1
|
Gass JD, Dusek RJ, Hall JS, Hallgrimsson GT, Halldórsson HP, Vignisson SR, Ragnarsdottir SB, Jónsson JE, Krauss S, Wong SS, Wan XF, Akter S, Sreevatsan S, Trovão NS, Nutter FB, Runstadler JA, Hill NJ. Global dissemination of influenza A virus is driven by wild bird migration through arctic and subarctic zones. Mol Ecol 2023; 32:198-213. [PMID: 36239465 PMCID: PMC9797457 DOI: 10.1111/mec.16738] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022]
Abstract
Influenza A viruses (IAV) circulate endemically among many wild aquatic bird populations that seasonally migrate between wintering grounds in southern latitudes to breeding ranges along the perimeter of the circumpolar arctic. Arctic and subarctic zones are hypothesized to serve as ecologic drivers of the intercontinental movement and reassortment of IAVs due to high densities of disparate populations of long distance migratory and native bird species present during breeding seasons. Iceland is a staging ground that connects the East Atlantic and North Atlantic American flyways, providing a unique study system for characterizing viral flow between eastern and western hemispheres. Using Bayesian phylodynamic analyses, we sought to evaluate the viral connectivity of Iceland to proximal regions and how inter-species transmission and reassortment dynamics in this region influence the geographic spread of low and highly pathogenic IAVs. Findings demonstrate that IAV movement in the arctic and subarctic reflects wild bird migration around the perimeter of the circumpolar north, favouring short-distance flights between proximal regions rather than long distance flights over the polar interior. Iceland connects virus movement between mainland Europe and North America, consistent with the westward migration of wild birds from mainland Europe to Northeastern Canada and Greenland. Though virus diffusion rates were similar among avian taxonomic groups in Iceland, gulls play an outsized role as sinks of IAVs from other avian hosts prior to onward migration. These data identify patterns of virus movement in northern latitudes and inform future surveillance strategies related to seasonal and emergent IAVs with potential public health concern.
Collapse
Affiliation(s)
- Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University
| | | | | | | | | | - Solvi Runar Vignisson
- University of Iceland’s Research Centre in Suðurnes
- Suðurnes Science and Learning Center
| | | | | | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children’s Research Hospital
| | - Sook-San Wong
- Department of Infectious Diseases, St. Jude Children’s Research Hospital
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia
- Bond Life Sciences Center, University of Missouri, Columbia
- Department of Electronic Engineering and Computer Science, University of Missouri, Columbia
| | - Sadia Akter
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia
- Bond Life Sciences Center, University of Missouri, Columbia
- Department of Electronic Engineering and Computer Science, University of Missouri, Columbia
| | | | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University
| | - Nichola J. Hill
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University
- Department of Biology, University of Massachusetts, Boston
| |
Collapse
|
2
|
Hill NJ, Bishop MA, Trovão NS, Ineson KM, Schaefer AL, Puryear WB, Zhou K, Foss AD, Clark DE, MacKenzie KG, Gass JD, Borkenhagen LK, Hall JS, Runstadler JA. Ecological divergence of wild birds drives avian influenza spillover and global spread. PLoS Pathog 2022; 18:e1010062. [PMID: 35588106 PMCID: PMC9119557 DOI: 10.1371/journal.ppat.1010062] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/01/2022] [Indexed: 01/21/2023] Open
Abstract
The diversity of influenza A viruses (IAV) is primarily hosted by two highly divergent avian orders: Anseriformes (ducks, swans and geese) and Charadriiformes (gulls, terns and shorebirds). Studies of IAV have historically focused on Anseriformes, specifically dabbling ducks, overlooking the diversity of hosts in nature, including gull and goose species that have successfully adapted to human habitats. This study sought to address this imbalance by characterizing spillover dynamics and global transmission patterns of IAV over 10 years at greater taxonomic resolution than previously considered. Furthermore, the circulation of viral subtypes in birds that are either host-adapted (low pathogenic H13, H16) or host-generalist (highly pathogenic avian influenza—HPAI H5) provided a unique opportunity to test and extend models of viral evolution. Using Bayesian phylodynamic modelling we uncovered a complex transmission network that relied on ecologically divergent bird hosts. The generalist subtype, HPAI H5 was driven largely by wild geese and swans that acted as a source for wild ducks, gulls, land birds, and domestic geese. Gulls were responsible for moving HPAI H5 more rapidly than any other host, a finding that may reflect their long-distance, pelagic movements and their immuno-naïve status against this subtype. Wild ducks, long viewed as primary hosts for spillover, occupied an optimal space for viral transmission, contributing to geographic expansion and rapid dispersal of HPAI H5. Evidence of inter-hemispheric dispersal via both the Pacific and Atlantic Rims was detected, supporting surveillance at high latitudes along continental margins to achieve early detection. Both neutral (geographic expansion) and non-neutral (antigenic selection) evolutionary processes were found to shape subtype evolution which manifested as unique geographic hotspots for each subtype at the global scale. This study reveals how a diversity of avian hosts contribute to viral spread and spillover with the potential to improve surveillance in an era of rapid global change. Our study provides novel insights into the biology of influenza A virus (IAV), which is timely in view of the unusually large number of animal and human cases of highly pathogenic avian influenza (HPAI) H5 across Europe, Asia, Africa and North America. Currently we face challenges with predicting how the avian reservoir will influence IAV spread because the mechanisms by which different subtypes disperse are not well understood. Our study sought to address this knowledge gap by systematically comparing the evolutionary dynamics that drive IAV transmission across subtypes and bird hosts with the goal of identifying spillover pathways at the wild-domestic interface. By analyzing the evolution of IAV over 10 years at greater taxonomic resolution than previously considered, we uncovered a complex transmission network that relied on ecologically divergent bird hosts. Domestic birds were responsible for slow but steady range expansion of HPAI H5, while wild birds such as geese, swans, gulls and ducks contibuted to rapid but episodic dispersal via uniquely different pathways. By assessing how virus-host systems are coupled, findings from this study have the potential to refine and enhance global surveillance and outbreak prediction.
