1
|
Recuerda M, Montoya JCH, Blanco G, Milá B. Repeated evolution on oceanic islands: comparative genomics reveals species-specific processes in birds. BMC Ecol Evol 2024; 24:140. [PMID: 39516810 PMCID: PMC11545622 DOI: 10.1186/s12862-024-02320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the interplay between genetic drift, natural selection, gene flow, and demographic history in driving phenotypic and genomic differentiation of insular populations can help us gain insight into the speciation process. Comparing patterns across different insular taxa subjected to similar selective pressures upon colonizing oceanic islands provides the opportunity to study repeated evolution and identify shared patterns in their genomic landscapes of differentiation. We selected four species of passerine birds (Common Chaffinch Fringilla coelebs/canariensis, Red-billed Chough Pyrrhocorax pyrrhocorax, House Finch Haemorhous mexicanus and Dark-eyed/island Junco Junco hyemalis/insularis) that have both mainland and insular populations. Changes in body size between island and mainland populations were consistent with the island rule. For each species, we sequenced whole genomes from mainland and insular individuals to infer their demographic history, characterize their genomic differentiation, and identify the factors shaping them. We estimated the relative (Fst) and absolute (dxy) differentiation, nucleotide diversity (π), Tajima's D, gene density and recombination rate. We also searched for selective sweeps and chromosomal inversions along the genome. All species shared a marked reduction in effective population size (Ne) upon island colonization. We found diverse patterns of differentiated genomic regions relative to the genome average in all four species, suggesting the role of selection in island-mainland differentiation, yet the lack of congruence in the location of these regions indicates that each species evolved differently in insular environments. Our results suggest that the genomic mechanisms involved in the divergence upon island colonization-such as chromosomal inversions, and historical factors like recurrent selection-differ in each species, despite the highly conserved structure of avian genomes and the similar selective factors involved. These differences are likely influenced by factors such as genetic drift, the polygenic nature of fitness traits and the action of case-specific selective pressures.
Collapse
Affiliation(s)
- María Recuerda
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, Madrid, 28006, Spain.
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, USA.
| | | | - Guillermo Blanco
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Borja Milá
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, Madrid, 28006, Spain.
| |
Collapse
|
2
|
Kanamori S, Díaz LM, Cádiz A, Yamaguchi K, Shigenobu S, Kawata M. Draft genome of six Cuban Anolis lizards and insights into genetic changes during their diversification. BMC Ecol Evol 2022; 22:129. [PMID: 36333669 PMCID: PMC9635203 DOI: 10.1186/s12862-022-02086-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Background Detecting genomic variants and their accumulation processes during species diversification and adaptive radiation is important for understanding the molecular and genetic basis of evolution. Anolis lizards in the West Indies are good models for studying evolutionary mechanisms because of the repeated evolution of their morphology and the ecology. We performed de novo genome assembly of six Cuban Anolis lizards with different ecomorphs and thermal habitats (Anolis isolepis, Anolis allisoni, Anolis porcatus, Anolis allogus, Anolis homolechis, and Anolis sagrei). We carried out a comparative analysis of these genome assemblies to investigate the genetic changes that occurred during their diversification. Results We reconstructed novel draft genomes with relatively long scaffolds and high gene completeness, with the scaffold N50 ranging from 5.56 to 39.79 Mb and vertebrate Benchmarking Universal Single-Copy Orthologs completeness ranging from 77.5% to 86.9%. Comparing the repeat element compositions and landscapes revealed differences in the accumulation process between Cuban trunk-crown and trunk-ground species and separate expansions of several families of LINE in each Cuban trunk-ground species. Duplicated gene analysis suggested that the proportional differences in duplicated gene numbers among Cuban Anolis lizards may be associated with differences in their habitat ranges. Additionally, Pairwise Sequentially Markovian Coalescent analysis suggested that the effective population sizes of each species may have been affected by Cuba’s geohistory. Conclusions We provide draft genomes of six Cuban Anolis lizards and detected species and lineage-specific transposon accumulation and gene copy number changes that may be involved in adaptive evolution. The change processes in the past effective population size was also estimated, and the factors involved were inferred. These results provide new insights into the genetic basis of Anolis lizard diversification and are expected to serve as a stepping stone for the further elucidation of their diversification mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02086-7.
Collapse
Affiliation(s)
- Shunsuke Kanamori
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Luis M. Díaz
- National Museum of Natural History of Cuba, Havana, Cuba
| | - Antonio Cádiz
- grid.412165.50000 0004 0401 9462Faculty of Biology, University of Havana, Havana, Cuba ,grid.26790.3a0000 0004 1936 8606Department of Biology, University of Miami, Coral Gables, USA
| | - Katsushi Yamaguchi
- grid.419396.00000 0004 0618 8593Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Shuji Shigenobu
- grid.419396.00000 0004 0618 8593Trans-Omics Facility, National Institute for Basic Biology, Okazaki, Japan ,grid.275033.00000 0004 1763 208XDepartment of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Masakado Kawata
- grid.69566.3a0000 0001 2248 6943Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Frishkoff LO, Lertzman-Lepofsky G, Mahler DL. Evolutionary opportunity and the limits of community similarity in replicate radiations of island lizards. Ecol Lett 2022; 25:2384-2396. [PMID: 36192673 DOI: 10.1111/ele.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Ecological community structure ultimately depends on the production of community members by speciation. To understand how macroevolution shapes communities, we surveyed Anolis lizard assemblages across elevations on Jamaica and Hispaniola, neighbouring Caribbean islands similar in environment, but contrasting in the richness of their endemic evolutionary radiations. The impact of diversification on local communities depends on available spatial opportunities for speciation within or between ecologically distinct sub-regions. In the spatially expansive lowlands of both islands, communities converge in species richness and average morphology. But communities diverge in the highlands. On Jamaica, where limited highland area restricted diversification, communities remain depauperate and consist largely of elevational generalists. In contrast, a unique fauna of high-elevation specialists evolved in the vast Hispaniolan highlands, augmenting highland richness and driving islandwide turnover in community composition. Accounting for disparate evolutionary opportunities may illuminate when regional diversity will enhance local diversity and help predict when communities should converge in structure.
Collapse
|
4
|
Biogeography of Long-Jawed Spiders Reveals Multiple Colonization of the Caribbean. DIVERSITY 2021. [DOI: 10.3390/d13120622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dispersal ability can affect levels of gene flow thereby shaping species distributions and richness patterns. The intermediate dispersal model of biogeography (IDM) predicts that in island systems, species diversity of those lineages with an intermediate dispersal potential is the highest. Here, we tested this prediction on long-jawed spiders (Tetragnatha) of the Caribbean archipelago using phylogenies from a total of 318 individuals delineated into 54 putative species. Our results support a Tetragnatha monophyly (within our sampling) but reject the monophyly of the Caribbean lineages, where we found low endemism yet high diversity. The reconstructed biogeographic history detects a potential early overwater colonization of the Caribbean, refuting an ancient vicariant origin of the Caribbean Tetragnatha as well as the GAARlandia land-bridge scenario. Instead, the results imply multiple colonization events to and from the Caribbean from the mid-Eocene to late-Miocene. Among arachnids, Tetragnatha uniquely comprises both excellently and poorly dispersing species. A direct test of the IDM would require consideration of three categories of dispersers; however, long-jawed spiders do not fit one of these three a priori definitions, but rather represent a more complex combination of attributes. A taxon such as Tetragnatha, one that readily undergoes evolutionary changes in dispersal propensity, can be referred to as a ‘dynamic disperser’.
