1
|
Xiong P, Schneider RF, Hulsey CD, Meyer A, Franchini P. Conservation and novelty in the microRNA genomic landscape of hyperdiverse cichlid fishes. Sci Rep 2019; 9:13848. [PMID: 31554838 PMCID: PMC6761260 DOI: 10.1038/s41598-019-50124-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/05/2019] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in the post-transcriptional control of messenger RNA (mRNA). These miRNA-mRNA regulatory networks are present in nearly all organisms and contribute to development, phenotypic divergence, and speciation. To examine the miRNA landscape of cichlid fishes, one of the most species-rich families of vertebrates, we profiled the expression of both miRNA and mRNA in a diverse set of cichlid lineages. Among these, we found that conserved miRNAs differ from recently arisen miRNAs (i.e. lineage specific) in average expression levels, number of target sites, sequence variability, and physical clustering patterns in the genome. Furthermore, conserved miRNA target sites tend to be enriched at the 5' end of protein-coding gene 3' UTRs. Consistent with the presumed regulatory role of miRNAs, we detected more negative correlations between the expression of miRNA-mRNA functional pairs than in random pairings. Finally, we provide evidence that novel miRNA targets sites are enriched in genes involved in protein synthesis pathways. Our results show how conserved and evolutionarily novel miRNAs differ in their contribution to the genomic landscape and highlight their particular evolutionary roles in the adaptive diversification of cichlids.
Collapse
Affiliation(s)
- Peiwen Xiong
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Ralf F Schneider
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Marine Ecology, Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), 24105 Kiel, Germany
| | - C Darrin Hulsey
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Paolo Franchini
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
2
|
Fabris G, Dumortier O, Pisani DF, Gautier N, Van Obberghen E. Amino acid-induced regulation of hepatocyte growth: possible role of Drosha. Cell Death Dis 2019; 10:566. [PMID: 31332188 PMCID: PMC6646398 DOI: 10.1038/s41419-019-1779-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/23/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
In an adult healthy liver, hepatocytes are in a quiescent stage unless a physical injury, such as ablation, or a toxic attack occur. Indeed, to maintain their crucial organismal homeostatic role, the damaged or remaining hepatocytes will start proliferating to restore their functional mass. One of the limiting conditions for cell proliferation is amino-acid availability, necessary both for the synthesis of proteins important for cell growth and division, and for the activation of the mTOR pathway, known for its considerable role in the regulation of cell proliferation. The overarching aim of our present work was to investigate the role of amino acids in the regulation of the switch between quiescence and growth of adult hepatocytes. To do so we used non-confluent primary adult rat hepatocytes as a model of partially ablated liver. We discovered that the absence of amino acids induces in primary rat hepatocytes the entrance in a quiescence state together with an increase in Drosha protein, which does not involve the mTOR pathway. Conversely, Drosha knockdown allows the hepatocytes, quiescent after amino-acid deprivation, to proliferate again. Further, hepatocyte proliferation appears to be independent of miRNAs, the canonical downstream partners of Drosha. Taken together, our observations reveal an intriguing non-canonical action of Drosha in the control of growth regulation of adult hepatocytes responding to a nutritional strain, and they may help to design novel preventive and/or therapeutic approaches for hepatic failure.
Collapse
Affiliation(s)
- Gaia Fabris
- Université Côte d'Azur, Inserm, CNRS, IRCAN, Nice, France.,Université Côte d'Azur, CNRS, LP2M, Nice, France
| | | | | | - Nadine Gautier
- Université Côte d'Azur, Inserm, CNRS, IRCAN, Nice, France.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Emmanuel Van Obberghen
- Université Côte d'Azur, CHU, Inserm, CNRS, IRCAN, Nice, France. .,Université Côte d'Azur, CHU, CNRS, LP2M, Nice, France.