Collapse
Affiliation(s)
- Nichola J. Hill
- Department of Biology, University of Massachusetts, Boston, Massachusetts, United States of America
- * E-mail:
| | - Mary Anne Bishop
- Prince William Sound Science Center, Cordova, Alaska, United States of America
| | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katherine M. Ineson
- U.S. Fish and Wildlife Service, Hadley, Massachusetts, United States of America
| | - Anne L. Schaefer
- Prince William Sound Science Center, Cordova, Alaska, United States of America
| | - Wendy B. Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| | - Katherine Zhou
- College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alexa D. Foss
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| | - Daniel E. Clark
- Division of Water Supply Protection, Massachusetts Department of Conservation and Recreation, West Boylston, Massachusetts, United States of America
| | - Kenneth G. MacKenzie
- Division of Water Supply Protection, Massachusetts Department of Conservation and Recreation, West Boylston, Massachusetts, United States of America
| | - Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| | - Laura K. Borkenhagen
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| | - Jeffrey S. Hall
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
3
|
Harrison A, Woodard PF, Mallory ML, Rausch J. Sympatrically breeding congeneric seabirds ( Stercorarius spp.) from Arctic Canada migrate to four oceans. Ecol Evol 2022; 12:e8451. [PMID: 35127008 PMCID: PMC8794761 DOI: 10.1002/ece3.8451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/06/2022] Open
Abstract
Polar systems of avian migration remain unpredictable. For seabirds nesting in the Nearctic, it is often difficult to predict which of the world's oceans birds will migrate to after breeding. Here, we report on three related seabird species that migrated across four oceans following sympatric breeding at a central Canadian high Arctic nesting location. Using telemetry, we tracked pomarine jaeger (Stercorarius pomarinus, n = 1) across the Arctic Ocean to the western Pacific Ocean; parasitic jaeger (S. parasiticus, n = 4) to the western Atlantic Ocean, and long-tailed jaeger (S. longicaudus, n = 2) to the eastern Atlantic Ocean and western Indian Ocean. We also report on extensive nomadic movements over ocean during the postbreeding period (19,002 km) and over land and ocean during the prebreeding period (5578 km) by pomarine jaeger, an irruptive species whose full migrations and nomadic behavior have been a mystery. While the small sample sizes in our study limit the ability to make generalizable inferences, our results provide a key input to the knowledge of jaeger migrations. Understanding the routes and migratory divides of birds nesting in the Arctic region has implications for understanding both the glacial refugia of the past and the Anthropocene-driven changes in the future.
Collapse
Affiliation(s)
- Autumn‐Lynn Harrison
- Migratory Bird CenterSmithsonian Conservation Biology Institute, National Zoological ParkWashingtonDistrict of ColumbiaUSA
| | - Paul F. Woodard
- Canadian Wildlife Service, Northern RegionYellowknifeNTCanada
| | | | - Jennie Rausch
- Canadian Wildlife Service, Northern RegionYellowknifeNTCanada
| |
Collapse
|
4
|
Sivakumar AH, Sheldon D, Winner K, Burt CS, Horton KG. A weather surveillance radar view of Alaskan avian migration. Proc Biol Sci 2021; 288:20210232. [PMID: 33947241 DOI: 10.1098/rspb.2021.0232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Monitoring avian migration within subarctic regions of the globe poses logistical challenges. Populations in these regions often encounter the most rapid effects of changing climates, and these seasonally productive areas are especially important in supporting bird populations-emphasizing the need for monitoring tools and strategies. To this end, we leverage the untapped potential of weather surveillance radar data to quantify active migration through the airspaces of Alaska. We use over 400 000 NEXRAD radar scans from seven stations across the state between 1995 and 2018 (86% of samples derived from 2013 to 2018) to measure spring and autumn migration intensity, phenology and directionality. A large bow-shaped terrestrial migratory system spanning the southern two-thirds of the state was identified, with birds generally moving along a northwest-southeast diagonal axis east of the 150th meridian, and along a northeast-southwest axis west of this meridian. Spring peak migration ranged from 3 May to 30 May and between, 18 August and 12 September during the autumn, with timing across stations predicted by longitude, rather than latitude. Across all stations, the intensity of migration was greatest during the autumn as compared to spring, highlighting the opportunity to measure seasonal indices of net breeding productivity for this important system as additional years of radar measurements are amassed.
