1
|
Haug C, Haug JT, Haug GT, Müller P, Zippel A, Kiesmüller C, Gauweiler J, Hörnig MK. Fossils in Myanmar amber demonstrate the diversity of anti-predator strategies of Cretaceous holometabolan insect larvae. iScience 2024; 27:108621. [PMID: 38213619 PMCID: PMC10783632 DOI: 10.1016/j.isci.2023.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
Holometabolan larvae are a major part of the animal biomass and an important food source for many animals. Many larvae evolved anti-predator strategies and some of these can even be recognized in fossils. A Lagerstätte known for well-preserved holometabolan larvae is the approximately 100-million-year-old Kachin amber from Myanmar. Fossils can not only allow to identify structural defensive specializations, but also lifestyle and even behavioral aspects. We review here the different defensive strategies employed by various holometabolan larvae found in Kachin amber, also reporting new cases of a leaf-mining hymenopteran caterpillar and a hangingfly caterpillar with extensive spines. This overview demonstrates that already 100 million years ago many modern strategies had already evolved in multiple lineages, but also reveals some cases of now extinct strategies. The repetitive independent evolution of similar strategies in distantly related lineages indicates that several strategies evolved convergently as a result of similar selective pressures.
Collapse
Affiliation(s)
- Carolin Haug
- Ludwig-Maximilians-Universität München (LMU Munich), Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
- GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany
| | - Joachim T. Haug
- Ludwig-Maximilians-Universität München (LMU Munich), Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
- GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany
| | - Gideon T. Haug
- Ludwig-Maximilians-Universität München (LMU Munich), Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | | | - Ana Zippel
- Ludwig-Maximilians-Universität München (LMU Munich), Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Christine Kiesmüller
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Soldmannstr. 23, 17489 Greifswald, Germany
| | - Joshua Gauweiler
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Soldmannstr. 23, 17489 Greifswald, Germany
| | - Marie K. Hörnig
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Soldmannstr. 23, 17489 Greifswald, Germany
- University Medical Center Rostock, Medical Biology and Electron Microscopy Center, Strempelstr. 14, 18057 Rostock, Germany
| |
Collapse
|
2
|
Scaramangas A, Broom M. Aposematic signalling in prey-predator systems: determining evolutionary stability when prey populations consist of a single species. J Math Biol 2022; 85:13. [PMID: 35870017 PMCID: PMC9308619 DOI: 10.1007/s00285-022-01762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 11/25/2022]
Abstract
Aposematism is the signalling of a defence for the deterrence of predators. We presently focus on aposematic organisms that exhibit chemical defences, which are usually signalled by some type of brightly coloured skin pigmentation (as is the case with poison frog species of the Dendrobatidae family), although our treatment is likely transferable to other forms of secondary defence. This setup is not only a natural one to consider but also opens up the possibility for rich mathematical modelling: the strength of aposematic traits (signalling and defence) can be unambiguously realised using variables that are continuously quantifiable, independent from one another and which together define a two-dimensional strategy space wherein the aposematic behaviour of any one organism can be represented by a single point. We presently develop an extensive mathematical model in which we explore the joint co-evolution of aposematic traits within the context of evolutionary stability. Even though empirical and model-based studies are conflicting regarding how aposematic traits are related to one another in nature, the majority of works allude to a positive correlation. We presently suggest that both positively and negatively correlated combinations of traits can achieve evolutionarily stable outcomes and further, that for a given level of signal strength there can be more than one optimal level of defence. Our findings are novel and pertinent to a sizeable body of physical evidence, which we discuss.