Collapse
|
5
|
Spikes M, Rodríguez-Silva R, Bennett KA, Bräger S, Josaphat J, Torres-Pineda P, Ernst A, Havenstein K, Schlupp I, Tiedemann R. A phylogeny of the genus Limia (Teleostei: Poeciliidae) suggests a single-lake radiation nested in a Caribbean-wide allopatric speciation scenario. BMC Res Notes 2021; 14:425. [PMID: 34823576 PMCID: PMC8613956 DOI: 10.1186/s13104-021-05843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The Caribbean is an important global biodiversity hotspot. Adaptive radiations there lead to many speciation events within a limited period and hence are particularly prominent biodiversity generators. A prime example are freshwater fish of the genus Limia, endemic to the Greater Antilles. Within Hispaniola, nine species have been described from a single isolated site, Lake Miragoâne, pointing towards extraordinary sympatric speciation. This study examines the evolutionary history of the Limia species in Lake Miragoâne, relative to their congeners throughout the Caribbean. RESULTS For 12 Limia species, we obtained almost complete sequences of the mitochondrial cytochrome b gene, a well-established marker for lower-level taxonomic relationships. We included sequences of six further Limia species from GenBank (total N = 18 species). Our phylogenies are in concordance with other published phylogenies of Limia. There is strong support that the species found in Lake Miragoâne in Haiti are monophyletic, confirming a recent local radiation. Within Lake Miragoâne, speciation is likely extremely recent, leading to incomplete lineage sorting in the mtDNA. Future studies using multiple unlinked genetic markers are needed to disentangle the relationships within the Lake Miragoâne clade.
Collapse
Affiliation(s)
- Montrai Spikes
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.,Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Rodet Rodríguez-Silva
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Kerri-Ann Bennett
- Department of Life Sciences, The University of the West Indies (Mona Campus), Kingston, Jamaica
| | - Stefan Bräger
- German Oceanographic Museum (DMM), Katharinenberg 14-20, 18439, Stralsund, Germany
| | - James Josaphat
- Caribaea Intitiative and Université Des Antilles, Guadeloupe, Kingston, Jamaica
| | - Patricia Torres-Pineda
- Museo Nacional de Historia Natural Prof. "Eugenio de Jesús Marcano", Avenida Cesar Nicolás Penson, 10204, Santo Domingo, República Dominicana
| | - Anja Ernst
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany
| | - Katja Havenstein
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany
| | - Ingo Schlupp
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.,Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.
| |
Collapse
|
6
|
Myers EA, Mulcahy DG, Falk B, Johnson K, Carbi M, de Queiroz K. Interspecific Gene Flow and Mitochondrial Genome Capture During the Radiation of Jamaican Anolis Lizards (Squamata; Iguanidae). Syst Biol 2021; 71:501-511. [PMID: 34735007 DOI: 10.1093/sysbio/syab089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022] Open
Abstract
Gene flow and reticulation are increasingly recognized as important processes in the diversification of many taxonomic groups. With the increasing ease of collecting genomic data and the development of multispecies coalescent network approaches, such reticulations can be accounted for when inferring phylogeny and diversification. Caribbean Anolis lizards are a classic example of an adaptive radiation in which species have independently radiated on the islands of the Greater Antilles into the same ecomorph classes. Within the Jamaican radiation at least one species, A. opalinus, has been documented to be polyphyletic in its mitochondrial DNA, which could be the result of an ancient reticulation event or incomplete lineage sorting. Here we generate mtDNA and genotyping-by-sequencing (GBS) data and implement gene-tree, species-tree, and multispecies coalescent network methods to infer the diversification of this group. Our mtDNA gene-tree recovers the same relationships previously inferred for this group, which is strikingly different from the species-tree inferred from our GBS data. Posterior predictive simulations suggest that our genomic data violate commonly adopted assumptions of the multispecies coalescent model, so we use network approaches to infer phylogenetic relationships. The inferred network topology contains a reticulation event but does not explain the mtDNA polyphyly observed in this group, however coalescent simulations suggest that the observed mtDNA topology is likely the result of past introgression. How common a signature of gene flow and reticulation is across the radiation of Anolis is unknown; however, the reticulation events that we demonstrate here may have allowed for adaptive evolution, as has been suggested in other, more recent adaptive radiations.
Collapse
Affiliation(s)
- Edward A Myers
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Herpetology, The American Museum of Natural History, New York, NY, USA
| | - Daniel G Mulcahy
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Bryan Falk
- Division of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Kiyomi Johnson
- Science Research Mentoring Program, American Museum of Natural History, Central Park West and 79th St., NY, NY 10024, USA
| | - Marina Carbi
- Science Research Mentoring Program, American Museum of Natural History, Central Park West and 79th St., NY, NY 10024, USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
7
|
Mayer GC, Lazell J. The identity of the introduced green anole (Reptilia: Squamata) of Hawaii and other Pacific islands. P BIOL SOC WASH 2021. [DOI: 10.2988/0006-324x-134.1.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Gregory C. Mayer
- (GCM) Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI, 53405, USA, e-mail:
| | - James Lazell
- (JL) The Conservation Agency, 6 Swinburne Street, Jamestown, RI, 02835, USA
| |
Collapse
|
8
|
Changes in selection pressure can facilitate hybridization during biological invasion in a Cuban lizard. Proc Natl Acad Sci U S A 2021; 118:2108638118. [PMID: 34654747 DOI: 10.1073/pnas.2108638118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 11/18/2022] Open
Abstract
Hybridization is among the evolutionary mechanisms most frequently hypothesized to drive the success of invasive species, in part because hybrids are common in invasive populations. One explanation for this pattern is that biological invasions coincide with a change in selection pressures that limit hybridization in the native range. To investigate this possibility, we studied the introduction of the brown anole (Anolis sagrei) in the southeastern United States. We find that native populations are highly genetically structured. In contrast, all invasive populations show evidence of hybridization among native-range lineages. Temporal sampling in the invasive range spanning 15 y showed that invasive genetic structure has stabilized, indicating that large-scale contemporary gene flow is limited among invasive populations and that hybrid ancestry is maintained. Additionally, our results are consistent with hybrid persistence in invasive populations resulting from changes in natural selection that occurred during invasion. Specifically, we identify a large-effect X chromosome locus associated with variation in limb length, a well-known adaptive trait in anoles, and show that this locus is often under selection in the native range, but rarely so in the invasive range. Moreover, we find that the effect size of alleles at this locus on limb length is much reduced in hybrids among divergent lineages, consistent with epistatic interactions. Thus, in the native range, epistasis manifested in hybrids can strengthen extrinsic postmating isolation. Together, our findings show how a change in natural selection can contribute to an increase in hybridization in invasive populations.
Collapse
|
9
|
Rodriguez‐Silva R, Schlupp I. Biogeography of the West Indies: A complex scenario for species radiations in terrestrial and aquatic habitats. Ecol Evol 2021; 11:2416-2430. [PMID: 33767811 PMCID: PMC7981229 DOI: 10.1002/ece3.7236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/02/2022] Open
Abstract
Studies of the biogeography of the West Indies are numerous but not all taxonomic groups have received the same attention. Many of the contributions to this field have historically focused on terrestrial vertebrates from a perspective closely linked to the classical theory of island biogeography. However, some recent works have questioned whether some of the assumptions of this theory are too simplistic. In this review, we compiled information about the West Indies biogeography based on an extensive and rigorous literature search. While we offer some background of the main hypotheses that explain the origin of the Caribbean biota, our main purpose here is to highlight divergent diversification patterns observed in terrestrial versus aquatic groups of the West Indian biota and also to shed light on the unbalanced number of studies covering the biogeography of these groups of organisms. We use an objective method to compile existing information in the field and produce a rigorous literature review. Our results show that most of the relevant literature in the field is related to the study of terrestrial organisms (mainly vertebrates) and only a small portion covers aquatic groups. Specifically, livebearing fishes show interesting deviations from the species-area relationship predicted by classical island biogeography theory. We found that species richness on the Greater Antilles is positively correlated with island size but also with the presence of elevations showing that not only island area but also mountainous relief may be an important factor determining the number of freshwater species in the Greater Antilles. Our findings shed light on mechanisms that may differently drive speciation in aquatic versus terrestrial environments suggesting that ecological opportunity could outweigh the importance of island size in speciation. Investigations into freshwater fishes of the West Indies offer a promising avenue for understanding origins and subsequent diversification of the Caribbean biota.