Collapse
Affiliation(s)
| | - Daniel Sheldon
- College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kevin Winner
- College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, USA.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Carolyn S Burt
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - Kyle G Horton
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Åkesson S, Grönroos J, Bianco G. Autumn migratory orientation and route choice in early and late dunlins Calidris alpina captured at a stopover site in Alaska. Biol Open 2021; 10:260593. [PMID: 33913474 PMCID: PMC8096618 DOI: 10.1242/bio.058655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022] Open
Abstract
We investigated the migratory orientation of early and late captured dunlins, Calidris alpina, by recording their migratory activity in circular orientation cages during autumn at a staging site in southwest Alaska and performed route simulations to the wintering areas. Two races of dunlins breeding in Alaska have different wintering grounds in North America (Pacific Northwest), and East Asia. Dunlins caught early in autumn (presumably Calidris alpinapacifica) oriented towards their wintering areas (east-southeast; ESE) supporting the idea that they migrate nonstop over the Gulf of Alaska to the Pacific Northwest. We found no difference in orientation between adult and juveniles, nor between fat and lean birds or under clear and overcast skies demonstrating that age, energetic status and cloud cover did not affect the dunlins’ migratory orientation. Later in autumn, we recorded orientation responses towards south-southwest suggesting arrival of the northern subspecies Calidris alpinaarcticola at our site. Route simulations revealed multiple compass mechanisms were compatible with the initial direction of early dunlins wintering in the Pacific Northwest, and for late dunlins migrating to East Asia. Future high-resolution tracking would reveal routes, stopover use including local movements and possible course shifts during migration from Alaska to wintering sites on both sides of the north Pacific Ocean. Summary: Orientation experiments with dunlins captured in Alaska during autumn migration confirm orientation to distant wintering areas. Route simulations revealed multiple compass mechanisms were compatible with the initial direction of early dunlins wintering in the Pacific Northwest, and for dunlins migrating to East Asia.
Collapse
Affiliation(s)
- Susanne Åkesson
- Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, 22362 Lund, Sweden
| | - Johanna Grönroos
- Department of Environmental Science and Bioscience, Kristianstad University, 29188 Kristianstad, Sweden
| | - Giuseppe Bianco
- Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, 22362 Lund, Sweden
| |
Collapse
|
6
|
Li D, Davison G, Lisovski S, Battley PF, Ma Z, Yang S, How CB, Watkins D, Round P, Yee A, Srinivasan V, Teo C, Teo R, Loo A, Leong CC, Er K. Shorebirds wintering in Southeast Asia demonstrate trans-Himalayan flights. Sci Rep 2020; 10:21232. [PMID: 33311583 PMCID: PMC7732824 DOI: 10.1038/s41598-020-77897-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Many birds wintering in the Indian subcontinent fly across the Himalayas during migration, including Bar-headed Geese (Anser indicus), Demoiselle Cranes (Anthropoides virgo) and Ruddy Shelducks (Tadorna ferruginea). However, little is known about whether shorebirds migrate across the Himalayas from wintering grounds beyond the Indian subcontinent. Using geolocators and satellite tracking devices, we demonstrate for the first time that Common Redshanks (Tringa totanus) and Whimbrels (Numenius phaeopus) wintering in Singapore can directly fly over the Himalayas to reach breeding grounds in the Qinghai-Tibet Plateau and north-central Russia respectively. The results also show that migratory shorebirds wintering in Southeast Asia can use both the Central Asian Flyway and the East Asian-Australasian Flyway. For Redshanks, westerly-breeding birds crossed the Himalayas while more easterly breeders on the Plateau migrated east of the Himalayas. For Whimbrels, an individual that crossed the Himalayas was probably from a breeding population that was different from the others that migrated along the coast up the East Asian-Australasian Flyway. The minimum required altitude of routes of trans-Himalayan Redshanks were no higher on average than those of eastern migrants, but geolocator temperature data indicate that birds departing Singapore flew at high elevations even when not required to by topography, suggesting that the Himalayan mountain range may be less of a barrier than assumed.
