseph M Bednarek
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mara J W Schwiesow
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Krystal Y Chung
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Christian T Moreau
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jessica C S Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Merryman M, Crigler J, Seipelt-Thiemann R, McClelland E. A mutation in C. neoformans mitochondrial NADH dehydrogenase results in increased virulence in mice. Virulence 2021; 11:1366-1378. [PMID: 33103620 PMCID: PMC7588220 DOI: 10.1080/21505594.2020.1831332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cryptococcus neoformans: (H99W) was serially passaged in the invertebrate wax moth Galleria mellonella fifteen times to study how fungal virulence evolves under selection and whether those adaptations affect virulence. The G. mellonella passaged strain (P15) and the pre-passage H99W strains were used to infect three different host models of C. neoformans: C. elegans, G. mellonella, and Balb/c mice. While there was no difference in survival in the invertebrate models, P15 killed mice faster than H99W through both intratracheal and intravenous routes of infection and mice infected intravenously with P15 showed higher fungal burden in the brain. Characterization of the major virulence factors of C. neoformans found that P15 had increased capsule size, GXM release, and melanization. Whole genome sequencing of P15 and H99W revealed two mutations in P15, an insertion in the promoter region of NADH dehydrogenase (CNAG_09000) and an insertion in the LMP1 gene (CNAG_06765). Both ATP production and metabolic rate were higher in P15 compared to H99W. Quantitative RT-PCR suggested that the increased ATP was due to increased RNA levels of NADH dehydrogenase. Thus, adaptation to growth in hemocytes resulted in increased production of ATP, increased metabolic rate, and increased virulence in mice. This was likely due to differential expression of virulence factors, which skewed the host immune response to a less efficient Th2 response, with higher levels of IL-4, IL-10, and TNF-α in the brain. Overall, serial passage experiments have increased our understanding of how this yeast evolves under innate immune selection pressure.
Collapse
Affiliation(s)
- Mitch Merryman
- Department of Biology, Middle Tennessee State University , Murfreesboro, TN, USA
| | - Jacob Crigler
- Department of Biology, Middle Tennessee State University , Murfreesboro, TN, USA
| | | | - Erin McClelland
- Department of Biology, Middle Tennessee State University , Murfreesboro, TN, USA.,M&P Associates , Murfreesboro, TN, USA
| |
Collapse
|
3
|
Step-wise elimination of α-mitochondrial nucleoids and mitochondrial structure as a basis for the strict uniparental inheritance in Cryptococcus neoformans. Sci Rep 2020; 10:2468. [PMID: 32051468 PMCID: PMC7016115 DOI: 10.1038/s41598-020-59277-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/27/2020] [Indexed: 01/24/2023] Open
Abstract
In most sexual eukaryotes, mitochondrial (mt) DNA is uniparentally inherited, although the detailed mechanisms underlying this phenomenon remain controversial. The most widely accepted explanations include the autophagic elimination of paternal mitochondria in the fertilized eggs and the active degradation of paternal mitochondrial DNA. To decode the precise program for the uniparental inheritance, we focused on Cryptococcus neoformans as a model system, in which mtDNA is inherited only from the a-parent, although gametes of a- and α-cells are of equal size and contribute equal amounts of mtDNA to the zygote. In this research, the process of preferential elimination of the mitochondria contributed by the α-parent (α-mitochondria) was studied by fluorescence microscopy and single cell analysis using optical tweezers, which revealed that α-mitochondria are preferentially reduced by the following three steps: (1) preferential reduction of α-mitochondrial (mt) nucleoids and α-mtDNA, (2) degradation of the α-mitochondrial structure and (3) proliferation of remaining mt nucleoids during the zygote development. Furthermore, AUTOPHAGY RELATED GENE (ATG) 8 and the gene encoding mitochondrial endonuclease G (NUC1) were disrupted, and the effects of their disruption on the uniparental inheritance were scrutinized. Disruption of ATG8 (ATG7) and NUC1 did not have severe effects on the uniparental inheritance, but microscopic examination revealed that α-mitochondria lacking mt nucleoids persisted in Δatg8 zygotes, indicating that autophagy is not critical for the uniparental inheritance per se but is responsible for the clearance of mitochondrial structures after the reduction of α-mt nucleoids.