Collapse
Affiliation(s)
| | - Ingo Schlupp
- Department of BiologyUniversity of OklahomaNormanOKUSA
| |
Collapse
|
10
|
Genetic structure of Rhinoceros Rock Iguanas, Cyclura cornuta, in the Dominican Republic, with insights into the impact of captive facilities and the taxonomic status of Cyclura on Mona Island. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01290-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Gillespie RG, Bennett GM, De Meester L, Feder JL, Fleischer RC, Harmon LJ, Hendry AP, Knope ML, Mallet J, Martin C, Parent CE, Patton AH, Pfennig KS, Rubinoff D, Schluter D, Seehausen O, Shaw KL, Stacy E, Stervander M, Stroud JT, Wagner C, Wogan GOU. Comparing Adaptive Radiations Across Space, Time, and Taxa. J Hered 2020; 111:1-20. [PMID: 31958131 PMCID: PMC7931853 DOI: 10.1093/jhered/esz064] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/28/2019] [Indexed: 01/02/2023] Open
Abstract
Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life.
Collapse
Affiliation(s)
- Rosemary G Gillespie
- University of California, Berkeley, Essig Museum of Entomology & Department of Environmental Science, Policy, and Management, Berkeley, CA
| | - Gordon M Bennett
- University of California Merced, Life and Environmental Sciences Unit, Merced, CA
| | - Luc De Meester
- University of Leuven, Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Belguim
| | - Jeffrey L Feder
- University of Notre Dame, Dept. of Biological Sciences, Notre Dame, IN
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC
| | - Luke J Harmon
- University of Idaho, Dept. of Biological Sciences, Moscow, ID
| | | | | | | | - Christopher Martin
- University of California Berkeley, Integrative Biology and Museum of Vertebrate Zoology, Berkeley, CA
| | | | - Austin H Patton
- Washington State University, School of Biological Sciences, Pullman, WA
| | - Karin S Pfennig
- University of North Carolina at Chapel Hill, Department of Biology, Chapel Hill, NC
| | - Daniel Rubinoff
- University of Hawaiʻi at Manoa, Department of Plant and Environmental Protection Sciences, Honolulu, HI
| | | | - Ole Seehausen
- Institute of Ecology & Evolution, University of Bern, Bern, BE, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Eawag, Kastanienbaum, LU, Switzerland
| | - Kerry L Shaw
- Cornell University, Neurobiology and Behavior, Tower Road,, Ithaca, NY
| | - Elizabeth Stacy
- University of Nevada Las Vegas, School of Life Sciences, Las Vegas, NV
| | - Martin Stervander
- University of Oregon, Institute of Ecology and Evolution, Eugene, OR
| | - James T Stroud
- Washington University in Saint Louis, Biology, Saint Louis, MO
| | | | - Guinevere O U Wogan
- University of California Berkeley, Environmental Science Policy, and Management, Berkeley, CA
| |
Collapse
|
12
|
Reynolds RG, Kolbe JJ, Glor RE, López-Darias M, Gómez Pourroy CV, Harrison AS, de Queiroz K, Revell LJ, Losos JB. Phylogeographic and phenotypic outcomes of brown anole colonization across the Caribbean provide insight into the beginning stages of an adaptive radiation. J Evol Biol 2020; 33:468-494. [PMID: 31872929 DOI: 10.1111/jeb.13581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/18/2019] [Indexed: 01/15/2023]
Abstract
Some of the most important insights into the ecological and evolutionary processes of diversification and speciation have come from studies of island adaptive radiations, yet relatively little research has examined how these radiations initiate. We suggest that Anolis sagrei is a candidate for understanding the origins of the Caribbean Anolis adaptive radiation and how a colonizing anole species begins to undergo allopatric diversification, phenotypic divergence and, potentially, speciation. We undertook a genomic and morphological analysis of representative populations across the entire native range of A. sagrei, finding that the species originated in the early Pliocene, with the deepest divergence occurring between western and eastern Cuba. Lineages from these two regions subsequently colonized the northern Caribbean. We find that at the broadest scale, populations colonizing areas with fewer closely related competitors tend to evolve larger body size and more lamellae on their toepads. This trend follows expectations for post-colonization divergence from progenitors and convergence in allopatry, whereby populations freed from competition with close relatives evolve towards common morphological and ecological optima. Taken together, our results show a complex history of ancient and recent Cuban diaspora with populations on competitor-poor islands evolving away from their ancestral Cuban populations regardless of their phylogenetic relationships, thus providing insight into the original diversification of colonist anoles at the beginning of the radiation. Our research also supplies an evolutionary framework for the many studies of this increasingly important species in ecological and evolutionary research.
Collapse
Affiliation(s)
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Richard E Glor
- Herpetology Division, Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KA, USA
| | | | | | - Alexis S Harrison
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Liam J Revell
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA.,Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Jonathan B Losos
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO, USA
| |
Collapse
|
13
|
Phylogeographic evidence that the distribution of cryptic euryhaline species in the Gambusia punctata species group in Cuba was shaped by the archipelago geological history. Mol Phylogenet Evol 2019; 144:106712. [PMID: 31862460 DOI: 10.1016/j.ympev.2019.106712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/22/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
Abstract
The main drivers of diversification of freshwater fishes in Cuba are not yet well understood. For example, salt tolerance was thought as the main factor involved in the diversification of Gambusia punctata species group in this archipelago. However, evidence from a recent DNA barcoding survey suggested the presence of cryptic species and no correlation between species delimitation and level of salinity. In this study, we analyzed the cryptic diversification of G. punctata species group in Cuba, based on a comprehensive sampling of its distribution and including habitats with different salinity levels. We evaluated the patterns of molecular divergence of the samples by sequencing a set of mitochondrial DNA (mtDNA) regions and genotyping nine nuclear microsatellite loci. We also used cytochrome b gene (cytb) partial sequences and these microsatellite loci to analyze population structure inside putative species. Five mtDNA well-differentiated haplogroups were found, four of them also identified by the analysis of the microsatellite polymorphism which corresponds to two already recognized species, G. punctata, and G. rhizophorae, and three putative new species. The extent of hybrid zones between these groups is also described. In each group, populations inhabiting environments with contrasting salinity levels were identified, indicating a generalized trait not specific to G. rhizophorae. The geographic distribution of the groups suggested a strong association with major relict territories of the Cuban Archipelago that was periodically joined or split-up by changes in seawater levels and land uplifts. Salinity tolerance might have facilitated sporadic and long-distance oversea dispersal but did not prevent speciation in the Cuban archipelago.
Collapse
|
14
|
Wegener JE, Pita‐Aquino JN, Atutubo J, Moreno A, Kolbe JJ. Hybridization and rapid differentiation after secondary contact between the native green anole ( Anolis carolinensis) and the introduced green anole ( Anolis porcatus). Ecol Evol 2019; 9:4138-4148. [PMID: 31015994 PMCID: PMC6468060 DOI: 10.1002/ece3.5042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 11/24/2022] Open
Abstract
In allopatric species, reproductive isolation evolves through the accumulation of genetic incompatibilities. The degree of divergence required for complete reproductive isolation is highly variable across taxa, which makes the outcome of secondary contact between allopatric species unpredictable. Since before the Pliocene, two species of Anolis lizards, Anolis carolinensis and Anolis porcatus, have been allopatric, yet this period of independent evolution has not led to substantial species-specific morphological differentiation, and therefore, they might not be reproductively isolated. In this study, we determined the genetic consequences of localized, secondary contact between the native green anole, A. carolinensis, and the introduced Cuban green anole, A. porcatus, in South Miami. Using 18 microsatellite markers, we found that the South Miami population formed a genetic cluster distinct from both parental species. Mitochondrial DNA revealed maternal A. porcatus ancestry for 35% of the individuals sampled from this population, indicating a high degree of cytonuclear discordance. Thus, hybridization with A. porcatus, not just population structure within A. carolinensis, may be responsible for the genetic distinctiveness of this population. Using tree-based maximum-likelihood analysis, we found support for a more recent, secondary introduction of A. porcatus to Florida. Evidence that ~33% of the nuclear DNA resulted from a secondary introduction supports the hybrid origin of the green anole population in South Miami. We used multiple lines of evidence and multiple genetic markers to reconstruct otherwise cryptic patterns of species introduction and hybridization. Genetic evidence for a lack of reproductive isolation, as well as morphological similarities between the two species, supports revising the taxonomy of A. carolinensis to include A. porcatus from western Cuba. Future studies should target the current geographic extent of introgression originating from the past injection of genetic material from Cuban green anoles and determine the consequences for the evolutionary trajectory of green anole populations in southern Florida.