Collapse
Affiliation(s)
- David Li
- National Parks Board, Singapore, 718925, Singapore.
| | | | - Simeon Lisovski
- Alfred-Wegener-Institute Helmholtz Centre for Marine and Polar Research, Potsdam, Germany
| | - Phil F Battley
- Wildlife & Ecology Group, Massey University, Palmerston North, 4442, New Zealand
| | - Zhijun Ma
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Shufen Yang
- National Parks Board, Singapore, 718925, Singapore
| | | | - Doug Watkins
- Australasian Wader Studies Group, Carlton, VIC, 3053, Australia
| | - Philip Round
- Department of Biology, Mahidol University, Bangkok, 10400, Thailand
| | - Alex Yee
- National Parks Board, Singapore, 718925, Singapore
| | | | - Clarice Teo
- National Parks Board, Singapore, 718925, Singapore
| | - Robert Teo
- National Parks Board, Singapore, 718925, Singapore
| | - Adrian Loo
- National Parks Board, Singapore, 718925, Singapore
| | | | - Kenneth Er
- National Parks Board, Singapore, 718925, Singapore
| |
Collapse
|
7
|
Krietsch J, Valcu M, Kempenaers B. Wind conditions influence breeding season movements in a nomadic polygynous shorebird. Proc Biol Sci 2020; 287:20192789. [PMID: 32075527 PMCID: PMC7031675 DOI: 10.1098/rspb.2019.2789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nomadism is a behaviour where individuals respond to environmental variability with movements that seem unpredictable in timing and direction. In contrast to migration, the mechanisms underlying nomadic movements remain largely unknown. Here, we focus on a form of apparent nomadism in a polygynous shorebird, the pectoral sandpiper (Calidris melanotos). Local mating opportunities are unpredictable and most males sampled multiple sites across a considerable part of their breeding range. We test the hypothesis that individuals decided which part of the breeding range to sample in a given season based on the prevailing wind conditions. Using movement data from 80 males in combination with wind data from a global reanalysis model, we show that male pectoral sandpipers flew with wind support more often than expected by chance. Stronger wind support led to increased ground speed and was associated with a longer flight range. Long detours (loop-like flights) can be explained by individuals flying initially with the wind. Individuals did not fly westwards into the Russian Arctic without wind support, but occasionally flew eastwards into the North American Arctic against strong headwinds. Wind support might be less important for individuals flying eastwards, because their autumn migration journey will be shorter. Our study suggests that individuals of a species with low site fidelity choose their breeding site opportunistically based on the prevailing wind conditions.
Collapse
Affiliation(s)
- Johannes Krietsch
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, 82319 Seewiesen, Germany
| |
Collapse
|
8
|
Climate change could overturn bird migration: Transarctic flights and high-latitude residency in a sea ice free Arctic. Sci Rep 2019; 9:17767. [PMID: 31780706 PMCID: PMC6883031 DOI: 10.1038/s41598-019-54228-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/06/2019] [Indexed: 11/08/2022] Open
Abstract
Climate models predict that by 2050 the Arctic Ocean will be sea ice free each summer. Removing this barrier between the Atlantic and the Pacific will modify a wide range of ecological processes, including bird migration. Using published information, we identified 29 arctic-breeding seabird species, which currently migrate in the North Atlantic and could shift to a transarctic migration towards the North Pacific. We also identified 24 arctic-breeding seabird species which may shift from a migratory strategy to high-arctic year-round residency. To illustrate the biogeographical consequences of such drastic migratory shifts, we performed an in-depth study of little auks (Alle alle), the most numerous artic seabird. Coupling species distribution models and climatic models, we assessed the adequacy of future wintering and breeding areas for transarctic migrants and high-arctic year-round residents. Further, we used a mechanistic bioenergetics model (Niche Mapper), to compare the energetic costs of current little auk migration in the North Atlantic with potential transarctic and high-arctic residency strategies. Surprisingly, our results indicate that transarctic little auk migration, from the North Atlantic towards the North Pacific, may only be half as costly, energetically, than high-arctic residency or migration to the North Atlantic. Our study illustrates how global warming may radically modify the biogeography of migratory species, and provides a general methodological framework linking migratory energetics and spatial ecology.
Collapse
|
9
|
Mine J, Uchida Y, Sharshov K, Sobolev I, Shestopalov A, Saito T. Phylogeographic evidence for the inter- and intracontinental dissemination of avian influenza viruses via migration flyways. PLoS One 2019; 14:e0218506. [PMID: 31242207 PMCID: PMC6594620 DOI: 10.1371/journal.pone.0218506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 01/31/2023] Open
Abstract
Genetically related highly pathogenic avian influenza viruses (HPAIVs) of H5N6 subtype caused outbreaks simultaneously in East Asia and Europe—geographically distinct regions—during winter 2017–2018. This situation prompted us to consider whether the application of phylogeographic analysis to a particular gene segment of AIVs could provide clues for understanding how AIV had been disseminated across the continent. Here, the N6 NA genes of influenza viruses isolated across the world were subjected to phylogeographic analysis to illustrate the inter- and intracontinental dissemination of AIVs. Those isolated in East Asia during winter and in Mongolia/Siberia during summer were comingled within particular clades of the phylogeographic tree. For AIVs in one clade, their dissemination in eastern Eurasia extended from Yakutia, Russia, in the north to East Asia in the south. AIVs in western Asia, Europe, and Mongolia were also comingled within other clades, indicating that Mongolia/Siberia plays an important role in the dissemination of AIVs across the Eurasian continent. Mongolia/Siberia may therefore have played a role in the simultaneous outbreaks of H5N6 HPAIVs in Europe and East Asia during the winter of 2017–2018. In addition to the long-distance intracontinental disseminations described above, intercontinental disseminations of AIVs between Eurasia and Africa and between Eurasia and North America were also observed. Integrating these results and known migration flyways suggested that the migration of wild birds and the overlap of flyways, such as that observed in Mongolia/Siberia and along the Alaskan Peninsula, contributed to the long-distance intra- and intercontinental dissemination of AIVs. These findings highlight the importance of understanding the movement of migratory birds and the dynamics of AIVs in breeding areas—especially where several migration flyways overlap—in forecasting outbreaks caused by HPAIVs.