Collapse
|
4
|
McClelland EE, Ramagopal UA, Rivera J, Cox J, Nakouzi A, Prabu MM, Almo SC, Casadevall A. A Small Protein Associated with Fungal Energy Metabolism Affects the Virulence of Cryptococcus neoformans in Mammals. PLoS Pathog 2016; 12:e1005849. [PMID: 27583447 PMCID: PMC5008624 DOI: 10.1371/journal.ppat.1005849] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/06/2016] [Indexed: 12/04/2022] Open
Abstract
The pathogenic yeast Cryptococcus neoformans causes cryptococcosis, a life-threatening fungal disease. C. neoformans has multiple virulence mechanisms that are non-host specific, induce damage and interfere with immune clearance. Microarray analysis of C. neoformans strains serially passaged in mice associated a small gene (CNAG_02591) with virulence. This gene, hereafter identified as HVA1 (hypervirulence-associated protein 1), encodes a protein that has homologs of unknown function in plant and animal fungi, consistent with a conserved mechanism. Expression of HVA1 was negatively correlated with virulence and was reduced in vitro and in vivo in both mouse- and Galleria-passaged strains of C. neoformans. Phenotypic analysis in hva1Δ and hva1Δ+HVA1 strains revealed no significant differences in established virulence factors. Mice infected intravenously with the hva1Δ strain had higher fungal burden in the spleen and brain, but lower fungal burden in the lungs, and died faster than mice infected with H99W or the hva1Δ+HVA1 strain. Metabolomics analysis demonstrated a general increase in all amino acids measured in the disrupted strain and a block in the TCA cycle at isocitrate dehydrogenase, possibly due to alterations in the nicotinamide cofactor pool. Macrophage fungal burden experiments recapitulated the mouse hypervirulent phenotype of the hva1Δ strain only in the presence of exogenous NADPH. The crystal structure of the Hva1 protein was solved, and a comparison of structurally similar proteins correlated with the metabolomics data and potential interactions with NADPH. We report a new gene that modulates virulence through a mechanism associated with changes in fungal metabolism. C. neoformans is a pathogenic yeast that is the causative agent of cryptococcal meningitis. This fungal pathogen causes disease in immune compromised hosts, primarily AIDS patients in developing countries, though it also afflicts organ transplant patients and patients undergoing chemotherapy. There are >600,000 deaths per year and >1 million new infections. Unfortunately, treatment options for C. neoformans are limited and cause high kidney and liver toxicity. Thus, understanding specific steps in pathogenesis may help with design of new therapeutics. We have identified a gene (HVA1) whose absence is associated with a hypervirulent phenotype in mice. Metabolomics analysis suggests that when HVA1 is absent there is a block in the citric acid cycle, while structural analysis of the Hva1 protein suggests a potential interaction with NADPH. Fungal burden experiments in macrophages recapitulate the hypervirulent phenotype in mice only in the presence of exogenous NADPH, suggesting that modulation of NADPH affects virulence. This work adds to the growing list of genes involved in pathogen metabolism that also contribute to virulence and pathogenesis, underscoring the need to better understand the mechanisms of how pathogen metabolism affects virulence.
Collapse
Affiliation(s)
- Erin E. McClelland
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
- * E-mail:
| | - Udupi A. Ramagopal
- Department of Biochemistry and Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Johanna Rivera
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Antonio Nakouzi
- Department of Biochemistry and Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Moses M. Prabu
- M&P Associates Inc., Murfreesboro, Tennesee, United States of America
| | - Steven C. Almo
- Department of Biochemistry and Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, John Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection. Nat Commun 2015; 6:8642. [PMID: 26494419 PMCID: PMC4621775 DOI: 10.1038/ncomms9642] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 12/18/2022] Open
Abstract
The presentation of protein antigens on the cell surface by major histocompatibility complex (MHC) molecules coordinates vertebrate adaptive immune responses, thereby mediating susceptibility to a variety of autoimmune and infectious diseases. The composition of symbiotic microbial communities (the microbiota) is influenced by host immunity and can have a profound impact on host physiology. Here we use an MHC congenic mouse model to test the hypothesis that genetic variation at MHC genes among individuals mediates susceptibility to disease by controlling microbiota composition. We find that MHC genotype significantly influences antibody responses against commensals in the gut, and that these responses are correlated with the establishment of unique microbial communities. Transplantation experiments in germfree mice indicate that MHC-mediated differences in microbiota composition are sufficient to explain susceptibility to enteric infection. Our findings indicate that MHC polymorphisms contribute to defining an individual's unique microbial fingerprint that influences health.
