1
|
Rogers EJ, Gerson AR. Water restriction increases oxidation of endogenous amino acids in house sparrows (Passer domesticus). J Exp Biol 2024; 227:jeb246483. [PMID: 38380522 PMCID: PMC11093224 DOI: 10.1242/jeb.246483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Animals can cope with dehydration in a myriad of ways, both behaviorally and physiologically. The oxidation of protein produces more metabolic water per kilojoule than that of fat or carbohydrate, and it is well established that birds increase protein catabolism in response to high rates of water loss. However, the fate of amino acids mobilized in response to water restriction has not been explicitly determined. While protein catabolism releases bound water, we hypothesized that water-restricted birds would also oxidize the resulting amino acids, producing additional water as a product of oxidative phosphorylation. To test this, we fed captive house sparrows (Passer domesticus) 13C-labeled leucine for 9 weeks to label endogenous proteins. We conducted weekly trials during which we measured the physiological response to water restriction as changes in lean mass, fat mass, metabolism and the enrichment of 13C in exhaled CO2 (δ13Cbreath). If water-restricted birds catabolized proteins and oxidized the resulting amino acids, we expected to simultaneously observe greater lean mass loss and elevated δ13Cbreath relative to control birds. We found that water-restricted birds catabolized more lean tissue and also had enriched δ13Cbreath in response to water restriction, supporting our hypothesis. δ13Cbreath, however, varied with metabolic rate and the length of the water restriction period, suggesting that birds may spare protein when water balance can be achieved using other physiological strategies.
Collapse
Affiliation(s)
- Elizabeth J. Rogers
- Organismic and Evolutionary Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexander R. Gerson
- Organismic and Evolutionary Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
2
|
McGuire LP, Leys R, Webber QMR, Clerc J. Heterothermic Migration Strategies in Flying Vertebrates. Integr Comp Biol 2023; 63:1060-1074. [PMID: 37279461 DOI: 10.1093/icb/icad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023] Open
Abstract
Migration is a widespread and highly variable trait among animals. Population-level patterns arise from individual-level decisions, including physiological and energetic constraints. Many aspects of migration are influenced by behaviors and strategies employed during periods of stopover, where migrants may encounter variable or unpredictable conditions. Thermoregulation can be a major cost for homeotherms which largely encounter ambient temperatures below the lower critical temperature during migration, especially during the rest phase of the daily cycle. In this review we describe the empirical evidence, theoretical models, and potential implications of bats and birds that use heterothermy to reduce thermoregulatory costs during migration. Torpor-assisted migration is a strategy described for migrating temperate insectivorous bats, whereby torpor can be used during periods of inactivity to drastically reduce thermoregulatory costs and increase net refueling rate, leading to shorter stopover duration, reduced fuel load requirement, and potential consequences for broad-scale movement patterns and survival. Hummingbirds can adopt a similar strategy, but most birds are not capable of torpor. However, there is an increasing recognition of the use of more shallow heterothermic strategies by diverse bird species during migration, with similarly important implications for migration energetics. A growing body of published literature and preliminary data from ongoing research indicate that heterothermic migration strategies in birds may be more common than traditionally appreciated. We further take a broad evolutionary perspective to consider heterothermy as an alternative to migration in some species, or as a conceptual link to consider alternatives to seasonal resource limitations. There is a growing body of evidence related to heterothermic migration strategies in bats and birds, but many important questions related to the broader implications of this strategy remain.