Collapse
Affiliation(s)
- Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Ivan Sobolev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- * E-mail:
| |
Collapse
|
10
|
Galaktionov KV, Blasco-Costa I. Microphallus ochotensis sp. nov. (Digenea, Microphallidae) and relative merits of two-host microphallid life cycles. Parasitol Res 2018; 117:1051-1068. [PMID: 29397437 DOI: 10.1007/s00436-018-5782-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/23/2018] [Indexed: 01/17/2023]
Abstract
A new digenean species, Microphallus ochotensis sp. nov., was described from the intestine of Pacific eiders (Somateria mollissima v-nigrum) from the north of the Sea of Okhotsk. It differs from other microphallids in the structure of the metraterm, which consists of two distinct parts: a sac with spicule-like structures and a short muscular duct opening into the genital atrium. Mi. ochotensis forms a monophyletic clade together with other congeneric species in phylograms derived from the 28S and ITS2 rRNA gene. Its dixenous life cycle was elucidated with the use of the same molecular markers. Encysted metacercariae infective for birds develop inside sporocysts in the first intermediate host, an intertidal mollusc Falsicingula kurilensis. The morphology of metacercariae and adults was described with an emphasis on the structure of terminal genitalia. Considering that Falsicingula occurs at the Pacific coast of North America and that the Pacific eider is capable of trans-continental flights, the distribution of Mi. ochotensis might span the Pacific coast of Alaska and Canada. The range of its final hosts may presumably include other benthos-feeding marine ducks as well as shorebirds. We suggest that a broad occurrence of two-host life cycles in microphallids is associated with parasitism in birds migrating along sea coasts. The chances that migrating birds would stop at a site where both first and second intermediate hosts occur are relatively low. The presence of a single molluscan host in the life cycle increases the probability of transmission.
Collapse
Affiliation(s)
- Kirill V Galaktionov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, 199034, Russia. .,Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - Isabel Blasco-Costa
- Natural History Museum of Geneva, Route de Malagnou 1, CH-1208, Geneva, Switzerland
| |
Collapse
|
11
|
McCloskey SE, Uher-Koch BD, Schmutz JA, Fondell TF. International migration patterns of Red-throated Loons (Gavia stellata) from four breeding populations in Alaska. PLoS One 2018; 13:e0189954. [PMID: 29320572 PMCID: PMC5761837 DOI: 10.1371/journal.pone.0189954] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2017] [Indexed: 11/26/2022] Open
Abstract
Identifying post-breeding migration and wintering distributions of migratory birds is important for understanding factors that may drive population dynamics. Red-throated Loons (Gavia stellata) are widely distributed across Alaska and currently have varying population trends, including some populations with recent periods of decline. To investigate population differentiation and the location of migration pathways and wintering areas, which may inform population trend patterns, we used satellite transmitters (n = 32) to describe migration patterns of four geographically separate breeding populations of Red-throated Loons in Alaska. On average (± SD) Red-throated Loons underwent long (6,288 ± 1,825 km) fall and spring migrations predominantly along coastlines. The most northern population (Arctic Coastal Plain) migrated westward to East Asia and traveled approximately 2,000 km farther to wintering sites than the three more southerly populations (Seward Peninsula, Yukon-Kuskokwim Delta, and Copper River Delta) which migrated south along the Pacific coast of North America. These migration paths are consistent with the hypothesis that Red-throated Loons from the Arctic Coastal Plain are exposed to contaminants in East Asia. The three more southerly breeding populations demonstrated a chain migration pattern in which the more northerly breeding populations generally wintered in more northerly latitudes. Collectively, the migration paths observed in this study demonstrate that some geographically distinct breeding populations overlap in wintering distribution while others use highly different wintering areas. Red-throated Loon population trends in Alaska may therefore be driven by a wide range of effects throughout the annual cycle.