Collapse
|
6
|
Microevolution during serial mouse passage demonstrates FRE3 as a virulence adaptation gene in Cryptococcus neoformans. mBio 2014; 5:e00941-14. [PMID: 24692633 PMCID: PMC3977352 DOI: 10.1128/mbio.00941-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Passage in mice of opportunistic pathogens such as Cryptococcus neoformans is known to increase virulence, but little is known about the molecular mechanisms involved in virulence adaptation. Serial mouse passage of nine environmental strains of serotype A C. neoformans identified two highly adapted virulent strains that showed a 4-fold reduction in time to death after four passages. Transcriptome sequencing expression studies demonstrated increased expression of a FRE3-encoded iron reductase in the two strains but not in a control strain that did not demonstrate increased virulence during mouse passage. FRE3 was shown to express an iron reductase activity and to play a role in iron-dependent growth of C. neoformans. Overexpression of FRE3 in the two original environmental strains increased growth in the macrophage cell line J774.16 and increased virulence. These data demonstrate a role for FRE3 in the virulence of C. neoformans and demonstrate how the increased expression of such a "virulence acquisition gene" during the environment-to-mammal transition, can optimize the virulence of environmental strains in mammalian hosts. IMPORTANCE Cryptococcus neoformans is a significant global fungal pathogen that also resides in the environment. Recent studies have suggested that the organism may undergo microevolution in the host. However, little is known about the permitted genetic changes facilitating the adaptation of environmental strains to mammalian hosts. The present studies subjected environmental strains isolated from several metropolitan areas of the United States to serial passages in mice. Transcriptome sequencing expression studies identified the increased expression of an iron reductase gene, FRE3, in two strains that adapted in mice to become highly virulent, and overexpression of FRE3 recapitulated the increased virulence after mouse passage. Iron reductase in yeast is important to iron uptake in a large number of microbial pathogens. These studies demonstrate the capacity of C. neoformans to show reproducible changes in the expression levels of small numbers of genes termed "virulence adaptation genes" to effectively increase pathogenicity during the environment-to-mammal transition.
Collapse
|
7
|
Barclay VC. Variation in host resistance could limit the spread of more broadly virulent pathogens. Virulence 2013; 4:347-9. [PMID: 23689611 PMCID: PMC3714125 DOI: 10.4161/viru.25061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Kubinak JL, Potts WK. Host resistance influences patterns of experimental viral adaptation and virulence evolution. Virulence 2013; 4:410-8. [PMID: 23645287 DOI: 10.4161/viru.24724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Infectious diseases are major threats to all living systems, so understanding the forces of selection that limit the evolution of more virulent pathogens is of fundamental importance; this includes the practical application of identifying possible mitigation strategies for at-risk host populations. The evolution of more virulent pathogens has been classically understood to be limited by the tradeoff between within-host growth rate and transmissibility. Importantly, heterogeneity among hosts can influence both of these factors. However, despite our substantial understanding of how the immune system operates to control pathogen replication during infection, we have only a limited appreciation of how variability in intrinsic (i.e., genetically determined) levels of host resistance influences patterns of pathogen adaptation and virulence evolution. Here, we describe results from experimental evolution studies using a model host-pathogen (virus-mammal) system; we demonstrate that variability in intrinsic levels of resistance among host genotypes can have significant effects on patterns of pathogen adaptation and virulence evolution during serial passage. Both the magnitude of adaptive response as well as the degree of pathogen specialization was positively correlated with host resistance, while mean overall virulence of post-passage virus was negatively correlated with host resistance. These results are consistent with a model whereby resistant host genotypes impose stronger selection on adapting pathogen populations, which in turn leads to the evolution of more specialized pathogen variants whose overall (i.e., mean) virulence across host genotypes is reduced.