| |
Collapse
|
3
|
Cakir O, Candar-Cakir B, Zhang B. Small RNA and degradome sequencing reveals important microRNA function in Astragalus chrysochlorus response to selenium stimuli. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:543-56. [PMID: 25998129 DOI: 10.1111/pbi.12397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 05/23/2023]
Abstract
Selenium (Se), an essential element, plays important roles in human health as well as environmental sustainability. Se hyperaccumulating plants are thought as an alternative selenium resource, recently. Astragalus species are known as hyperaccumulator of Se by converting it to nonaminoacid compounds. However, Se-metabolism-related hyperaccumulation is not elucidated in plants yet. MicroRNAs (miRNAs) are key molecules in many biological and metabolic processes via targeting mRNAs, which may also play an important role in Se accumulation in plants. In this study, we identified 418 known miRNAs, belonging to 380 families, and 151 novel miRNAs induced by Se exposure in Astragalus chyrsochlorus callus. Among known miRNAs, the expression of 287 families was common in both libraries, besides 71 families were expressed only in Se-treated sample, whereas 60 conserved families were expressed in control tissue. miR1507a, miR1869 and miR2867-3p were mostly up-regulated, whereas miR1507-5p and miR8781b were significantly down-regulated by Se exposure. Computational analysis shows that the targets of miRNAs are involved in different types of biological mechanisms including 47 types of cellular component, 103 types of molecular function and 144 types of biological process. Degradome analysis shows that 1256 mRNAs were targeted by 499 miRNAs. We conclude that some known and novel miRNAs such as miR167a, miR319, miR1507a, miR4346, miR7767-3p, miR7800, miR9748 and miR-n93 target transcription factors, disease resistance proteins and some specific genes like cysteine synthase and might be related to plant hormone signal transduction, plant-pathogen interaction and sulphur metabolism pathways.
Collapse
Affiliation(s)
- Ozgur Cakir
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Bilgin Candar-Cakir
- Program of Molecular Biology and Genetics, Institute of Science, Istanbul University, Istanbul, Turkey
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, USA
| |
Collapse
|
4
|
Zhang Y, Nan J, Yu B. OMICS Technologies and Applications in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2016; 7:900. [PMID: 27446130 PMCID: PMC4916227 DOI: 10.3389/fpls.2016.00900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 05/08/2023]
Abstract
Sugar beet is a species of the Chenopodiaceae family. It is an important sugar crop that supplies approximately 35% of the sugar in the world. Sugar beet M14 line is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss. And exhibits tolerance to salt stress. In this review, we have summarized OMICS technologies and applications in sugar beet including M14 for identification of novel genes, proteins related to biotic and abiotic stresses, apomixes and metabolites related to energy and food. An OMICS overview for the discovery of novel genes, proteins and metabolites in sugar beet has helped us understand the complex mechanisms underlying many processes such as apomixes, tolerance to biotic and abiotic stresses. The knowledge gained is valuable for improving the tolerance of sugar beet and other crops to biotic and abiotic stresses as well as for enhancing the yield of sugar beet for energy and food production.
Collapse
Affiliation(s)
- Yongxue Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Jingdong Nan
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Bing Yu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
- *Correspondence: Bing Yu
| |
Collapse
|
5
|
Liu N, Yang J, Guo S, Xu Y, Zhang M. Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing. PLoS One 2013; 8:e57359. [PMID: 23468976 PMCID: PMC3582568 DOI: 10.1371/journal.pone.0057359] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs involved in the post-transcriptional gene regulation and play a critical role in plant growth, development and stresses response. However less is known about miRNAs involvement in grafting behaviors, especially with the watermelon (Citrullus lanatus L.) crop, which is one of the most important agricultural crops worldwide. Grafting method is commonly used in watermelon production in attempts to improve its adaptation to abiotic and biotic stresses, in particular to the soil-borne fusarium wilt disease. In this study, Solexa sequencing has been used to discover small RNA populations and compare miRNAs on genome-wide scale in watermelon grafting system. A total of 11,458,476, 11,614,094 and 9,339,089 raw reads representing 2,957,751, 2,880,328 and 2,964,990 unique sequences were obtained from the scions of self-grafted watermelon and watermelon grafted on-to bottle gourd and squash at two true-leaf stage, respectively. 39 known miRNAs belonging to 30 miRNA families and 80 novel miRNAs were identified in our small RNA dataset. Compared with self-grafted watermelon, 20 (5 known miRNA families and 15 novel miRNAs) and 47 (17 known miRNA families and 30 novel miRNAs) miRNAs were expressed significantly different in watermelon grafted on to bottle gourd and squash, respectively. MiRNAs expressed differentially when watermelon was grafted onto different rootstocks, suggesting that miRNAs might play an important role in diverse biological and metabolic processes in watermelon and grafting may possibly by changing miRNAs expressions to regulate plant growth and development as well as adaptation to stresses. The small RNA transcriptomes obtained in this study provided insights into molecular aspects of miRNA-mediated regulation in grafted watermelon. Obviously, this result would provide a basis for further unravelling the mechanism on how miRNAs information is exchanged between scion and rootstock in grafted watermelon, and its relevance to diverse biological processes and environmental adaptation.