Collapse
Affiliation(s)
| | - Mark Broom
- City University of London, London, EC1V 0HB, UK
| |
Collapse
|
3
|
Mattila ALK, Jiggins CD, Saastamoinen M. Condition dependence in biosynthesized chemical defenses of an aposematic and mimetic Heliconius butterfly. Ecol Evol 2022; 12:e9041. [PMID: 35784031 PMCID: PMC9227709 DOI: 10.1002/ece3.9041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/08/2022] Open
Abstract
Aposematic animals advertise their toxicity or unpalatability with bright warning coloration. However, acquiring and maintaining chemical defenses can be energetically costly, and consequent associations with other important traits could shape chemical defense evolution. Here, we have tested whether chemical defenses are involved in energetic trade-offs with other traits, or whether the levels of chemical defenses are condition dependent, by studying associations between biosynthesized cyanogenic toxicity and a suite of key life-history and fitness traits in a Heliconius butterfly under a controlled laboratory setting. Heliconius butterflies are well known for the diversity of their warning color patterns and widespread mimicry and can both sequester the cyanogenic glucosides of their Passiflora host plants and biosynthesize these toxins de novo. We find energetically costly life-history traits to be either unassociated or to show a general positive association with biosynthesized cyanogenic toxicity. More toxic individuals developed faster and had higher mass as adults and a tendency for increased lifespan and fecundity. These results thus indicate that toxicity level of adult butterflies may be dependent on individual condition, influenced by genetic background or earlier conditions, with maternal effects as one strong candidate mechanism. Additionally, toxicity was higher in older individuals, consistent with previous studies indicating accumulation of toxins with age. As toxicity level at death was independent of lifespan, cyanogenic glucoside compounds may have been recycled to release resources relevant for longevity in these long-living butterflies. Understanding the origins and maintenance of variation in defenses is necessary in building a more complete picture of factors shaping the evolution of aposematic and mimetic systems.
Collapse
Affiliation(s)
- Anniina L. K. Mattila
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- HiLIFE – Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Finnish Museum of Natural History (LUOMUS)University of HelsinkiHelsinkiFinland
| | | | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- HiLIFE – Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
4
|
Petschenka G, Halitschke R, Züst T, Roth A, Stiehler S, Tenbusch L, Hartwig C, Gámez JFM, Trusch R, Deckert J, Chalušová K, Vilcinskas A, Exnerová A. Sequestration of defenses against predators drives specialized host plant associations in preadapted milkweed bugs (Heteroptera: Lygaeinae). Am Nat 2022; 199:E211-E228. [DOI: 10.1086/719196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Kikuchi DW, Barfield M, Herberstein ME, Mappes J, Holt RD. The Effect of Predator Population Dynamics on Batesian Mimicry Complexes. Am Nat 2022; 199:406-419. [DOI: 10.1086/718162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- David W. Kikuchi
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany
- Evolutionary Biology, Universität Bielefeld, Konsequez 45, 33615 Bielefeld, Germany
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, Florida 32611
| | - Marie E. Herberstein
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Johanna Mappes
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland; and Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Robert D. Holt
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany
- Department of Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
6
|
Mattila ALK, Jiggins CD, Opedal ØH, Montejo-Kovacevich G, Pinheiro de Castro ÉC, McMillan WO, Bacquet C, Saastamoinen M. Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic Heliconius butterfly. PeerJ 2021; 9:e11523. [PMID: 34178447 PMCID: PMC8216171 DOI: 10.7717/peerj.11523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
Chemical defences against predators underlie the evolution of aposematic coloration and mimicry, which are classic examples of adaptive evolution. Surprisingly little is known about the roles of ecological and evolutionary processes maintaining defence variation, and how they may feedback to shape the evolutionary dynamics of species. Cyanogenic Heliconius butterflies exhibit diverse warning color patterns and mimicry, thus providing a useful framework for investigating these questions. We studied intraspecific variation in de novo biosynthesized cyanogenic toxicity and its potential ecological and evolutionary sources in wild populations of Heliconius erato along environmental gradients, in common-garden broods and with feeding treatments. Our results demonstrate substantial intraspecific variation, including detectable variation among broods reared in a common garden. The latter estimate suggests considerable evolutionary potential in this trait, although predicting the response to selection is likely complicated due to the observed skewed distribution of toxicity values and the signatures of maternal contributions to the inheritance of toxicity. Larval diet contributed little to toxicity variation. Furthermore, toxicity profiles were similar along steep rainfall and altitudinal gradients, providing little evidence for these factors explaining variation in biosynthesized toxicity in natural populations. In contrast, there were striking differences in the chemical profiles of H. erato from geographically distant populations, implying potential local adaptation in the acquisition mechanisms and levels of defensive compounds. The results highlight the extensive variation and potential for adaptive evolution in defense traits for aposematic and mimetic species, which may contribute to the high diversity often found in these systems.