Collapse
Affiliation(s)
- Jason L Kubinak
- Division of Microbiology and Immunology, Department of Pathology; School of Medicine, University of Utah; Salt Lake City, UT USA.
| | | |
Collapse
|
9
|
Experimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types. Proc Natl Acad Sci U S A 2012; 109:3422-7. [PMID: 22323587 DOI: 10.1073/pnas.1112633109] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unprecedented genetic diversity found at vertebrate MHC (major histocompatibility complex) loci influences susceptibility to most infectious and autoimmune diseases. The evolutionary explanation for how these polymorphisms are maintained has been controversial. One leading explanation, antagonistic coevolution (also known as the Red Queen), postulates a never-ending molecular arms race where pathogens evolve to evade immune recognition by common MHC alleles, which in turn provides a selective advantage to hosts carrying rare MHC alleles. This cyclical process leads to negative frequency-dependent selection and promotes MHC diversity if two conditions are met: (i) pathogen adaptation must produce trade-offs that result in pathogen fitness being higher in familiar (i.e., host MHC genotype adapted to) vs. unfamiliar host MHC genotypes; and (ii) this adaptation must produce correlated patterns of virulence (i.e., disease severity). Here we test these fundamental assumptions using an experimental evolutionary approach (serial passage). We demonstrate rapid adaptation and virulence evolution of a mouse-specific retrovirus to its mammalian host across multiple MHC genotypes. Critically, this adaptive response results in trade-offs (i.e., antagonistic pleiotropy) between host MHC genotypes; both viral fitness and virulence is substantially higher in familiar versus unfamiliar MHC genotypes. These data are unique in experimentally confirming the requisite conditions of the antagonistic coevolution model of MHC evolution and providing quantification of fitness effects for pathogen and host. These data help explain the unprecedented diversity of MHC genes, including how disease-causing alleles are maintained.
Collapse
|
10
|
de Eyto E, McGinnity P, Consuegra S, Coughlan J, Tufto J, Farrell K, Megens HJ, Jordan W, Cross T, Stet RJM. Natural selection acts on Atlantic salmon major histocompatibility (MH) variability in the wild. Proc Biol Sci 2007; 274:861-9. [PMID: 17251111 PMCID: PMC2093966 DOI: 10.1098/rspb.2006.0053] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pathogen-driven balancing selection is thought to maintain polymorphism in major histocompatibility (MH) genes. However, there have been few empirical demonstrations of selection acting on MH loci in natural populations. To determine whether natural selection on MH genes has fitness consequences for wild Atlantic salmon in natural conditions, we compared observed genotype frequencies of Atlantic salmon (Salmo salar) surviving in a river six months after their introduction as eggs with frequencies expected from parental crosses. We found significant differences between expected and observed genotype frequencies at the MH class II alpha locus, but not at a MH class I-linked microsatellite or at seven non-MH-linked microsatellite loci. We therefore conclude that selection at the MH class II alpha locus was a result of disease-mediated natural selection, rather than any demographic event. We also show that survival was associated with additive allelic effects at the MH class II alpha locus. Our results have implications for both the conservation of wild salmon stocks and the management of disease in hatchery fish. We conclude that natural or hatchery populations have the best chance of dealing with episodic and variable disease challenges if MH genetic variation is preserved both within and among populations.
Collapse
Affiliation(s)
- Elvira de Eyto
- Aquaculture and Catchment Management Services, Marine Institute, Newport, Co Mayo, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cheng S, Clancy CJ, Zhang Z, Hao B, Wang W, Iczkowski KA, Pfaller MA, Nguyen MH. Uncoupling of oxidative phosphorylation enables Candida albicans to resist killing by phagocytes and persist in tissue. Cell Microbiol 2006; 9:492-501. [PMID: 16987332 DOI: 10.1111/j.1462-5822.2006.00805.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
After five serial passages of Candida albicans SC5314 through murine spleens by intravenous inoculation, we recovered a respiratory mutant (strain P5) that exhibited reduced colony size, stunted growth in glucose-deficient media, increased oxygen consumption and defective carbohydrate assimilation. Strain P5 was indistinguishable from SC5314 by DNA typing methods, but had a greater concentration of mitochondria by SYTO18 staining. Treatment with various inhibitors demonstrated that strain P5's electron transport chain was intact and oxidative phosphorylation was uncoupled. During disseminated candidiasis, the mutant did not kill mice or cause extensive damage to kidneys. The burden of strain P5 within kidneys on the first 3 days of disseminated candidiasis was significantly reduced. By days 28 and 60, it was similar to that at the time of death among mice infected with SC5314, suggesting that the mutant persisted and proliferated without killing mice. Strain P5 was resistant to phagocytosis by neutrophils and macrophages. It was also significantly more resistant to paraquat, suggesting that it is able to neutralize reactive oxygen species. Our findings indicate that regulation of respiration influences the interaction between C. albicans and the host. Uncoupling of oxidative phosphorylation might be a mechanism by which the organism adapts to stressful host environments.