Collapse
Affiliation(s)
- Na Liu
- Laboratory of Genetics Resources & Functional Improvement for Horticultural Plant, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Jinghua Yang
- Laboratory of Genetics Resources & Functional Improvement for Horticultural Plant, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Shaogui Guo
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing, People’s Republic of China
| | - Yong Xu
- National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing, People’s Republic of China
- * E-mail: (YX); (MZ)
| | - Mingfang Zhang
- Laboratory of Genetics Resources & Functional Improvement for Horticultural Plant, Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, People’s Republic of China
- * E-mail: (YX); (MZ)
| |
Collapse
|
6
|
Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu JK. High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC PLANT BIOLOGY 2012; 12:132. [PMID: 22862743 PMCID: PMC3431262 DOI: 10.1186/1471-2229-12-132] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/24/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small RNA molecules that play important regulatory roles in plant development and stress responses. Identification of stress-regulated miRNAs is crucial for understanding how plants respond to environmental stimuli. Abiotic stresses are one of the major factors that limit crop growth and yield. Whereas abiotic stress-regulated miRNAs have been identified in vegetative tissues in several plants, they are not well studied in reproductive tissues such as inflorescences. RESULTS We used Illumina deep sequencing technology to sequence four small RNA libraries that were constructed from the inflorescences of rice plants that were grown under control condition and drought, cold, or salt stress. We identified 227 miRNAs that belong to 127 families, including 70 miRNAs that are not present in the miRBase. We validated 62 miRNAs (including 10 novel miRNAs) using published small RNA expression data in DCL1, DCL3, and RDR2 RNAi lines and confirmed 210 targets from 86 miRNAs using published degradome data. By comparing the expression levels of miRNAs, we identified 18, 15, and 10 miRNAs that were regulated by drought, cold and salt stress conditions, respectively. In addition, we identified 80 candidate miRNAs that originated from transposable elements or repeats, especially miniature inverted-repeat elements (MITEs). CONCLUSION We discovered novel miRNAs and stress-regulated miRNAs that may play critical roles in stress response in rice inflorescences. Transposable elements or repeats, especially MITEs, are rich sources for miRNA origination.