Collapse
Affiliation(s)
- Liam P McGuire
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ryan Leys
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Quinn M R Webber
- Department of Integrative Biology, University of Guelph,Guelph, ON N1G 2W1, Canada
| | - Jeff Clerc
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| |
Collapse
|
3
|
Marggraf LC, Lindecke O, Voigt CC, Pētersons G, Voigt-Heucke SL. Nathusius’ bats, Pipistrellus nathusii, bypass mating opportunities of their own species, but respond to foraging heterospecifics on migratory transit flights. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.908560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In late summer, migratory bats of the temperate zone face the challenge of accomplishing two energy-demanding tasks almost at the same time: migration and mating. Both require information and involve search efforts, such as localizing prey or finding potential mates. In non-migrating bat species, playback studies showed that listening to vocalizations of other bats, both con-and heterospecifics, may help a recipient bat to find foraging patches and mating sites. However, we are still unaware of the degree to which migrating bats depend on con-or heterospecific vocalizations for identifying potential feeding or mating opportunities during nightly transit flights. Here, we investigated the vocal responses of Nathusius’ pipistrelle bats, Pipistrellus nathusii, to simulated feeding and courtship aggregations at a coastal migration corridor. We presented migrating bats either feeding buzzes or courtship calls of their own or a heterospecific migratory species, the common noctule, Nyctalus noctula. We expected that during migratory transit flights, simulated feeding opportunities would be particularly attractive to bats, as well as simulated mating opportunities which may indicate suitable roosts for a stopover. However, we found that when compared to the natural silence of both pre-and post-playback phases, bats called indifferently during the playback of conspecific feeding sounds, whereas P. nathusii echolocation call activity increased during simulated feeding of N. noctula. In contrast, the call activity of P. nathusii decreased during the playback of conspecific courtship calls, while no response could be detected when heterospecific call types were broadcasted. Our results suggest that while on migratory transits, P. nathusii circumnavigate conspecific mating aggregations, possibly to save time or to reduce the risks associated with social interactions where aggression due to territoriality might be expected. This avoidance behavior could be a result of optimization strategies by P. nathusii when performing long-distance migratory flights, and it could also explain the lack of a response to simulated conspecific feeding. However, the observed increase of activity in response to simulated feeding of N. noctula, suggests that P. nathusii individuals may be eavesdropping on other aerial hawking insectivorous species during migration, especially if these occupy a slightly different foraging niche.
Collapse
|
4
|
Haddaway L, McGuire LP. Seasonal and Nightly Activity Patterns of Migrating Silver-Haired Bats (Lasionycteris noctivagans) Compared to Non-Migrating Big Brown Bats (Eptesicus fuscus) at a Fall Migration Stopover Site. ACTA CHIROPTEROLOGICA 2022. [DOI: 10.3161/15081109acc2022.24.1.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lucas Haddaway
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Liam P. McGuire
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
5
|
An Updated Review of Hypotheses Regarding Bat Attraction to Wind Turbines. Animals (Basel) 2022; 12:ani12030343. [PMID: 35158666 PMCID: PMC8833423 DOI: 10.3390/ani12030343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Patterns of bat activity and mortalities at wind energy facilities suggest that bats are attracted to wind turbines based on bat behavioral responses to wind turbines. For example, current monitoring efforts suggest that bat activity increases post-wind turbine construction, with bats making multiple passes near wind turbines. We separated the attraction hypothesis into five previously proposed explanations of bat interactions at or near wind turbines, including attraction based on noise, roost sites, foraging and water, mating behavior, and lights, and one new hypothesis regarding olfaction, and provide a state of the knowledge in 2022. Our review indicates that future research should prioritize attraction based on social behaviors, such as mating and scent-marking, as this aspect of the attraction hypothesis has many postulates and remains the most unclear. Relatively more data regarding attraction to wind turbines based on lighting and noise emission exist, and these data indicate that these are unlikely attractants. Analyzing attraction at the species-level should be prioritized because of differences in foraging, flight, and social behavior among bat species. Lastly, research assessing bat attraction at various scales, such as the turbine or facility scale, is lacking, which could provide important insights for both wind turbine siting decisions and bat mortality minimization strategies. Identifying the causes of bat interactions with wind turbines is critical for developing effective impact minimization strategies.