Collapse
Affiliation(s)
- Sarah E McCloskey
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Brian D Uher-Koch
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Joel A Schmutz
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| | - Thomas F Fondell
- U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America
| |
Collapse
|
12
|
Takemae N, Tsunekuni R, Sharshov K, Tanikawa T, Uchida Y, Ito H, Soda K, Usui T, Sobolev I, Shestopalov A, Yamaguchi T, Mine J, Ito T, Saito T. Five distinct reassortants of H5N6 highly pathogenic avian influenza A viruses affected Japan during the winter of 2016-2017. Virology 2017; 512:8-20. [PMID: 28892736 DOI: 10.1016/j.virol.2017.08.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023]
Abstract
To elucidate the evolutionary pathway, we sequenced the entire genomes of 89 H5N6 highly pathogenic avian influenza viruses (HPAIVs) isolated in Japan during winter 2016-2017 and 117 AIV/HPAIVs isolated in Japan and Russia. Phylogenetic analysis showed that at least 5 distinct genotypes of H5N6 HPAIVs affected poultry and wild birds during that period. Japanese H5N6 isolates shared a common genetic ancestor in 6 of 8 genomic segments, and the PA and NS genes demonstrated 4 and 2 genetic origins, respectively. Six gene segments originated from a putative ancestral clade 2.3.4.4 H5N6 virus that was a possible genetic reassortant among Chinese clade 2.3.4.4 H5N6 HPAIVs. In addition, 2 NS clusters and a PA cluster in Japanese H5N6 HPAIVs originated from Chinese HPAIVs, whereas 3 distinct AIV-derived PA clusters were evident. These results suggest that migratory birds were important in the spread and genetic diversification of clade 2.3.4.4 H5 HPAIVs.
Collapse
Affiliation(s)
- Nobuhiro Takemae
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Ryota Tsunekuni
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Kirill Sharshov
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Taichiro Tanikawa
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Hiroshi Ito
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Kosuke Soda
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Tatsufumi Usui
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Ivan Sobolev
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Alexander Shestopalov
- Research Institute of Experimental and Clinical Medicine, 2, Timakova street, Novosibirsk 630117, Russia
| | - Tsuyoshi Yamaguchi
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand
| | - Toshihiro Ito
- The Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, Tottori 680-8550, Japan
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Thailand-Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok 10900, Thailand; United Graduate School of Veterinary Sciences, Gifu University, 1-1, Yanagito, Gifu, Gifu 501-1112, Japan.
| |
Collapse
|
13
|
Galaktionov KV. Transmission of parasites in the coastal waters of the Arctic seas and possible effect of climate change. BIOL BULL+ 2017. [DOI: 10.1134/s1062359016110054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change. J Helminthol 2017; 91:387-408. [DOI: 10.1017/s0022149x17000232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractThis review analyses the scarce available data on biodiversity and transmission of helminths in Arctic coastal ecosystems and the potential impact of climate changes on them. The focus is on the helminths of seabirds, dominant parasites in coastal ecosystems. Their fauna in the Arctic is depauperate because of the lack of suitable intermediate hosts and unfavourable conditions for species with free-living larvae. An increasing proportion of crustaceans in the diet of Arctic seabirds would result in a higher infection intensity of cestodes and acanthocephalans, and may also promote the infection of seabirds with non-specific helminths. In this way, the latter may find favourable conditions for colonization of new hosts. Climate changes may alter the composition of the helminth fauna, their infection levels in hosts and ways of transmission in coastal communities. Immigration of boreal invertebrates and fish into Arctic seas may allow the circulation of helminths using them as intermediate hosts. Changing migratory routes of animals would alter the distribution of their parasites, facilitating, in particular, their trans-Arctic transfer. Prolongation of the seasonal ‘transmission window’ may increase the parasitic load on host populations. Changes in Arctic marine food webs would have an overriding influence on the helminths’ circulation. This process may be influenced by the predicted decreased of salinity in Arctic seas, increased storm activity, coastal erosion, ocean acidification, decline of Arctic ice, etc. Greater parasitological research efforts are needed to assess the influence of factors related to Arctic climate change on the transmission of helminths.
Collapse
|
15
|
Structure of freshwater zooplankton communities from tundra waterbodies in the Lena River Delta, Russian Arctic, with a discussion on new records of glacial relict copepods. Polar Biol 2017. [DOI: 10.1007/s00300-017-2087-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Life cycle and biology of Tristriata anatis (Digenea: Notocotylidae): morphological and molecular approaches. Parasitol Res 2016; 116:45-59. [DOI: 10.1007/s00436-016-5260-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/08/2016] [Indexed: 10/20/2022]
|
17
|
Novichkova AA, Chertoprud ES. Fauna of microcrustaceans (Cladocera: Copepoda) of shallow freshwater ecosystems of Wrangel Island (Russian Far East). J NAT HIST 2015. [DOI: 10.1080/00222933.2015.1056269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Hahn S, Emmenegger T, Lisovski S, Amrhein V, Zehtindjiev P, Liechti F. Variable detours in long-distance migration across ecological barriers and their relation to habitat availability at ground. Ecol Evol 2014; 4:4150-60. [PMID: 25505540 PMCID: PMC4242566 DOI: 10.1002/ece3.1279] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/28/2014] [Accepted: 09/21/2014] [Indexed: 11/17/2022] Open
Abstract
Migration detours, the spatial deviation from the shortest route, are a widespread phenomenon in migratory species, especially if barriers must be crossed. Moving longer distances causes additional efforts in energy and time, and to be adaptive, this should be counterbalanced by favorable condition en route. We compared migration patterns of nightingales that travelled along different flyways from their European breeding sites to the African nonbreeding sites. We tested for deviations from shortest routes and related the observed and expected routes to the habitat availability at ground during autumn and spring migration. All individuals flew detours of varying extent. Detours were largest and seasonally consistent in western flyway birds, whereas birds on the central and eastern flyways showed less detours during autumn migration, but large detours during spring migration (eastern flyway birds). Neither migration durations nor the time of arrival at destination were related to the lengths of detours. Arrival at the breeding site was nearly synchronous in birds flying different detours. Flying detours increased the potential availability of suitable broad-scale habitats en route only along the western flyway. Habitat availability on observed routes remained similar or even decreased for individuals flying detours on the central or the eastern flyway as compared to shortest routes. Thus, broad-scale habitat distribution may partially explain detour performance, but the weak detour-habitat association along central and eastern flyways suggests that other factors shape detour extent regionally. Prime candidate factors are the distribution of small suitable habitat patches at local scale as well as winds specific for the region and altitude.