Collapse
Affiliation(s)
- Johanna E. Wegener
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode Island
| | | | - Jessica Atutubo
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode Island
| | - Adam Moreno
- Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceRhode Island
- Present address:
College of Veterinary MedicineOhio State UniversityColumbusOhio
| | - Jason J. Kolbe
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode Island
| |
Collapse
|
15
|
Multilocus phylogeny, species age and biogeography of the Lesser Antillean anoles. Mol Phylogenet Evol 2018; 127:682-695. [DOI: 10.1016/j.ympev.2018.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 11/21/2022]
|
16
|
Cádiz A, Nagata N, Díaz LM, Suzuki-Ohno Y, Echenique-Díaz LM, Akashi HD, Makino T, Kawata M. Factors affecting interspecific differences in genetic divergence among populations of Anolis lizards in Cuba. ZOOLOGICAL LETTERS 2018; 4:21. [PMID: 30116552 PMCID: PMC6085692 DOI: 10.1186/s40851-018-0107-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Geographical patterns and degrees of genetic divergence among populations differ between species, reflecting relative potentials for speciation or cladogenesis and differing capacities for environmental adaptation. Identification of factors that contribute to genetic divergence among populations is important to the understanding of why some species exhibit greater interpopulation genetic divergence. In this study, we calculated the mean pairwise genetic distances among populations as species' average genetic divergence by a phylogeny using nuclear and mitochondrial genes of 303 individuals from 33 Cuban Anolis species and estimated species ages by another phylogeny using nuclear and mitochondrial genes of 51 Cuban and 47 non-Cuban Anolis species. We identified factors that influence species' differences in genetic divergence among 26 species of Anolis lizards from Cuba. Species ages, environmental heterogeneity within species ranges, and ecomorph types were considered as factors affecting average genetic divergences among populations. RESULTS The phylogenies presented in this study provide the most comprehensive sampling of Cuban Anolis species to date. The phylogeny showed more conservative evolution of Anolis ecomorphs within Cuba and identified twig anoles as a monophyletic group. Subsequent Phylogenetic Generalized Least Squares (PGLS) analyses showed that species age was positively correlated with species' average genetic divergence among populations. CONCLUSION Although previous studies have focused on factors affecting genetic divergence within species, the present study showed for the first time that species differences in genetic divergence could be largely affected by species age.
Collapse
Affiliation(s)
- Antonio Cádiz
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Faculty of Biology, Havana University, Havana, Cuba
| | - Nobuaki Nagata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Luis M. Díaz
- National Museum of Natural History of Cuba, Havana, Cuba
| | | | | | | | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
17
|
Kahrl AF, Ivanov BM, Valero KCW, Johnson MA. Ecomorphological Variation in Three Species of Cybotoid Anoles. HERPETOLOGICA 2018. [DOI: 10.1655/herpetologica-d-17-00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ariel F. Kahrl
- Zoologiska Institutionen: Etologi, Stockholm University, Stockholm, SE-10691, Sweden
| | | | | | | |
Collapse
|
18
|
Michaelides SN, Goodman RM, Crombie RI, Kolbe JJ. Independent introductions and sequential founder events shape genetic differentiation and diversity of the invasive green anole (Anolis carolinensis) on Pacific Islands. DIVERS DISTRIB 2017. [DOI: 10.1111/ddi.12704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
| | - Rachel M. Goodman
- Department of Biology; Hampden-Sydney College; Hampden Sydney VA USA
| | | | - Jason J. Kolbe
- Department of Biological Sciences; University of Rhode Island; Kingston RI USA
| |
Collapse
|
19
|
|
20
|
Suzuki-Ohno Y, Morita K, Nagata N, Mori H, Abe S, Makino T, Kawata M. Factors restricting the range expansion of the invasive green anole Anolis carolinensis on Okinawa Island, Japan. Ecol Evol 2017. [PMID: 28649347 PMCID: PMC5478079 DOI: 10.1002/ece3.3002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The green anole Anolis carolinensis invaded the Ogasawara Islands in Japan, drove various native species to extinction, and its distribution expanded 14 years after initial establishment. A. carolinensis invaded Okinawa Island, but it has not expanded its distribution in more than 25 years, although its density is extremely high in the southern region. To determine whether A. carolinensis has the potential to expand its distribution on Okinawa Island, we performed phylogenetic analysis of mitochondrial ND2 DNA sequences to study the origin of A. carolinensis that invaded Okinawa Island. We further used a species distribution model (MaxEnt) based on the distribution of native populations in North America to identify ecologically suitable areas on Okinawa Island. Nucleotide sequence analysis shows that the invader A. carolinensis originated in the western part of the Gulf Coast and inland areas of the United States and that a portion of the anoles on Okinawa was not introduced via the Ogasawara Islands. The MaxEnt predictions indicate that most areas in Okinawa Island are suitable for A. carolinensis. Therefore, A. carolinensis may have the potential to expand its distribution in Okinawa Island. The predictions indicate that habitat suitability is high in areas of high annual mean temperature and urbanized areas. The values of precipitation in summer in the northern region of Okinawa Island were higher compared with those of North America, which reduced the habitat suitability in Okinawa Island. Adaptation to low temperatures, an increase in the mean temperature through global warming, and an increase in open environments through land development will likely expand the distribution of A. carolinensis in Okinawa Island. Therefore, we must continue to monitor the introduced populations and be alert to the possibility that city planning that increases open environments may cause their range to expand.
Collapse
Affiliation(s)
- Yukari Suzuki-Ohno
- Department of Ecology and Evolutionary Biology Graduate School of Life Sciences Tohoku University Sendai Miyagi Japan
| | - Kenjiro Morita
- Department of Ecology and Evolutionary Biology Graduate School of Life Sciences Tohoku University Sendai Miyagi Japan
| | - Nobuaki Nagata
- Department of Ecology and Evolutionary Biology Graduate School of Life Sciences Tohoku University Sendai Miyagi Japan
| | - Hideaki Mori
- Ogasawara Division Japan Wildlife Research Center Tokyo Japan
| | - Shintaro Abe
- Naha Nature Conservation Office Ministry of the Environment Naha Okinawa Japan
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology Graduate School of Life Sciences Tohoku University Sendai Miyagi Japan
| | - Masakado Kawata
- Department of Ecology and Evolutionary Biology Graduate School of Life Sciences Tohoku University Sendai Miyagi Japan
| |
Collapse
|
21
|
Identification of evolutionarily significant units in the Cuban endemic damselfly Hypolestes trinitatis (Odonata: Hypolestidae). CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0959-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Poe S, Nieto-montes de oca A, Torres-carvajal O, De Queiroz K, Velasco JA, Truett B, Gray LN, Ryan MJ, Köhler G, Ayala-varela F, Latella I. A Phylogenetic, Biogeographic, and Taxonomic study of all Extant Species of Anolis (Squamata; Iguanidae). Syst Biol 2017; 66:663-697. [DOI: 10.1093/sysbio/syx029] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/21/2017] [Indexed: 11/13/2022] Open
|
23
|
Prates I, Hernandez L, Samelo RR, Carnaval AC. Molecular Identification and Geographic Origin of an Exotic Anole Lizard Introduced to Brazil, with Remarks on Its Natural History. SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2016. [DOI: 10.2994/sajh-d-16-00042.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Ng J, Ossip-Klein AG, Glor RE. Adaptive signal coloration maintained in the face of gene flow in a Hispaniolan Anolis Lizard. BMC Evol Biol 2016; 16:193. [PMID: 27650469 PMCID: PMC5029017 DOI: 10.1186/s12862-016-0763-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/07/2016] [Indexed: 11/17/2022] Open
Abstract
Background Studies of geographic variation can provide insight into the evolutionary processes involved in the early stages of biological diversification. In particular, multiple, replicated cases of geographic trait divergence present a powerful approach to study how patterns of introgression and adaptive divergence can vary with geographic space and time. In this study, we conduct replicated, fine-scaled molecular genetic analyses of striking geographic dewlap color variation of a Hispaniolan Anolis lizard, Anolis distichus, to investigate whether adaptive trait divergence is consistently associated with speciation, whereby genetic divergence is observed with neutral markers, or whether locally adapted traits are maintained in the face of continued gene flow. Results We find instances where shifts in adaptive dewlap coloration across short geographic distances are associated with reproductive isolation as well as maintained in the face of gene flow, suggesting the importance of both processes in maintaining geographic dewlap variation. Conclusion Our study suggests that adaptive dewlap color differences are maintained under strong divergent natural selection, but this divergence does not necessarily lead to anole speciation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0763-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julienne Ng
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA.