Collapse
Affiliation(s)
- Blanca E Barrera-Figueroa
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Oaxaca, 38601, Mexico
| | - Lei Gao
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Zhigang Wu
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Xuefeng Zhou
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Renyi Liu
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
7
|
Dippold RP, Vadigepalli R, Gonye GE, Patra B, Hoek JB. Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration. Alcohol Clin Exp Res 2012; 37 Suppl 1:E59-69. [PMID: 22823254 DOI: 10.1111/j.1530-0277.2012.01852.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/09/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adaptation to chronic ethanol (EtOH) treatment of rats results in a changed functional state of the liver and greatly inhibits its regenerative ability, which may contribute to the progression of alcoholic liver disease. METHODS In this study, we investigated the effect of chronic EtOH intake on hepatic microRNA (miRNA) expression in male Sprague-Dawley rats during the initial 24 hours of liver regeneration following 70% partial hepatectomy (PHx) using miRNA microarrays. miRNA expression during adaptation to EtOH was investigated using RT-qPCR. Nuclear factor kappa B (NFκB) binding at target miRNA promoters was investigated with chromatin immunoprecipitation. RESULTS Unsupervised clustering of miRNA expression profiles suggested that miRNA expression was more affected by chronic EtOH feeding than by the acute challenge of liver regeneration after PHx. Several miRNAs that were significantly altered by chronic EtOH feeding, including miR-34a, miR-103, miR-107, and miR-122 have been reported to play a role in regulating hepatic metabolism and the onset of these miRNA changes occurred gradually during the time course of EtOH feeding. Chronic EtOH feeding also altered the dynamic miRNA profile during liver regeneration. Promoter analysis predicted a role for NFκB in the immediate-early miRNA response to PHx. NFκB binding at target miRNA promoters in the chronic EtOH-fed group was significantly altered and these changes directly correlated with the observed expression dynamics of the target miRNA. CONCLUSIONS Chronic EtOH consumption alters the hepatic miRNA expression profile such that the response of the metabolism-associated miRNAs occurs during long-term adaptation to EtOH rather than as an acute transient response to EtOH metabolism. Additionally, the dynamic miRNA program during liver regeneration in response to PHx is altered in the chronically EtOH-fed liver and these differences reflect, in part, differences in miRNA expression between the EtOH-adapted and control livers at the baseline state prior to PHx.
Collapse
Affiliation(s)
- Rachael P Dippold
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
8
|
Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1210-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Aubin-Horth N, Renn SCP. Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol Ecol 2009; 18:3763-80. [PMID: 19732339 DOI: 10.1111/j.1365-294x.2009.04313.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenotypic plasticity is the development of different phenotypes from a single genotype, depending on the environment. Such plasticity is a pervasive feature of life, is observed for various traits and is often argued to be the result of natural selection. A thorough study of phenotypic plasticity should thus include an ecological and an evolutionary perspective. Recent advances in large-scale gene expression technology make it possible to also study plasticity from a molecular perspective, and the addition of these data will help answer long-standing questions about this widespread phenomenon. In this review, we present examples of integrative studies that illustrate the molecular and cellular mechanisms underlying plastic traits, and show how new techniques will grow in importance in the study of these plastic molecular processes. These techniques include: (i) heterologous hybridization to DNA microarrays; (ii) next generation sequencing technologies applied to transcriptomics; (iii) techniques for studying the function of noncoding small RNAs; and (iv) proteomic tools. We also present recent studies on genetic model systems that uncover how environmental cues triggering different plastic responses are sensed and integrated by the organism. Finally, we describe recent work on changes in gene expression in response to an environmental cue that persist after the cue is removed. Such long-term responses are made possible by epigenetic molecular mechanisms, including DNA methylation. The results of these current studies help us outline future avenues for the study of plasticity.
Collapse
Affiliation(s)
- Nadia Aubin-Horth
- Département de Sciences biologiques, Université de Montréal, Québec, Canada.
| | | |
Collapse
|
10
|
Storey KB, Storey JM. Tribute to P. L. Lutz: putting life on 'pause'--molecular regulation of hypometabolism. ACTA ACUST UNITED AC 2008; 210:1700-14. [PMID: 17488933 DOI: 10.1242/jeb.02716] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Entry into a hypometabolic state is an important survival strategy for many organisms when challenged by environmental stress, including low oxygen, cold temperatures and lack of food or water. The molecular mechanisms that regulate transitions to and from hypometabolic states, and stabilize long-term viability during dormancy, are proving to be highly conserved across phylogenic lines. A number of these mechanisms were identified and explored using anoxia-tolerant turtles as the model system, particularly from the research contributions made by Dr Peter L. Lutz in his explorations of the mechanisms of neuronal suppression in anoxic brain. Here we review some recent advances in understanding the biochemical mechanisms of metabolic arrest with a focus on ideas such as the strategies used to reorganize metabolic priorities for ATP expenditure, molecular controls that suppress cell functions (e.g. ion pumping, transcription, translation, cell cycle arrest), changes in gene expression that support hypometabolism, and enhancement of defense mechanisms (e.g. antioxidants, chaperone proteins, protease inhibitors) that stabilize macromolecules and promote long-term viability in the hypometabolic state.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | | |
Collapse
|