Collapse
|
6
|
Ingala MR, Simmons NB, Dunbar M, Wultsch C, Krampis K, Perkins SL. You are more than what you eat: potentially adaptive enrichment of microbiome functions across bat dietary niches. Anim Microbiome 2021; 3:82. [PMID: 34906258 PMCID: PMC8672517 DOI: 10.1186/s42523-021-00139-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Animals evolved in a microbial world, and their gut microbial symbionts have played a role in their ecological diversification. While many recent studies report patterns of phylosymbiosis between hosts and their gut bacteria, fewer studies examine the potentially adaptive functional contributions of these microbes to the dietary habits of their hosts. In this study, we examined predicted metabolic pathways in the gut bacteria of more than 500 individual bats belonging to 60 species and compare the enrichment of these functions across hosts with distinct dietary ecologies. RESULTS We found that predicted microbiome functions were differentially enriched across hosts with different diets. Using a machine-learning approach, we also found that inferred microbiome functions could be used to predict specialized host diets with reasonable accuracy. We detected a relationship between both host phylogeny and diet with respect to microbiome functional repertoires. Because many predicted functions could potentially fill nutritional gaps for bats with specialized diets, we considered pathways discriminating dietary niches as traits of the host and fit them to comparative phylogenetic models of evolution. Our results suggest that some, but not all, predicted microbiome functions may evolve toward adaptive optima and thus be visible to the forces of natural selection operating on hosts over evolutionary time. CONCLUSIONS Our results suggest that bats with specialized diets may partially rely on their gut microbes to fulfill or augment critical nutritional pathways, including essential amino acid synthesis, fatty acid biosynthesis, and the generation of cofactors and vitamins essential for proper nutrition. Our work adds to a growing body of literature suggesting that animal microbiomes are structured by a combination of ecological and evolutionary processes and sets the stage for future metagenomic and metabolic characterization of the bat microbiome to explore links between bacterial metabolism and host nutrition.
Collapse
Affiliation(s)
- Melissa R. Ingala
- Department of Vertebrate Zoology, National Museum of Natural History, Washington, DC USA
- Department of Mammalogy, The American Museum of Natural History, New York, NY USA
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY USA
| | - Nancy B. Simmons
- Department of Mammalogy, The American Museum of Natural History, New York, NY USA
| | - Miranda Dunbar
- Department of Biological Sciences, Southern Connecticut State University, New Haven, CT USA
| | - Claudia Wultsch
- Sackler Institute for Comparative Genomics, The American Museum of Natural History, New York, NY USA
- Bioinformatics and Computational Genomics Laboratory, Hunter College, City University of New York, New York, NY USA
| | - Konstantinos Krampis
- Bioinformatics and Computational Genomics Laboratory, Hunter College, City University of New York, New York, NY USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY USA
- Institute of Computational Biomedicine, Weill Cornell Medical College, New York, NY USA
| | - Susan L. Perkins
- Division of Invertebrate Zoology, The American Museum of Natural History, New York, NY USA
- Sackler Institute for Comparative Genomics, The American Museum of Natural History, New York, NY USA
| |
Collapse
|
7
|
Brewer CT, Rauch-Davis WA, Fraser EE. The Use of Intrinsic Markers for Studying the Migratory Movements of Bats. Animals (Basel) 2021; 11:3477. [PMID: 34944252 PMCID: PMC8698158 DOI: 10.3390/ani11123477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
Mortality of migratory bat species at wind energy facilities is a well-documented phenomenon, and mitigation and management are partially constrained by the current limited knowledge of bat migratory movements. Analyses of biochemical signatures in bat tissues ("intrinsic markers") can provide information about the migratory origins of individual bats. Many tissue samples for intrinsic marker analysis may be collected from living and dead bats, including carcasses collected at wind energy facilities. In this paper, we review the full suite of available intrinsic marker analysis techniques that may be used to study bat migration, with the goal of summarizing the current literature and highlighting knowledge gaps and opportunities. We discuss applications of the stable isotopes of hydrogen, oxygen, nitrogen, carbon, sulfur; radiogenic strontium isotopes; trace elements and contaminants; and the combination of these markers with each other and with other extrinsic markers. We further discuss the tissue types that may be analyzed for each and provide a synthesis of the generalized workflow required to link bats to origins using intrinsic markers. While stable hydrogen isotope techniques have clearly been the leading approach to infer migratory bat movement patterns across the landscape, here we emphasize a variety of lesser used intrinsic markers (i.e., strontium, trace elements, contaminants) that may address new study areas or answer novel research questions.