| | | | - Richard E Glor
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
25
|
Campbell‐Staton SC, Edwards SV, Losos JB. Climate‐mediated adaptation after mainland colonization of an ancestrally subtropical island lizard,
A
nolis carolinensis. J Evol Biol 2016; 29:2168-2180. [DOI: 10.1111/jeb.12935] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/07/2016] [Accepted: 06/24/2016] [Indexed: 01/08/2023]
Affiliation(s)
| | - S. V. Edwards
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
- Museum of Comparative Zoology Harvard University Cambridge MA USA
| | - J. B. Losos
- Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
- Museum of Comparative Zoology Harvard University Cambridge MA USA
| |
Collapse
|
26
|
Simple Biophysical Model Predicts Faster Accumulation of Hybrid Incompatibilities in Small Populations Under Stabilizing Selection. Genetics 2015; 201:1525-37. [PMID: 26434721 PMCID: PMC4676520 DOI: 10.1534/genetics.115.181685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/23/2015] [Indexed: 01/07/2023] Open
Abstract
Speciation is fundamental to the process of generating the huge diversity of life on Earth. However, we are yet to have a clear understanding of its molecular-genetic basis. Here, we examine a computational model of reproductive isolation that explicitly incorporates a map from genotype to phenotype based on the biophysics of protein–DNA binding. In particular, we model the binding of a protein transcription factor to a DNA binding site and how their independent coevolution, in a stabilizing fitness landscape, of two allopatric lineages leads to incompatibilities. Complementing our previous coarse-grained theoretical results, our simulations give a new prediction for the monomorphic regime of evolution that smaller populations should develop incompatibilities more quickly. This arises as (1) smaller populations have a greater initial drift load, as there are more sequences that bind poorly than well, so fewer substitutions are needed to reach incompatible regions of phenotype space, and (2) slower divergence when the population size is larger than the inverse of discrete differences in fitness. Further, we find longer sequences develop incompatibilities more quickly at small population sizes, but more slowly at large population sizes. The biophysical model thus represents a robust mechanism of rapid reproductive isolation for small populations and large sequences that does not require peak shifts or positive selection. Finally, we show that the growth of DMIs with time is quadratic for small populations, agreeing with Orr’s model, but nonpower law for large populations, with a form consistent with our previous theoretical results.
Collapse
|
27
|
Khatri BS, Goldstein RA. A coarse-grained biophysical model of sequence evolution and the population size dependence of the speciation rate. J Theor Biol 2015; 378:56-64. [PMID: 25936759 PMCID: PMC4457359 DOI: 10.1016/j.jtbi.2015.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/20/2015] [Accepted: 04/20/2015] [Indexed: 11/29/2022]
Abstract
Speciation is fundamental to understanding the huge diversity of life on Earth. Although still controversial, empirical evidence suggests that the rate of speciation is larger for smaller populations. Here, we explore a biophysical model of speciation by developing a simple coarse-grained theory of transcription factor-DNA binding and how their co-evolution in two geographically isolated lineages leads to incompatibilities. To develop a tractable analytical theory, we derive a Smoluchowski equation for the dynamics of binding energy evolution that accounts for the fact that natural selection acts on phenotypes, but variation arises from mutations in sequences; the Smoluchowski equation includes selection due to both gradients in fitness and gradients in sequence entropy, which is the logarithm of the number of sequences that correspond to a particular binding energy. This simple consideration predicts that smaller populations develop incompatibilities more quickly in the weak mutation regime; this trend arises as sequence entropy poises smaller populations closer to incompatible regions of phenotype space. These results suggest a generic coarse-grained approach to evolutionary stochastic dynamics, allowing realistic modelling at the phenotypic level.
Collapse
Affiliation(s)
- Bhavin S Khatri
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK; Division of Infection & Immunity, University College London, London WC1E 6BT, UK.
| | - Richard A Goldstein
- Division of Infection & Immunity, University College London, London WC1E 6BT, UK.
| |
Collapse
|
28
|
Papadopoulou A, Knowles LL. Genomic tests of the species-pump hypothesis: Recent island connectivity cycles drive population divergence but not speciation in Caribbean crickets across the Virgin Islands. Evolution 2015; 69:1501-1517. [DOI: 10.1111/evo.12667] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/13/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Anna Papadopoulou
- Department of Ecology and Evolutionary Biology; Museum of Zoology; University of Michigan; Ann Arbor Michigan 48109
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology; Museum of Zoology; University of Michigan; Ann Arbor Michigan 48109
| |
Collapse
|
29
|
Geneva AJ, Hilton J, Noll S, Glor RE. Multilocus phylogenetic analyses of Hispaniolan and Bahamian trunk anoles (distichus species group). Mol Phylogenet Evol 2015; 87:105-17. [PMID: 25772800 DOI: 10.1016/j.ympev.2015.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 01/31/2023]
Abstract
The distichus species group includes six species and 21 subspecies of trunk ecomorph anoles distributed across Hispaniola and its satellite islands as well as the northern Bahamas. Although this group has long served as a model system for studies of reproductive character displacement, adaptation, behavior and speciation, it has never been the subject of a comprehensive phylogenetic analysis. Our goal here is to generate a multilocus phylogenetic dataset (one mitochondrial and seven nuclear loci) and to use this dataset to infer phylogenetic relationships among the majority of the taxa assigned to the distichus species group. We use these phylogenetic trees to address three topics about the group's evolution. First, we consider longstanding taxonomic controversies about the status of several species and subspecies assigned to the distichus species group. Second, we investigate the biogeographic history of the group and specifically test the hypotheses that historical division of Hispaniola into two paleo-islands contributed to the group's diversification and that Bahamian and Hispaniolan satellite island populations are derived from colonists from the main Hispaniolan landmass. Finally, third, we use comparative phylogenetic analyses to test the hypothesis that divergence between pale yellow and darkly pigmented orange or red dewlap coloration has occurred repeatedly across the distichus species group.
Collapse
Affiliation(s)
- Anthony J Geneva
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| | - Jared Hilton
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| | - Sabina Noll
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| | - Richard E Glor
- Herpetology Division, Biodiversity Institute, University of Kansas, Lawrence, KS 66045, United States; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, United States.
| |
Collapse
|
30
|
Leung MY, Paszkowski C, Russell A. Genetic structure of the endangered Greater Short-horned Lizard (Phrynosoma hernandesi) in Canada: evidence from mitochondrial and nuclear genes. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2014-0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The northern edge of the range of the Greater Short-horned Lizard (Phrynosoma hernandesi Girard, 1858) occurs in western Canada, where the species has “endangered” status and exhibits a patchy distribution. Phylogenetic inference and genetic analyses were employed to investigate the genetic structure of P. hernandesi throughout its Canadian range. One nuclear and two mitochondrial DNA genes were sequenced from 94 lizard tail tips. Overall, sequences from lizards from both Alberta and Saskatchewan displayed very little variability, and the consistent clustering of all the P. hernandesi mitochondrial and nuclear DNA sequences from Canada in both phylogenetic and population genetic analyses is consistent with the lizards from all sampled localities having originated from a single glacial refugium, and with being, until recently (or currently) interconnected genetically. The genetic data obtained so far furnish no information useful for interpreting the species’ present-day patchy distribution patterns or for formulating conservation strategies.