Collapse
Affiliation(s)
- Shaoji Cheng
- The University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Polyandry is often difficult to explain because benefits of the behaviour have proved elusive. In social insects, polyandry increases the genetic diversity of workers within a colony and this has been suggested to improve the resistance of the colony to disease. Here we examine the possible impact of host genetic diversity on parasite evolution by carrying out serial passages of a virulent fungal pathogen through leaf-cutting ant workers of known genotypes. Parasite virulence increased over the nine-generation span of the experiment while spore production decreased. The effect of host relatedness upon virulence appeared limited. However, parasites cycled through more genetically diverse hosts were more likely to go extinct during the experiment and parasites cycled through more genetically similar hosts had greater spore production. These results indicate that host genetic diversity may indeed hinder the ability of parasites to adapt while cycling within social insect colonies.
Collapse
Affiliation(s)
- W O H Hughes
- Department of Population Biology, Institute of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
13
|
Slev PR, Nelson AC, Potts WK. Sensory neurons with MHC-like peptide binding properties: disease consequences. Curr Opin Immunol 2006; 18:608-16. [PMID: 16879954 DOI: 10.1016/j.coi.2006.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 07/21/2006] [Indexed: 01/15/2023]
Abstract
The recent discovery of specialized sensory neurons that bind peptides in an MHC-like fashion has revealed the long-sought odorants used to recognize the MHC genotype and phenotype of other individuals. The odorants are the same MHC peptides used during immune recognition, which provides the molecular logic linking selection acting on MHC-mediated behaviors with selection acting on immune recognition; both processes influence the evolving peptide binding properties of MHC molecules. The primary function of these chemosensory mechanisms for detecting MHC-mediated odors appears to be mating preferences (observed in humans and many vertebrates) that preferentially produce offspring more resistant to both infectious and genetic disease. Recent experiments are beginning to discriminate the relative importance of these different disease-reducing mechanisms.
Collapse
Affiliation(s)
- Patricia R Slev
- Department of Pathology, University of Utah, Salt Lake, Utah 84132, USA
| | | | | |
Collapse
|
14
|
Little TJ, Watt K, Ebert D. PARASITE-HOST SPECIFICITY: EXPERIMENTAL STUDIES ON THE BASIS OF PARASITE ADAPTATION. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01079.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Little TJ, Watt K, Ebert D. PARASITE-HOST SPECIFICITY: EXPERIMENTAL STUDIES ON THE BASIS OF PARASITE ADAPTATION. Evolution 2006. [DOI: 10.1554/05-316.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
McClelland EE, Perrine WT, Potts WK, Casadevall A. Relationship of virulence factor expression to evolved virulence in mouse-passaged Cryptococcus neoformans lines. Infect Immun 2005; 73:7047-50. [PMID: 16177390 PMCID: PMC1230917 DOI: 10.1128/iai.73.10.7047-7050.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serial passage of Cryptococcus neoformans in mice increases virulence relative to the nonpassaged line. Postpassaged lines showed no difference in the expression of most known virulence factors, with the exception that the more virulent lines had smaller capsules in vitro. These data imply that other mechanisms of virulence remain to be discovered.
Collapse
Affiliation(s)
- Erin E McClelland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
17
|
Current awareness on yeast. Yeast 2005. [PMID: 15773059 PMCID: PMC7169799 DOI: 10.1002/yea.1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to keep subscribers up‐to‐date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly‐published material on yeasts. Each bibliography is divided into 10 sections. 1 Books, Reviews & Symposia; 2 General; 3 Biochemistry; 4 Biotechnology; 5 Cell Biology; 6 Gene Expression; 7 Genetics; 8 Physiology; 9 Medical Mycology; 10 Recombinant DNA Technology. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted. (4 weeks journals ‐ search completed 10th. Nov. 2004)
Collapse
|