Collapse
Affiliation(s)
| | | | - Erin E. Fraser
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, 20 University Drive, Corner Brook, NL A2H 5G4, Canada; (C.T.B.); (W.A.R.-D.)
| |
Collapse
|
8
|
Lagerveld S, Jonge Poerink B, Geelhoed SCV. Offshore Occurrence of a Migratory Bat, Pipistrellus nathusii, Depends on Seasonality and Weather Conditions. Animals (Basel) 2021; 11:ani11123442. [PMID: 34944219 PMCID: PMC8698179 DOI: 10.3390/ani11123442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Migratory bats regularly fly over the North Sea, where the number of offshore wind farms will increase rapidly in the next decades. Information is urgently needed on the timing and the conditions bats can be expected offshore, since windfarms can cause fatalities amongst bats. We therefore collected acoustic data on the presence of bats at four nearshore locations at sea between 2012 and 2016. Modelling the occurrence of Nathusius’ pipistrelle for 480 nights in autumn showed that its migration is strongest in early September, with east-northeasterly tailwinds, low wind speeds, and relatively high temperatures. The species’ migration did not show a strong relationship with other factors, i.e., moon phase, cloud cover, atmospheric pressure, rain, and visibility. Our results provide valuable input to policy-makers to prescribe mitigation measures to reduce bat fatalities in offshore wind farms. Abstract Bats regularly migrate over the North Sea, but information on the environmental conditions when this occurs is scarce. Detailed information is urgently needed on the conditions under which bats can be expected offshore, as the number of offshore windfarms that can cause fatalities amongst bats in the North Sea is increasing rapidly. We performed ultrasonic acoustic monitoring at multiple nearshore locations at sea between 2012 and 2016 for, in total, 480 monitoring nights. We modelled the offshore occurrence of Nathusius’ pipistrelle in autumn as a function of weather conditions, seasonality, and the lunar cycle using a generalized additive mixed model (GAMM). We investigated which covariates are important using backward selection based on a likelihood ratio test. Our model showed that important explanatory variables for the offshore occurrence of Nathusius’ pipistrelle are seasonality (night in year), wind speed, wind direction, and temperature. The species’ migration is strongest in early September, with east-northeasterly tailwinds, wind speeds < 5 m/s, and temperatures > 15 °C. Lunar cycle, cloud cover, atmospheric pressure, atmospheric pressure change, rain, and visibility were excluded during the model selection. These results provide valuable input to reduce bat fatalities in offshore wind farms by taking mitigation measures.
Collapse
Affiliation(s)
- Sander Lagerveld
- Wageningen Marine Research, Ankerpark 27, 1781 AG Den Helder, The Netherlands;
- Correspondence:
| | | | | |
Collapse
|
9
|
Clerc J, Rogers EJ, McGuire LP. Testing Predictions of Optimal Migration Theory in Migratory Bats. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.686379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Optimal migration theory is a framework used to evaluate trade-offs associated with migratory strategies. Two strategies frequently considered by migration theory are time minimizing, whereby migration is completed as quickly as possible, and energy minimizing, whereby migration is completed as energetically efficiently as possible. Despite extensive literature dedicated to generating analytical predictions about these migratory strategies, identifying appropriate study systems to empirically test predictions is difficult. Theoretical predictions that compare migratory strategies are qualitative, and empirical tests require that both time-minimizers and energy-minimizers are present in the same population; spring migrating silver-haired (Lasionycteris noctivagans) and hoary bats (Lasiurus cinereus) provide such a system. As both species mate in the fall, spring-migrating males are thought to be energy-minimizers while females benefit from early arrival to summering grounds, and are thought to be time-minimizers. Thermoregulatory expression also varies between species during spring migration, as female silver-haired bats and males of both species use torpor while female hoary bats, which implant embryos earlier, are thought to avoid torpor use which would delay pregnancy. Based on optimal migration theory, we predicted that female silver-haired bats and hoary bats would have increased fuel loads relative to males and the difference between fuel loads of male and female hoary bats would be greater than the difference between male and female silver-haired bats. We also predicted that females of both species would have a greater stopover foraging proclivity and/or assimilate nutrients at a greater rate than males. We then empirically tested our predictions using quantitative magnetic resonance to measure fuel load, δ13C isotope breath signature analysis to assess foraging, and 13C–labeled glycine to provide an indicator of nutrient assimilation rate. Optimal migration theory predictions of fuel load were supported, but field observations did not support the predicted refueling mechanisms, and alternatively suggested a reliance on increased fuel loads via carry-over effects. This research is the first to validate a migration theory prediction in a system of both time and energy minimizers and uses novel methodological approaches to uncover underlying mechanisms of migratory stopover use.