Collapse
Affiliation(s)
- M.N.-Y. Leung
- Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, AB T2N 1N4, Canada
| | - C.A. Paszkowski
- Department of Biological Sciences, University of Alberta, 116 Street and 85th Avenue, Edmonton, AB T6G 2R3, Canada
| | - A.P. Russell
- Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
31
|
Collins CE, Russell AP, Higham TE. Subdigital adhesive pad morphology varies in relation to structural habitat use in the Namib Day Gecko. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12312] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Anthony P. Russell
- Department of Biological Sciences University of Calgary Calgary ABCanada
| | | |
Collapse
|
32
|
Wollenberg KC, Wang IJ, Glor RE, Losos JB. DETERMINISM IN THE DIVERSIFICATION OF HISPANIOLAN TRUNK-GROUND ANOLES (ANOLIS CYBOTESSPECIES COMPLEX). Evolution 2013; 67:3175-90. [DOI: 10.1111/evo.12184] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 06/04/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Katharina C. Wollenberg
- Department of Organismic and Evolutionary Biology & Museum of Comparative Zoology; Harvard University; 26 Oxford St. Cambridge Massachusetts 02134
- Current address: School of Science; Engineering and Mathematics; Bethune-Cookman University; 640 Dr Mary McLeod Bethune Blvd Daytona Beach Florida 32114
| | - Ian J. Wang
- Department of Organismic and Evolutionary Biology & Museum of Comparative Zoology; Harvard University; 26 Oxford St. Cambridge Massachusetts 02134
| | - Richard E. Glor
- Department of Biology; University of Rochester; River Campus Box 270211 Rochester New York 14627
| | - Jonathan B. Losos
- Department of Organismic and Evolutionary Biology & Museum of Comparative Zoology; Harvard University; 26 Oxford St. Cambridge Massachusetts 02134
| |
Collapse
|
33
|
Cádiz A, Nagata N, Katabuchi M, Díaz LM, Echenique-Díaz LM, Akashi HD, Makino T, Kawata M. Relative importance of habitat use, range expansion, and speciation in local species diversity ofAnolislizards in Cuba. Ecosphere 2013. [DOI: 10.1890/es12-00383.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Ascher JM, Geneva AJ, Ng J, Wyatt JD, Glor RE. Phylogenetic analyses of novel squamate adenovirus sequences in wild-caught Anolis lizards. PLoS One 2013; 8:e60977. [PMID: 23593364 PMCID: PMC3622691 DOI: 10.1371/journal.pone.0060977] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/05/2013] [Indexed: 11/19/2022] Open
Abstract
Adenovirus infection has emerged as a serious threat to the health of captive snakes and lizards (i.e., squamates), but we know relatively little about this virus' range of possible hosts, pathogenicity, modes of transmission, and sources from nature. We report the first case of adenovirus infection in the Iguanidae, a diverse family of lizards that is widely-studied and popular in captivity. We report adenovirus infections from two closely-related species of Anolis lizards (anoles) that were recently imported from wild populations in the Dominican Republic to a laboratory colony in the United States. We investigate the evolution of adenoviruses in anoles and other squamates using phylogenetic analyses of adenovirus polymerase gene sequences sampled from Anolis and a range of other vertebrate taxa. These phylogenetic analyses reveal that (1) the sequences detected from each species of Anolis are novel, and (2) adenoviruses are not necessarily host-specific and do not always follow a co-speciation model under which host and virus phylogenies are perfectly concordant. Together with the fact that the Anolis adenovirus sequences reported in our study were detected in animals that became ill and subsequently died shortly after importation while exhibiting clinical signs consistent with acute adenovirus infection, our discoveries suggest the need for renewed attention to biosecurity measures intended to prevent the spread of adenovirus both within and among species of snakes and lizards housed in captivity.
Collapse
Affiliation(s)
- Jill M Ascher
- Department of Laboratory Animal Medicine, University of Rochester Medical Center, Rochester, New York, United States of America.
| | | | | | | | | |
Collapse
|
35
|
Wang IJ, Glor RE, Losos JB. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett 2012; 16:175-82. [DOI: 10.1111/ele.12025] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/18/2012] [Accepted: 10/04/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Ian J. Wang
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge; MA; 02138; USA
| | - Richard E. Glor
- Department of Biology; University of Rochester; Rochester; NY; 14627; USA
| | - Jonathan B. Losos
- Department of Organismic and Evolutionary Biology; Harvard University; Cambridge; MA; 02138; USA
| |
Collapse
|
36
|
Campbell-Staton SC, Goodman RM, Backström N, Edwards SV, Losos JB, Kolbe JJ. Out of Florida: mtDNA reveals patterns of migration and Pleistocene range expansion of the Green Anole lizard (Anolis carolinensis). Ecol Evol 2012; 2:2274-84. [PMID: 23139885 PMCID: PMC3488677 DOI: 10.1002/ece3.324] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 06/09/2012] [Accepted: 06/18/2012] [Indexed: 11/09/2022] Open
Abstract
Anolis carolinensis is an emerging model species and the sole member of its genus native to the United States. Considerable morphological and physiological variation has been described in the species, and the recent sequencing of its genome makes it an attractive system for studies of genome variation. To inform future studies of molecular and phenotypic variation within A. carolinensis, a rigorous account of intraspecific population structure and relatedness is needed. Here, we present the most extensive phylogeographic study of this species to date. Phylogenetic analyses of mitochondrial DNA sequence data support the previous hypothesis of a western Cuban origin of the species. We found five well-supported, geographically distinct mitochondrial haplotype clades throughout the southeastern United States. Most Florida populations fall into one of three divergent clades, whereas the vast majority of populations outside Florida belong to a single, shallowly diverged clade. Genetic boundaries do not correspond to major rivers, but may reflect effects of Pleistocene glaciation events and the Appalachian Mountains on migration and expansion of the species. Phylogeographic signal should be examined using nuclear loci to complement these findings.
Collapse
Affiliation(s)
- Shane C Campbell-Staton
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University Cambridge, MA, 02138
| | | | | | | | | | | |
Collapse
|
37
|
Hagen IJ, Donnellan SC, Bull CM. Phylogeography of the prehensile-tailed skink Corucia zebrata on the Solomon Archipelago. Ecol Evol 2012; 2:1220-34. [PMID: 22833796 PMCID: PMC3402196 DOI: 10.1002/ece3.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/29/2011] [Accepted: 10/31/2011] [Indexed: 11/11/2022] Open
Abstract
The biogeography of islands is often strongly influenced by prior geological events. Corucia zebrata (Squamata: Scincidae) is endemic to the geologically complex Solomon Archipelago in Northern Melanesia. We examined the level of divergence for different island populations of C. zebrata and discussed these patterns in light of Pleistocene land bridges, island isolation, and island age. Corucia zebrata was sampled from 14 locations across the Solomon Archipelago and sequenced at two mitochondrial genes (ND2 and ND4; 1697 bp in total) and four nuclear loci (rhodopsin, an unknown intron, AKAP9, and PTPN12). Measures of genetic divergence, analyses of genetic variation, and Bayesian phylogenetic inference were used and the data assessed in light of geological information. Populations of C. zebrata on separate islands were found to be genetically different from each other, with reciprocal monophyly on mitochondrial DNA. Populations on islands previously connected by Pleistocene land bridges were marginally less divergent from each other than from populations on other nearby but isolated islands. There are indications that C. zebrata has radiated across the eastern islands of the archipelago within the last 1–4 million years. Nuclear loci were not sufficiently informative to yield further information about the phylogeography of C. zebrata on the Solomon Archipelago. Analyses of the mitochondrial data suggest that dispersal between islands has been very limited and that there are barriers to gene flow within the major islands. Islands that have been isolated during the Pleistocene glacial cycles are somewhat divergent in their mitochondrial genotypes, however, isolation by distance (IBD) and recent colonization of isolated but geologically younger islands appear to have had stronger effects on the phylogeography of C. zebrata than the Pleistocene glacial cycles. This contrasts with patterns reported for avian taxa, and highlights the fact that biogeographic regions for island species cannot be directly extrapolated among taxa of differing dispersal ability.