Collapse
Affiliation(s)
- Anniina L K Mattila
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Helsinki Life Science Institute, University of Helsinki, Helsinki, Finland.,Current affiliation: Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Helsinki Life Science Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Briolat ES, Burdfield‐Steel ER, Paul SC, Rönkä KH, Seymoure BM, Stankowich T, Stuckert AMM. Diversity in warning coloration: selective paradox or the norm? Biol Rev Camb Philos Soc 2019; 94:388-414. [PMID: 30152037 PMCID: PMC6446817 DOI: 10.1111/brv.12460] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
Abstract
Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: genetic mechanisms, differences among predators and predator behaviour, and alternative selection pressures upon the signal. The mechanisms producing warning coloration are also important. Detailed studies of the genetic basis of warning signals in some species, most notably Heliconius butterflies, are beginning to shed light on the genetic architecture facilitating or limiting key processes such as the evolution and maintenance of polymorphisms, hybridisation, and speciation. Work on predator behaviour is changing our perception of the predator community as a single homogenous selective agent, emphasising the dynamic nature of predator-prey interactions. Predator variability in a range of factors (e.g. perceptual abilities, tolerance to chemical defences, and individual motivation), suggests that the role of predators is more complicated than previously appreciated. With complex selection regimes at work, polytypisms and polymorphisms may even occur in Müllerian mimicry systems. Meanwhile, phenotypes are often multifunctional, and thus subject to additional biotic and abiotic selection pressures. Some of these selective pressures, primarily sexual selection and thermoregulation, have received considerable attention, while others, such as disease risk and parental effects, offer promising avenues to explore. As well as reviewing the existing evidence from both empirical studies and theoretical modelling, we highlight hypotheses that could benefit from further investigation in aposematic species. Finally by collating known instances of variation in warning signals, we provide a valuable resource for understanding the taxonomic spread of diversity in aposematic signalling and with which to direct future research. A greater appreciation of the extent of variation in aposematic species, and of the selective pressures and constraints which contribute to this once-paradoxical phenomenon, yields a new perspective for the field of aposematic signalling.
Collapse
Affiliation(s)
- Emmanuelle S. Briolat
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
| | - Emily R. Burdfield‐Steel
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
| | - Sarah C. Paul
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
- Department of Chemical EcologyBielefeld UniversityUniversitätsstraße 25, 33615, BielefeldGermany
| | - Katja H. Rönkä
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki, 00014Finland
| | - Brett M. Seymoure
- Department of BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
| | - Theodore Stankowich
- Department of Biological SciencesCalifornia State UniversityLong BeachCA 90840U.S.A.
| | - Adam M. M. Stuckert
- Department of BiologyEast Carolina University1000 E Fifth St, GreenvilleNC 27858U.S.A.
| |
Collapse
|
8
|
Best R, Ruxton GD, Gardner A. Intragroup and intragenomic conflict over chemical defense against predators. Ecol Evol 2018; 8:3322-3329. [PMID: 29607027 PMCID: PMC5869269 DOI: 10.1002/ece3.3926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/13/2018] [Accepted: 01/23/2018] [Indexed: 01/24/2023] Open
Abstract
Insects are often chemically defended against predators. There is considerable evidence for a group-beneficial element to their defenses, and an associated potential for individuals to curtail their own investment in costly defense while benefitting from the investments of others, termed "automimicry." Although females in chemically defended taxa often lay their eggs in clusters, leading to siblings living in close proximity, current models of automimicry have neglected kin-selection effects, which may be expected to curb the evolution of such selfishness. Here, we develop a general theory of automimicry that explicitly incorporates kin selection. We investigate how female promiscuity modulates intragroup and intragenomic conflicts overinvestment into chemical defense, finding that individuals are favored to invest less than is optimal for their group, and that maternal-origin genes favor greater investment than do paternal-origin genes. We translate these conflicts into readily testable predictions concerning gene expression patterns and the phenotypic consequences of genomic perturbations, and discuss how our results may inform gene discovery in relation to economically important agricultural products.