Collapse
|
10
|
Ingala MR, Simmons NB, Wultsch C, Krampis K, Provost KL, Perkins SL. Molecular diet analysis of neotropical bats based on fecal DNA metabarcoding. Ecol Evol 2021; 11:7474-7491. [PMID: 34188828 PMCID: PMC8216975 DOI: 10.1002/ece3.7579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/30/2022] Open
Abstract
Bat communities in the Neotropics are some of the most speciose assemblages of mammals on Earth, with regions supporting more than 100 sympatric species with diverse feeding ecologies. Because bats are small, nocturnal, and volant, it is difficult to directly observe their feeding habits, which has resulted in their classification into broadly defined dietary guilds (e.g., insectivores, carnivores, and frugivores). Apart from these broad guilds, we lack detailed dietary information for many species and therefore have only a limited understanding of interaction networks linking bats and their diet items. In this study, we used DNA metabarcoding of plants, arthropods, and vertebrates to investigate the diets of 25 bat species from the tropical dry forests of Lamanai, Belize. Our results report some of the first detection of diet items for the focal bat taxa, adding rich and novel natural history information to the field of bat ecology. This study represents a comprehensive first effort to apply DNA metabarcoding to bat diets at Lamanai and provides a useful methodological framework for future studies testing hypotheses about coexistence and niche differentiation in the context of modern high-throughput molecular data.
Collapse
Affiliation(s)
- Melissa R. Ingala
- Division of MammalsDepartment of Vertebrate ZoologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
- Richard Gilder Graduate SchoolThe American Museum of Natural HistoryNew YorkNYUSA
- Department of Mammalogy, Division of Vertebrate ZoologyThe American Museum of Natural HistoryNew YorkNYUSA
- Division of Invertebrate ZoologyThe American Museum of Natural HistoryNew YorkNYUSA
| | - Nancy B. Simmons
- Department of Mammalogy, Division of Vertebrate ZoologyThe American Museum of Natural HistoryNew YorkNYUSA
| | - Claudia Wultsch
- Sackler Institute for Comparative GenomicsThe American Museum of Natural HistoryNew YorkNYUSA
- Bioinformatics and Computational Genomics LaboratoryHunter CollegeCity University of New YorkNew YorkNYUSA
| | - Konstantinos Krampis
- Bioinformatics and Computational Genomics LaboratoryHunter CollegeCity University of New YorkNew YorkNYUSA
- Department of Biological SciencesHunter CollegeCity University of New YorkNew YorkNYUSA
- Institute of Computational BiomedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Kaiya L. Provost
- Richard Gilder Graduate SchoolThe American Museum of Natural HistoryNew YorkNYUSA
- Department of OrnithologyThe American Museum of Natural HistoryNew YorkNYUSA
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOHUSA
| | - Susan L. Perkins
- Division of Invertebrate ZoologyThe American Museum of Natural HistoryNew YorkNYUSA
- Sackler Institute for Comparative GenomicsThe American Museum of Natural HistoryNew YorkNYUSA
| |
Collapse
|
11
|
Mas M, Flaquer C, Rebelo H, López‐Baucells A. Bats and wetlands: synthesising gaps in current knowledge and future opportunities for conservation. Mamm Rev 2021. [DOI: 10.1111/mam.12243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Maria Mas
- Natural Sciences Museum of Granollers Granollers, Catalonia08402Spain
- CREAF Universitat Autònoma de Barcelona Cerdanyola del Valles Catalonia08193Spain
| | - Carles Flaquer
- Natural Sciences Museum of Granollers Granollers, Catalonia08402Spain
| | - Hugo Rebelo
- CIBIO‐InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- CEABN‐InBIO Centro de Ecologia Aplicada 'Professor Baeta Neves' Instituto Superior de Agronomia Universidade de Lisboa Campus Agrário de Vairão, R. Padre Armando Quintas Vairão, Lisboa4485‐661Portugal