Collapse
|
38
|
Tollis M, Ausubel G, Ghimire D, Boissinot S. Multi-locus phylogeographic and population genetic analysis of Anolis carolinensis: historical demography of a genomic model species. PLoS One 2012; 7:e38474. [PMID: 22685573 PMCID: PMC3369884 DOI: 10.1371/journal.pone.0038474] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
The green anole (Anolis carolinensis) has been widely used as an animal model in physiology and neurobiology but has recently emerged as an important genomic model. The recent sequencing of its genome has shed new light on the evolution of vertebrate genomes and on the process that govern species diversification. Surprisingly, the patterns of genetic diversity within natural populations of this widespread and abundant North American lizard remain relatively unknown. In the present study, we use 10 novel nuclear DNA sequence loci (N = 62 to 152) and one mitochondrial locus (N = 226) to delimit green anole populations and infer their historical demography. We uncovered four evolutionarily distinct and geographically restricted lineages of green anoles using phylogenetics, bayesian clustering, and genetic distance methods. Molecular dating indicates that these lineages last shared a common ancestor ∼2 million years ago. Summary statistics and analysis of the frequency distributions of DNA polymorphisms strongly suggest range-wide expansions in population size. Using Bayesian Skyline Plots, we inferred the timing of population size expansions, which differ across lineages, and found evidence for a relatively recent and rapid westward expansion of green anoles across the Gulf Coastal Plain during the mid-Pleistocene. One surprising result is that the distribution of genetic diversity is not consistent with a latitudinal shift caused by climatic oscillations as is observed for many co-distributed taxa. This suggests that the most recent Pleistocene glacial cycles had a limited impact on the geographic distribution of the green anole at the northern limits of its range.
Collapse
Affiliation(s)
- Marc Tollis
- Biology Department, Queens College, City University of New York, Flushing, New York, United States of America
- Biology Program: Ecology, Evolutionary Biology and Behavior, Graduate Center, City University of New York, New York, New York, United States of America
| | - Gavriel Ausubel
- Biology Department, Queens College, City University of New York, Flushing, New York, United States of America
| | - Dhruba Ghimire
- Biology Department, Queens College, City University of New York, Flushing, New York, United States of America
| | - Stéphane Boissinot
- Biology Department, Queens College, City University of New York, Flushing, New York, United States of America
- Biology Program: Ecology, Evolutionary Biology and Behavior, Graduate Center, City University of New York, New York, New York, United States of America
| |
Collapse
|
39
|
Roesch Goodman K, Welter SC, Roderick GK. Genetic divergence is decoupled from ecological diversification in the Hawaiian Nesosydne planthoppers. Evolution 2012; 66:2798-814. [PMID: 22946804 DOI: 10.1111/j.1558-5646.2012.01643.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Adaptive radiation involves ecological shifts coupled with isolation of gene pools. However, we know little about what drives the initial stages of divergence. We study a system in which ecological diversification is found within a chronologically well-defined geological matrix to provide insight into this enigmatic phase of radiation. We tested the hypothesis that a period of geographic isolation precedes ecological specialization in an adaptive radiation of host-specialized Hawaiian planthoppers. We examined population structure and history using mitochondrial and multiple independent microsatellite loci in a species whose geographic distribution on the island of Hawaii enabled us to observe the chronology of divergence in its very earliest stages. We found that genetic divergence is associated with geographic features but not different plant hosts and that divergence times are very recent and on the same timescales as the dynamic geology of the island. Our results suggest an important role for geography in the dynamics of the early stages of divergence.
Collapse
Affiliation(s)
- Kari Roesch Goodman
- Department of Environmental Science, Policy and Management, 130 Mulford Hall, University of California, Berkeley, California 94720-3114, USA.
| | | | | |
Collapse
|
40
|
Brace S, Barnes I, Powell A, Pearson R, Woolaver LG, Thomas MG, Turvey ST. Population history of the Hispaniolan hutia Plagiodontia aedium (Rodentia: Capromyidae): testing the model of ancient differentiation on a geotectonically complex Caribbean island. Mol Ecol 2012; 21:2239-53. [PMID: 22404699 DOI: 10.1111/j.1365-294x.2012.05514.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hispaniola is a geotectonically complex island consisting of two palaeo-islands that docked c. 10 Ma, with a further geological boundary subdividing the southern palaeo-island into eastern and western regions. All three regions have been isolated by marine barriers during the late Cenozoic and possess biogeographically distinct terrestrial biotas. However, there is currently little evidence to indicate whether Hispaniolan mammals show distributional patterns reflecting this geotectonic history, as the island's endemic land mammal fauna is now almost entirely extinct. We obtained samples of Hispaniolan hutia (Plagiodontia aedium), one of the two surviving Hispaniolan land mammal species, through fieldwork and historical museum collections from seven localities distributed across all three of the island's biogeographic regions. Phylogenetic analysis using mitochondrial DNA (cytochrome b) reveals a pattern of historical allopatric lineage divergence in this species, with the spatial distribution of three distinct hutia lineages biogeographically consistent with the island's geotectonic history. Coalescent modelling, approximate Bayesian computation and approximate Bayes factor analyses support our phylogenetic inferences, indicating near-complete genetic isolation of these biogeographically separate populations and differing estimates of their effective population sizes. Spatial congruence of hutia lineage divergence is not however matched by temporal congruence with divergences in other Hispaniolan taxa or major events in Hispaniola's geotectonic history; divergence between northern and southern hutia lineages dates to c. 0.6 Ma, significantly later than the unification of the palaeo-islands. The three allopatric Plagiodontia populations should all be treated as distinct management units for conservation, with particular attention required for the northern population (low haplotype diversity) and the south-western population (high haplotype diversity but highly threatened).
Collapse
Affiliation(s)
- Selina Brace
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Lieberman BS. Adaptive Radiations in the Context of Macroevolutionary Theory: A Paleontological Perspective. Evol Biol 2012. [DOI: 10.1007/s11692-012-9165-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Abstract
If island biogeography has a sweet spot, it's where islands generate their own species diversity rather than merely taking on mainland immigrants. In birds and other highly dispersive taxa, however, this 'zone of radiation', may be vanishingly small. Darwin's finches and Hawaiian Honeycreepers are among only a handful of examples of island radiation in birds (Price 2008), suggesting that winged powers of dispersal make sufficient isolation from mainland colonists unlikely, while also hindering speciation within and among isolated islands. Nevertheless, two studies in this issue of Molecular Ecology join a string of other recent analyses suggesting that island radiation in birds remains under-appreciated (see also Moyle et al. 2009; Kisel & Barraclough 2010; Rosindell & Phillimore 2011). Melo et al. (2011) use a phylogenetic analysis of white-eyes on islands in the Gulf of Guinea to identify two previously overlooked island radiations, and reveal replicated adaptive divergence on islands where species occur in pairs. Sly et al. (2011), meanwhile, consider possible explanations for speciation and geographic differentiation within a large island, and find the same type of oceanic barriers that are critical to bird speciation across archipelagos may also contribute to divergence that appears to have occurred within a single island.