Collapse
Affiliation(s)
- Rebekah Best
- School of Biology University of St Andrews St Andrews UK
| | | | - Andy Gardner
- School of Biology University of St Andrews St Andrews UK
| |
Collapse
|
9
|
Sato Y, Ito K, Kudoh H. Optimal foraging by herbivores maintains polymorphism in defence in a natural plant population. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasuhiro Sato
- Center for Ecological ResearchKyoto University Otsu Shiga Japan
- Department of Plant Life SciencesFaculty of AgricultureRyukoku University Otsu Shiga Japan
| | - Koichi Ito
- Center for Ecological ResearchKyoto University Otsu Shiga Japan
- Department of PsychologyCollege of Life and Environmental SciencesWashington Singer LaboratoriesUniversity of Exeter Exeter UK
| | - Hiroshi Kudoh
- Center for Ecological ResearchKyoto University Otsu Shiga Japan
| |
Collapse
|
10
|
Parameterising a public good: how experiments on predation can be used to predict cheat frequencies. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Abstract
We study the joint adaptive dynamics of n scalar-valued strategies in ecosystems where n is the maximum number of coexisting strategies permitted by the (generalized) competitive exclusion principle. The adaptive dynamics of such saturated systems exhibits special characteristics, which we first demonstrate in a simple example of a host-pathogen-predator model. The main part of the paper characterizes the adaptive dynamics of saturated polymorphisms in general. In order to investigate convergence stability, we give a new sufficient condition for absolute stability of an arbitrary (not necessarily saturated) polymorphic singularity and show that saturated evolutionarily stable polymorphisms satisfy it. For the case [Formula: see text], we also introduce a method to construct different pairwise invasibility plots of the monomorphic population without changing the selection gradients of the saturated dimorphism.
Collapse
|
12
|
Sato Y, Kudoh H. Associational effects against a leaf beetle mediate a minority advantage in defense and growth between hairy and glabrous plants. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9809-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Paul SC, Pell JK, Blount JD. Reproduction in Risky Environments: The Role of Invasive Egg Predators in Ladybird Laying Strategies. PLoS One 2015; 10:e0139404. [PMID: 26488753 PMCID: PMC4619405 DOI: 10.1371/journal.pone.0139404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/12/2015] [Indexed: 12/04/2022] Open
Abstract
Reproductive environments are variable and the resources available for reproduction are finite. If reliable cues about the environment exist, mothers can alter offspring phenotype in a way that increases both offspring and maternal fitness (‘anticipatory maternal effects’—AMEs). Strategic use of AMEs is likely to be important in chemically defended species, where the risk of offspring predation may be modulated by maternal investment in offspring toxin level, albeit at some cost to mothers. Whether mothers adjust offspring toxin levels in response to variation in predation risk is, however, unknown, but is likely to be important when assessing the response of chemically defended species to the recent and pervasive changes in the global predator landscape, driven by the spread of invasive species. Using the chemically defended two-spot ladybird, Adalia bipunctata, we investigated reproductive investment, including egg toxin level, under conditions that varied in the degree of simulated offspring predation risk from larval harlequin ladybirds, Harmonia axyridis. H. axyridis is a highly voracious alien invasive species in the UK and a significant intraguild predator of A. bipunctata. Females laid fewer, larger egg clusters, under conditions of simulated predation risk (P+) than when predator cues were absent (P-), but there was no difference in toxin level between the two treatments. Among P- females, when mean cluster size increased there were concomitant increases in both the mass and toxin concentration of eggs, however when P+ females increased cluster size there was no corresponding increase in egg toxin level. We conclude that, in the face of offspring predation risk, females either withheld toxins or were physiologically constrained, leading to a trade-off between cluster size and egg toxin level. Our results provide the first demonstration that the risk of offspring predation by a novel invasive predator can influence maternal investment in toxins within their offspring.