| | | |
Collapse
|
12
|
Anparasan L, Hobson KA. Tracing sources of carbon and hydrogen to stored lipids in migratory passerines using stable isotope (δ 13C, δ 2H) measurements. Oecologia 2021; 195:37-49. [PMID: 33389017 DOI: 10.1007/s00442-020-04827-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
Using measurements of naturally occurring stable isotopes in feathers to determine avian origin and migratory patterns is well established. However, isotopically determining nutritional origins of lipids, a major migratory fuel, has not been attempted. This study explores isotopic links between diet and stored lipids in captive white-throated sparrows (Zonotrichia albicollis) by providing isotopically distinct mixtures of carbohydrates/oils and drinking water and assessing the δ13C and δ2H values of stored lipid, breath CO2 (δ13C) and breath water vapour (δ2H). Stored lipid δ13C and δ2H values correlated with the isotopic values found in dietary carbohydrates/oils and drinking water treatments, respectively, indicating a clear traceable transfer of environmental dietary isotopic signals into body lipids. Dietary oils and carbohydrates contributed 80-82% of carbon and 44-46% of hydrogen, respectively, to stored lipids. Drinking water contributed 18-28% of hydrogen to stored lipids. Isotopic relationships were quantifiable using linear calibration algorithms which provide the basis for the construction of tissue isoscapes for migratory passerines. Breath CO2 δ13C values and breath water vapour δ2H values for fed and fasted birds reflected dietary sources. Breath CO2 δ13C values were higher for fasted birds than for fed birds by an average of 4.5‰ while breath water vapour δ2H values were lower for fasted birds by an average of 48.9‰. These results indicate that lipids and metabolites from their subsequent breakdown for fuel isotopically reflect dietary sources but complicate interpretation of such data, especially for wild migrating birds. Applications and limitations of these findings to the creation of "liposcapes" are examined.
Collapse
Affiliation(s)
- Libesha Anparasan
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| | - Keith A Hobson
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.,Environment and Climate Change Canada, Saskatoon, SK, S7N 3H5, Canada
| |
Collapse
|
13
|
Kravchenko KA, Vlaschenko AS, Lehnert LS, Courtiol A, Voigt CC. Generational shift in the migratory common noctule bat: first-year males lead the way to hibernacula at higher latitudes. Biol Lett 2020; 16:20200351. [PMID: 32961089 DOI: 10.1098/rsbl.2020.0351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many migratory species have shifted their geographic distribution in response to climate change, yet the underlying mechanisms are poorly understood, particularly for mammals. We hypothesized that generational shifts are underlying the observed colonization of hibernation sites further north in a migratory bat, the common noctule (Nyctalus noctula). To evaluate our hypothesis, we collected long-term data on the migratory status and demography of common noctules in a recently colonized hibernation area. Based on isotopic data of 413 individuals, we observed a significant decline in the proportion of long-distance migrants from 2004 to 2015 for both sexes and across all age groups. Demographic data collected between 2007 and 2016 from 3394 individuals demonstrated that subadult males were more abundant during the early colonization stage, followed by a gradual shift to a more balanced age and sex composition. Our results suggest that the colonization of hibernacula at higher latitudes is promoted by generational shifts, involving mostly first-year males. Generational shifts seem to be a likely mechanism for distribution changes in other bats and potentially also in other mammals.