Collapse
Affiliation(s)
- Steffen Hahn
- Department of Bird Migration, Swiss Ornithological Institute Sempach, Switzerland
| | - Tamara Emmenegger
- Department of Bird Migration, Swiss Ornithological Institute Sempach, Switzerland
| | - Simeon Lisovski
- Centre for Integrative Ecology, Deakin University Geelong, Vic., Australia
| | - Valentin Amrhein
- Zoological Institute, University of Basel Basel, Switzerland ; Research Station Petite Camargue Alsacienne Saint-Louis, France
| | - Pavel Zehtindjiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences Sofia, Bulgaria
| | - Felix Liechti
- Department of Bird Migration, Swiss Ornithological Institute Sempach, Switzerland
| |
Collapse
|
19
|
Brydegaard M, Samuelsson P, Kudenov MW, Svanberg S. On the exploitation of mid-infrared iridescence of plumage for remote classification of nocturnal migrating birds. APPLIED SPECTROSCOPY 2013; 67:477-490. [PMID: 23643036 DOI: 10.1366/12-06860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A challenging task in ornithology lies in identifying high-altitude nocturnal migrating bird species and genders. While the current approaches including radar, lunar obscuration, and single-band thermal imaging provide means of detection, a more detailed spectral or polarimetric analysis of light has the potential for retrieval of additional information whereby the species and sex could be determined. In this paper, we explore remote classification opportunities provided by iridescent features within feathers in the mid-infrared region. Our approach first involves characterizing the microstructural features of the feather by using rotation and straining, and a scheme for their remote detection is proposed by correlating these microstructural changes to spectral and polarimetric effects. Furthermore, we simulate the spectral signature of the entire bird by using a model that demonstrates how classification would be achieved. Finally, we apply infrared hyperspectral polarization imaging, showing that the net iridescent effect persists for the bird as a whole.
Collapse
Affiliation(s)
- Mikkel Brydegaard
- Atomic Physics Division, Lund University, P.O. Box 118, 221 00 Lund, Sweden.
| | | | | | | |
Collapse
|
20
|
Life cycles, molecular phylogeny and historical biogeography of the 'pygmaeus' microphallids (Digenea: Microphallidae): widespread parasites of marine and coastal birds in the Holarctic. Parasitology 2012; 139:1346-60. [PMID: 22717011 DOI: 10.1017/s0031182012000583] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The 'pygmaeus' microphallids (MPG) are a closely related group of 6 digenean (Platyhelminthes: Trematoda) Microphallus species that share a derived 2-host life cycle in which metacercariae develop inside daughter sporocysts in the intermediate host (intertidal and subtidal gastropods, mostly of the genus Littorina) and are infective to marine birds (ducks, gulls and waders). Here we investigate MPG transmission patterns in coastal ecosystems and their diversification with respect to historical events, host switching and host-parasite co-evolution. Species phylogenies and phylogeographical reconstructions are estimated on the basis of 28S, ITS1 and ITS2 rDNA data and we use a combination of analyses to test the robustness and stability of the results, and the likelihood of alternative biogeographical scenarios. Results demonstrate that speciation within the MPG was not associated with co-speciation with either the first intermediate or final hosts, but rather by host-switching events coincident with glacial cycles in the Northern Hemisphere during the late Pliocene/Pleistocene. These resulted in the expansion of Pacific biota into the Arctic-North Atlantic and periodic isolation of Atlantic and Pacific populations. Thus we hypothesize that contemporary species of MPG and their host associations resulted from fragmentation of populations in regional refugia during stadials, and their subsequent range expansion from refugial centres during interstadials.