Collapse
Affiliation(s)
- Sarah C. Paul
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
| | - Judith K. Pell
- J. K. Pell Consulting, Luton, Bedfordshire, United Kingdom
| | - Jonathan D. Blount
- Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Kojima Y, Mori A. Active foraging for toxic prey during gestation in a snake with maternal provisioning of sequestered chemical defences. Proc Biol Sci 2015; 282:20142137. [PMID: 25392472 DOI: 10.1098/rspb.2014.2137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many animals sequester dietary defensive compounds and incorporate them into the offspring, which protects the young against predation. One possible but poorly investigated question is whether females of such species actively prey upon toxic diets. The snake Rhabdophis tigrinus sequesters defensive steroids from toads consumed as prey; it also feeds on other amphibians. Females produce chemically armed offspring in direct proportion to their own level of toad-derived toxins by provisioning the toxins to their eggs. Our field observations of movements and stomach contents of radio-tracked R. tigrinus showed that gravid snakes preyed upon toads by actively foraging in the habitat of toads, even though toads were a scarce resource and toad-searching may incur potential costs. Our Y-maze experiments demonstrated that gravid females were more likely to trail the chemical cues of toads than were males or non-gravid females. These results showed behavioural switching in females and active foraging for scarce, toxic prey during gestation. Because exploitation of toads by gravid females results in their offspring being more richly endowed with prey-derived toxins, active foraging for toxic prey is expected to be an adaptive antipredator trait, which may enhance chemical defence in offspring.
Collapse
Affiliation(s)
- Yosuke Kojima
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Akira Mori
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
Andersson M. Aposematism and crypsis in a rodent: antipredator defence of the Norwegian lemming. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-014-1868-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Ecological pharmacodynamics: prey toxin evolution depends on the physiological characteristics of predators. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Abstract
Many predators quickly learn to avoid attacking aposematic prey. If the prey vary in toxicity, the predators may alternatively learn to capture and taste-sample prey carefully before ingesting or rejecting them (go-slow behaviour). An increase in prey toxicity is generally thought to decrease predation on prey populations. However, while prey with a higher toxin load are more harmful to ingest, they may also be easier to recognize and reject owing to greater distastefulness, which can facilitate a taste-sampling foraging strategy. Here, the classic diet model is used to study the separate effects of taste and toxicity on predator preferences. The taste-sampling process is modelled using signal detection theory. The model is applicable to automimicry and batesian mimicry. It shows that when the defensive toxin is sufficiently distasteful, a mimicry complex may be less profitable to the predator and better protected against predation if the models are moderately toxic than if they are highly toxic. Moreover, taste mimicry can reduce the profitability of the mimicry complex and increase protection against predation. The results are discussed in relation to the selection pressures acting on prey defences and the evolution of mimicry.
Collapse
Affiliation(s)
- Øistein Haugsten Holen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
18
|
S. Jones R, C. Davis S, Speed MP. Defence Cheats Can Degrade Protection of Chemically Defended Prey. Ethology 2012. [DOI: 10.1111/eth.12036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rebecca S. Jones
- Department of Evolution, Ecology and Behaviour; Faculty of Health & Life Sciences; Institute of Integrative Biology; University of Liverpool; Liverpool; UK
| | - Sian C. Davis
- Department of Evolution, Ecology and Behaviour; Faculty of Health & Life Sciences; Institute of Integrative Biology; University of Liverpool; Liverpool; UK
| | - Michael P. Speed
- Department of Evolution, Ecology and Behaviour; Faculty of Health & Life Sciences; Institute of Integrative Biology; University of Liverpool; Liverpool; UK
| |
Collapse
|
19
|
|
20
|
Speed MP, Ruxton GD, Mappes J, Sherratt TN. Why are defensive toxins so variable? An evolutionary perspective. Biol Rev Camb Philos Soc 2012; 87:874-84. [PMID: 22540874 DOI: 10.1111/j.1469-185x.2012.00228.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Defensive toxins are widely used by animals, plants and micro-organisms to deter natural enemies. An important characteristic of such defences is diversity both in the quantity of toxins and the profile of specific defensive chemicals present. Here we evaluate evolutionary and ecological explanations for the persistence of toxin diversity within prey populations, drawing together a range of explanations from the literature, and adding new hypotheses. We consider toxin diversity in three ways: (1) the absence of toxicity in a proportion of individuals in an otherwise toxic prey population (automimicry); (2) broad variation in quantities of toxin within individuals in the same population; (3) variation in the chemical constituents of chemical defence. For each of these phenomena we identify alternative evolutionary explanations for the persistence of variation. One important general explanation is diversifying (frequency- or density-dependent) selection in which either costs of toxicity increase or their benefits decrease with increases in the absolute or relative abundance of toxicity in a prey population. A second major class of explanation is that variation in toxicity profiles is itself nonadaptive. One application of this explanation requires that predator behaviour is not affected by variation in levels or profiles of chemical defence within a prey population, and that there are no cost differences between different quantities or forms of toxins found within a population. Finally, the ecology and life history of the animal may enable some general predictions about toxin variation. For example, in animals which only gain their toxins in their immature forms (e.g. caterpillars on host plants) we may expect a decline in toxicity during adult life (or at least no change). By contrast, when toxins are also acquired during the adult form, we may for example expect the converse, in which young adults have less time to acquire toxicity than older adults. One major conclusion that we draw is that there are good reasons to consider within-species variation in defensive toxins as more than mere ecological noise. Rather there are a number of compelling evolutionary hypotheses which can explain and predict variation in prey toxicity.