Collapse
Affiliation(s)
- K A Kravchenko
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke- Str. 17, 10315 Berlin, Germany.,Institute for Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - A S Vlaschenko
- Bat Rehabilitation Center of Feldman Ecopark, 62340 Lesnoye, Kharkiv Region, Ukraine.,Ukrainian Independent Ecology Institute, Plekhanov St., 40 61001 Kharkiv, Ukraine
| | - L S Lehnert
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke- Str. 17, 10315 Berlin, Germany.,Institute for Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - A Courtiol
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke- Str. 17, 10315 Berlin, Germany
| | - C C Voigt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke- Str. 17, 10315 Berlin, Germany.,Institute for Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| |
Collapse
|
14
|
Baloun DE, Hobson KA, Guglielmo CG. Temporal patterns of foraging by silver-haired bats during migratory stopover revealed by isotopic analyses (δ 13C) of breath CO 2. Oecologia 2020; 193:67-75. [PMID: 32306117 DOI: 10.1007/s00442-020-04650-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/08/2020] [Indexed: 11/26/2022]
Abstract
The extent to which migratory bats forage at stopover sites or while in migratory flight is poorly understood. Endogenous fat stores have lower δ13C values relative to the dietary substrates from which they were synthesized, and so, the fed versus fasted state of bats should be discernable by comparing their breath δ13C at capture to that after a known period of fasting. We captured silver-haired bats (Lasionycteris noctivagans) at a stopover site at Long Point, Ontario, Canada, during spring and fall migration. We collected breath samples at capture and after fasting in captivity for 12 h, providing a fasted-state δ13C value corresponding to metabolism of fat stores. We also collected and weighed fecal pellets produced while in captivity. Breath δ13C values at capture were positively correlated with mass of feces produced. During spring migration, δ13C values of breath CO2 at capture were low and similar to fasting values, but increased with date consistent with increased foraging at stopover and reliance on exogenous dietary nutrients as the season progressed. The opposite temporal pattern was found during fall migration. Our findings suggest that bats forage during migratory stopover when environmental conditions permit despite potential time trade-offs between feeding and travel, and the energy savings resulting from torpor during roosting. This study provides insight into the eco-physiology of bat migration and shows the importance of foraging habitat for migratory bats.
Collapse
Affiliation(s)
- Dylan E Baloun
- Department of Biology and Advanced Facility for Avian Research (AFAR), University of Western Ontario, London, ON, Canada.
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Keith A Hobson
- Department of Biology and Advanced Facility for Avian Research (AFAR), University of Western Ontario, London, ON, Canada
| | - Christopher G Guglielmo
- Department of Biology and Advanced Facility for Avian Research (AFAR), University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
Jonasson KA, Guglielmo CG. Evidence for spring stopover refuelling in migrating silver-haired bats (Lasionycteris noctivagans). CAN J ZOOL 2019. [DOI: 10.1139/cjz-2019-0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Migrating animals must acquire sufficient fuel to sustain migratory movement, but how time is allocated to achieve this can vary greatly. The fuel strategies used by migrating bats are not well understood and have not been investigated during the spring when insectivorous bats face low food abundance. Migrating silver-haired bats (Lasionycteris noctivagans (Le Conte, 1831)) were captured at a stopover site in Long Point, Ontario, Canada, in April and May of 2012–2014. We followed the movements of 40 bats outfitted with radio transmitters using an automated telemetry array and examined the effects of ambient temperature, fat stores, and sex on stopover duration. As seen previously in autumn, most bats departed the evening following capture, but one-third of bats used multiday stopovers. Extended stopover was associated with lower ambient temperature. There was no effect of sex or fat at capture on stopover departure probability. Bats captured closer to dawn had greater fat mass and lean mass than those captured early in the night, a trend indicative of fuel deposition at this site. This is the first study to provide evidence that bats use stopover habitat for refuelling.
Collapse
Affiliation(s)
- Kristin A. Jonasson
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, 1393 Western Road, London, ON N6G 1G9, Canada
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, 1393 Western Road, London, ON N6G 1G9, Canada
| | - Christopher G. Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, 1393 Western Road, London, ON N6G 1G9, Canada
| |
Collapse
|
16
|
Male long-distance migrant turned sedentary; The West European pond bat (Myotis dasycneme) alters their migration and hibernation behaviour. PLoS One 2019; 14:e0217810. [PMID: 31658268 PMCID: PMC6816563 DOI: 10.1371/journal.pone.0217810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/28/2019] [Indexed: 11/30/2022] Open
Abstract
During autumn in the temperate zone, insectivorous male bats face a profound energetic challenge, as in the same period they have to make energy choices related to hibernation, mating and migration. To investigate these energetic trade-offs, we compared the body mass of male and female pond bats (Myotis dasycneme) through the summer season, characterized the known hibernacula in terms of male or female bias, and subsequently compared their population trend during two study periods, between 1930–1980 and 1980–2015. Towards the end of summer, males began losing weight whilst females were simultaneously accumulating fat, suggesting that males were pre-occupied with mating. We also found evidence for a recent adaptation to this energetic trade-off, males have colonised winter roosts in formerly unoccupied areas, which has consequently led to a change in the migration patterns for the male population of this species. As male bats do not assist in raising offspring, males have ample time to restore their energy balance after hibernation. Our results suggest that choosing a hibernacula closer to the summer range not only decreases energy cost needed for migration, it also lengthens the mating season of the individual male. Our findings have important conservation implications, as male and female biased hibernation assemblages may differ critically in terms of microclimate preferences.