Collapse
Affiliation(s)
- Richard E Glor
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627, USA.
| |
Collapse
|
43
|
Synergy between Allopatry and Ecology in Population Differentiation and Speciation. INTERNATIONAL JOURNAL OF ECOLOGY 2012. [DOI: 10.1155/2012/273413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The general diversity pattern of the Caribbean anole radiation has been described in detail; however, the actual mechanisms at the origin of their diversification remain controversial. In particular, the role of ecological speciation, and the relative importance of divergence in allopatry and in parapatry, is debated. We describe the genetic structure of anole populations across lineage contact zones and ecotones to investigate the effect of allopatric divergence, natural selection, and the combination of both factors on population differentiation. Allopatric divergence had no significant impact on differentiation across the lineage boundary, while a clear bimodality in genetic and morphological characters was observed across an ecotone within a single lineage. Critically, the strongest differentiation was observed when allopatry and ecology act together, leading to a sharp reduction in gene flow between two lineages inhabiting different habitats. We suggest that, for Caribbean anoles to reach full speciation, a synergistic combination of several historical and ecological factors may be requisite.
Collapse
|
44
|
NG JULIENNE, GLOR RICHARDE. Genetic differentiation among populations of a Hispaniolan trunk anole that exhibit geographical variation in dewlap colour. Mol Ecol 2011; 20:4302-17. [DOI: 10.1111/j.1365-294x.2011.05267.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Sly ND, Townsend AK, Rimmer CC, Townsend JM, Latta SC, Lovette IJ. Ancient islands and modern invasions: disparate phylogeographic histories among Hispaniola's endemic birds. Mol Ecol 2011; 20:5012-24. [PMID: 21449896 DOI: 10.1111/j.1365-294x.2011.05073.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With its large size, complex topography and high number of avian endemics, Hispaniola appears to be a likely candidate for the in situ speciation of its avifauna, despite the worldwide rarity of avian speciation within single islands. We used multilocus comparative phylogeography techniques to examine the pattern and history of divergence in 11 endemic birds representing potential within-island speciation events. Haplotype and allele networks from mitochondrial ND2 and nuclear intron loci reveal a consistent pattern: phylogeographic divergence within or between closely related species is correlated with the likely distribution of ancient sea barriers that once divided Hispaniola into several smaller paleo-islands. Coalescent and mitochondrial clock dating of divergences indicate species-specific response to different geological events over the wide span of the island's history. We found no evidence that ecological or topographical complexity generated diversity, either by creating open niches or by restricting long-term gene flow. Thus, no true within-island speciation appears to have occurred among the species sampled on Hispaniola. Divergence events predating the merging of Hispaniola's paleo-island blocks cannot be considered in situ divergence, and postmerging divergence in response to episodic island segmentation by marine flooding probably represents in situ vicariance or interarchipelago speciation by dispersal. Our work highlights the necessity of considering island geologic history while investigating the speciation-area relationship in birds and other taxa.
Collapse
Affiliation(s)
- Nicholas D Sly
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Smith KL, Harmon LJ, Shoo LP, Melville J. EVIDENCE OF CONSTRAINED PHENOTYPIC EVOLUTION IN A CRYPTIC SPECIES COMPLEX OF AGAMID LIZARDS. Evolution 2011; 65:976-92. [DOI: 10.1111/j.1558-5646.2010.01211.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Glor RE, Laport RG. Are subspecies of Anolis lizards that differ in dewlap color and pattern also genetically distinct? A mitochondrial analysis. Mol Phylogenet Evol 2010; 64:255-60. [PMID: 21075209 DOI: 10.1016/j.ympev.2010.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 10/28/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
Subspecies of Anolis lizards are often defined on the basis of geographic variation in the color and pattern of the dewlap, an extensible throat fan considered central to species recognition and sexual selection. Among the most impressive examples of this phenomenon are two species of trunk anoles found across Hispaniola and the Bahamas: Anolis distichus is divided into 16 subspecies with dewlap colors ranging from deep wine red to pale yellow while Anolis brevirostris is divided into three subspecies with dewlaps ranging from pale yellow to orange. Limited sampling of allozyme data indicates some genetic divergence among subspecies and suggests that they may deserve recognition at the species-level. Our goal here is to use more comprehensive geographic sampling of mtDNA haplotypes to test whether the five subspecies of A. distichus and three subspecies of A. brevirostris that occur in the Dominican Republic correspond with genetically distinct populations that may warrant recognition under the general lineage concept. We obtain an aligned dataset of 1462bp comprised of the genes encoding ND2 and adjacent tRNAs from 76 individuals of A. distichus from 28 localities and 12 individuals of A. brevirostris from five localities. We find that haplotypes sampled from each Dominican subspecies of A. distichus form well-supported and deeply divergent clades (>10% uncorrected sequence divergence). Strong concordance between mtDNA haplotype structure and previously diagnosed phenotypic variation in traits central to interspecific communication (i.e., the dewlap) leads us to hypothesize that each of the presently recognized Dominican subspecies of A. distichus and A. brevirostris deserves elevation to full species status under the general lineage concept.
Collapse
Affiliation(s)
- Richard E Glor
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | |
Collapse
|
48
|
Geneva A, Garrigan D. Population genomics of secondary contact. Genes (Basel) 2010; 1:124-42. [PMID: 24710014 PMCID: PMC3960861 DOI: 10.3390/genes1010124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 11/16/2022] Open
Abstract
One common form of reticulate evolution arises as a consequence of secondary contact between previously allopatric populations. Using extensive coalescent simulations, we describe the conditions for, and extent of, the introgression of genetic material into the genome of a colonizing population from an endemic population. The simulated coalescent histories are sampled from models that describe the evolution of entire chromosomes, thereby allowing the expected length of introgressed haplotypes to be estimated. The results indicate that our ability to identify reticulate evolution from genetic data is highly variable and depends critically upon the duration of the period of allopatry, the timing of the secondary contact event, as well as the sizes of the populations at the time of contact. One particularly interesting result arises when secondary contact occurs close to the time of a severe founder event, in this case, genetic introgression can be substantially more difficult to detect. However, if secondary contact occurs after such a founding event, when the range of the colonizing population increases, introgression is more readily detectable across the genome. This result may have important implications for our ability to detect introgression between ancestrally bottlenecked modern human populations and archaic hominin species, such as Neanderthals.
Collapse
Affiliation(s)
- Anthony Geneva
- Department of Biology, University of Rochester, Rochester, New York, USA.
| | - Daniel Garrigan
- Department of Biology, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
49
|
EALES J, THORPE RS, MALHOTRA A. Colonization history and genetic diversity: adaptive potential in early stage invasions. Mol Ecol 2010; 19:2858-69. [DOI: 10.1111/j.1365-294x.2010.04710.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Yoder JB, Clancey E, Des Roches S, Eastman JM, Gentry L, Godsoe W, Hagey TJ, Jochimsen D, Oswald BP, Robertson J, Sarver BAJ, Schenk JJ, Spear SF, Harmon LJ. Ecological opportunity and the origin of adaptive radiations. J Evol Biol 2010; 23:1581-96. [PMID: 20561138 DOI: 10.1111/j.1420-9101.2010.02029.x] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ecological opportunity--through entry into a new environment, the origin of a key innovation or extinction of antagonists--is widely thought to link ecological population dynamics to evolutionary diversification. The population-level processes arising from ecological opportunity are well documented under the concept of ecological release. However, there is little consensus as to how these processes promote phenotypic diversification, rapid speciation and adaptive radiation. We propose that ecological opportunity could promote adaptive radiation by generating specific changes to the selective regimes acting on natural populations, both by relaxing effective stabilizing selection and by creating conditions that ultimately generate diversifying selection. We assess theoretical and empirical evidence for these effects of ecological opportunity and review emerging phylogenetic approaches that attempt to detect the signature of ecological opportunity across geological time. Finally, we evaluate the evidence for the evolutionary effects of ecological opportunity in the diversification of Caribbean Anolis lizards. Some of the processes that could link ecological opportunity to adaptive radiation are well documented, but others remain unsupported. We suggest that more study is required to characterize the form of natural selection acting on natural populations and to better describe the relationship between ecological opportunity and speciation rates.
Collapse
Affiliation(s)
- J B Yoder
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|