Collapse
|
21
|
Lundin P, Samuelsson P, Svanberg S, Runemark A, Åkesson S, Brydegaard M. Remote nocturnal bird classification by spectroscopy in extended wavelength ranges. APPLIED OPTICS 2011; 50:3396-3411. [PMID: 21743546 DOI: 10.1364/ao.50.003396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present optical methods at a wide range of wavelengths for remote classification of birds. The proposed methods include eye-safe fluorescence and depolarization lidar techniques, passive scattering spectroscopy, and infrared (IR) spectroscopy. In this paper we refine our previously presented method of remotely classifying birds with the help of laser-induced β-keratin fluorescence. Phenomena of excitation quenching are studied in the laboratory and are theoretically discussed in detail. It is shown how the ordered microstructures in bird feathers induce structural "colors" in the IR region with wavelengths of around 3-6 μm. We show that transmittance in this region depends on the angle of incidence of the transmitted light in a species-specific way and that the transmittance exhibits a close correlation to the spatial periodicity in the arrangement of the feather barbules. We present a method by which the microstructure of feathers can be monitored in a remote fashion by utilization of thermal radiation and the wing beating of the bird.
Collapse
Affiliation(s)
- Patrik Lundin
- Atomic Physics Division, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
22
|
LIVEZEY BRADLEYC. Phylogenetics of modern shorebirds (Charadriiformes) based on phenotypic evidence: analysis and discussion. Zool J Linn Soc 2010. [DOI: 10.1111/j.1096-3642.2010.00635.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Brydegaard M, Lundin P, Guan Z, Runemark A, Akesson S, Svanberg S. Feasibility study: fluorescence lidar for remote bird classification. APPLIED OPTICS 2010; 49:4531-4544. [PMID: 20733624 DOI: 10.1364/ao.49.004531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We present a method for remote classification of birds based on eye-safe fluorescence lidar techniques. Mechanisms of quenching are discussed. Plumage reflectance is related to plumage fluorescence. Laboratory measurements on reflectance and fluorescence are presented, as well as test-range measurements. Also we present examples of birds' in-flight lidar returns. The methods are suitable for studies of night migrating species and high-altitude classification with implications for the detailed understanding of bird migration and global virus spread.
Collapse
Affiliation(s)
- Mikkel Brydegaard
- Atomic Physics Division, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
24
|
Exaggerated orientation scatter of nocturnal passerine migrants close to breeding grounds: comparisons between seasons and latitudes. Behav Ecol Sociobiol 2010. [DOI: 10.1007/s00265-010-1015-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Peterson AT, Andersen MJ, Bodbyl-Roels S, Hosner P, Nyári A, Oliveros C, Papeş M. A prototype forecasting system for bird-borne disease spread in North America based on migratory bird movements. Epidemics 2009; 1:240-9. [PMID: 21352770 DOI: 10.1016/j.epidem.2009.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/18/2009] [Accepted: 11/17/2009] [Indexed: 11/16/2022] Open
Abstract
The past two decades have seen major outbreaks of influenza viruses and flaviviruses that are spread at least in part by migratory birds. Although much new information has accumulated on the natural history of the viruses, and on the geography of migration by individual bird species, no synthesis has been achieved regarding likely patterns of spread of such pathogens by migratory birds, which constitutes a large-scale challenge in understanding the geography of bird migration. We here present a first step in this direction: a summary of seasonal (breeding, wintering) distributions of all 392 North American bird species that show marked seasonal migratory movements and that meet a series of conditions for inclusion in our analyses. We use species-level interseasonal connectivity among distributional areas to make initial forecasts of patterns of spread of bird-borne diseases via bird migration. We identify key next steps towards improved forecasting of spread patterns of bird-borne pathogens in North America, which will require substantial improvements in knowledge of the geography of bird migration.
Collapse
|
26
|
Gill RE, Tibbitts TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalck JC, Warnock N, McCaffery BJ, Battley PF, Piersma T. Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc Biol Sci 2009; 276:447-57. [PMID: 18974033 PMCID: PMC2664343 DOI: 10.1098/rspb.2008.1142] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mountain ranges, deserts, ice fields and oceans generally act as barriers to the movement of land-dependent animals, often profoundly shaping migration routes. We used satellite telemetry to track the southward flights of bar-tailed godwits (Limosa lapponica baueri), shorebirds whose breeding and non-breeding areas are separated by the vast central Pacific Ocean. Seven females with surgically implanted transmitters flew non-stop 8117–11 680 km (10 153±1043 s.d.) directly across the Pacific Ocean; two males with external transmitters flew non-stop along the same corridor for 7008–7390 km. Flight duration ranged from 6.0 to 9.4 days (7.8±1.3 s.d.) for birds with implants and 5.0 to 6.6 days for birds with externally attached transmitters. These extraordinary non-stop flights establish new extremes for avian flight performance, have profound implications for understanding the physiological capabilities of vertebrates and how birds navigate, and challenge current physiological paradigms on topics such as sleep, dehydration and phenotypic flexibility. Predicted changes in climatic systems may affect survival rates if weather conditions at their departure hub or along the migration corridor should change. We propose that this transoceanic route may function as an ecological corridor rather than a barrier, providing a wind-assisted passage relatively free of pathogens and predators.
Collapse
Affiliation(s)
- Robert E Gill
- USGS Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Henningsson S, Alerstam T. The role of migration for spatial turnover of arctic bird species in a circumpolar perspective. OIKOS 2008. [DOI: 10.1111/j.0030-1299.2008.16930.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|