Collapse
Affiliation(s)
- Michael P Speed
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, UK.
| | | | | | | |
Collapse
|
21
|
Daly D, Higginson AD, Chen D, Ruxton GD, Speed MP. Density-dependent investment in costly anti-predator defences: an explanation for the weak survival benefit of group living. Ecol Lett 2012; 15:576-83. [PMID: 22487271 DOI: 10.1111/j.1461-0248.2012.01770.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A central explanation for group living across animal taxa is the reduced rate of attack by predators. However, many field observations show a weak or non-existent effect of group size on per capita mortality rates. Herein we resolve this apparent paradox. We found that Pieris brassicae larvae defended themselves less readily when in groups than when alone, in that they were more reluctant to regurgitate in response to simulated attacks and produced less regurgitant. Furthermore, a simple model demonstrates that this reluctance was sufficient to cancel out the benefit from being in a group. This conditional strategy can be understood in terms of the costs and benefits of defences. For grouped individuals, defence is less often required because attack rates are lower and the costs of defence may be higher due to competition for resources. These phenomena are likely to be widespread in facultatively gregarious species that utilise anti-predator defences.
Collapse
Affiliation(s)
- Derek Daly
- Department of Evolution, Faculty of Health and Life Sciences, Institute of Integrative Biology, Ecology and Behaviour, Biosciences Building, University of Liverpool, Crown Street, Liverpool, UK
| | | | | | | | | |
Collapse
|
22
|
Rautio P, Bergvall UA, Tuomi J, Kesti K, Leimar O. Food Selection by Herbivores and Neighbourhood Effects in the Evolution of Plant Defences. ANN ZOOL FENN 2012. [DOI: 10.5735/086.049.0105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Svennungsen TO, Holen ØH, Leimar O. Inducible Defenses: Continuous Reaction Norms or Threshold Traits? Am Nat 2011; 178:397-410. [DOI: 10.1086/661250] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Houle D, Pélabon C, Wagner GP, Hansen TF. Measurement and meaning in biology. QUARTERLY REVIEW OF BIOLOGY 2011; 86:3-34. [PMID: 21495498 DOI: 10.1086/658408] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Measurement--the assignment of numbers to attributes of the natural world--is central to all scientific inference. Measurement theory concerns the relationship between measurements and reality; its goal is ensuring that inferences about measurements reflect the underlying reality we intend to represent. The key principle of measurement theory is that theoretical context, the rationale for collecting measurements, is essential to defining appropriate measurements and interpreting their values. Theoretical context determines the scale type of measurements and which transformations of those measurements can be made without compromising their meaningfulness. Despite this central role, measurement theory is almost unknown in biology, and its principles are frequently violated. In this review, we present the basic ideas of measurement theory and show how it applies to theoretical as well as empirical work. We then consider examples of empirical and theoretical evolutionary studies whose meaningfulness have been compromised by violations of measurement-theoretic principles. Common errors include not paying attention to theoretical context, inappropriate transformations of data, and inadequate reporting of units, effect sizes, or estimation error. The frequency of such violations reveals the importance of raising awareness of measurement theory among biologists.
Collapse
Affiliation(s)
- David Houle
- Centre for Ecological & Evolutionary Synthesis, University of Oslo, 0316 Oslo, Norway.
| | | | | | | |
Collapse
|
25
|
Svennungsen TO, Kisdi É. Evolutionary branching of virulence in a single-infection model. J Theor Biol 2009; 257:408-18. [DOI: 10.1016/j.jtbi.2008.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 10/28/2008] [Accepted: 11/19/2008] [Indexed: 12/01/2022]
|