Collapse
|
17
|
Rogers EJ, Sommers AS, McGuire LP. Seasonal Dynamics of Lipid Metabolism and Energy Storage in the Brazilian Free-Tailed Bat. Physiol Biochem Zool 2019; 92:386-395. [DOI: 10.1086/704107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Voigt CC, Rosner E, Guglielmo CG, Currie SE. Fatty acid profiles of the European migratory common noctule bat (Nyctalus noctula). Naturwissenschaften 2019; 106:33. [PMID: 31201542 DOI: 10.1007/s00114-019-1627-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022]
Abstract
In animals, fatty acids (FA) are essential as structural components in membranes and for energy storage in adipocytes. Here, we studied the relative proportions of FA in a mammal with extreme changes in metabolic rates. Common noctule bats (Nyctalus noctula) switch from energetically demanding long-distance migration at high metabolic rates to regular torpor with extremely low metabolic rates. We found that composition of FA categories differed between adipose tissue types (white adipose tissue (WAT) vs brown adipose tissue (BAT)) and muscle tissue types (skeletal vs heart), but not between sexes. We found oleic acid to be the most abundant FA in all studied tissues. Concentrations of polyunsaturated FA (PUFA) were not always higher in muscular tissue compared with adipocyte tissue, even though high concentrations of PUFA are considered beneficial for low body temperatures in torpor. In all tissues, we observed a high content in monounsaturated fatty acids (MUFA), possibly to compensate for a low PUFA content in the diet. Ratios of ω6/ω3 were lower in the heart than in skeletal muscles of common noctules. Three FA (palmitic, oleic, and linoleic acid) accounted for about 70% of the FA in adipose tissue, which is similar to proportions observed in migrating birds, yet migrating birds generally have a higher PUFA content in muscle and adipose tissues than bats. Bats seem to contrast with other mammals in having a high MUFA content in all tissues. We conclude that FA profiles of bats differ largely from those of most cursorial mammals and instead are-with the exception of MUFA-similar to those of migrating birds.
Collapse
Affiliation(s)
- Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany.
| | - Elisabeth Rosner
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany.,Zoological Institute and Museum, Ernst-Moritz-Arndt-University Greifswald, 17487, Greifswald, Germany
| | - Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Shannon E Currie
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| |
Collapse
|
19
|
Troxell SA, Holderied MW, Pētersons G, Voigt CC. Nathusius' bats optimize long-distance migration by flying at maximum range speed. ACTA ACUST UNITED AC 2019; 222:222/4/jeb176396. [PMID: 30814276 DOI: 10.1242/jeb.176396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/25/2019] [Indexed: 11/20/2022]
Abstract
Aerial migration is the fastest, yet most energetically demanding way of seasonal movement between habitats. However, for many taxa, and bats in particular, we lack a clear understanding of the energy requirements for migration. Here, we examined the energetic cost and flight speed of the long-distance migratory Nathusius' bat (Pipistrellus nathusii). We measured flight metabolism in relation to airspeed in a wind tunnel, inferred the optimal traveling speed over long distances, i.e. maximum range speed, and compared this value with flight speed measured in wild conspecifics. Body mass and wing morphologies were similar in captive and wild bats, indicating that the body condition of captive bats was similar to that of migratory bats. Nine out of the 12 captive bats exhibited a U-shaped relationship between flight metabolic power and airspeed when flying in the wind tunnel. The flight metabolic rate across all airspeeds averaged 0.98±0.28 W, which corresponds well to established allometric relationships between flight metabolic rate and body mass for bats. During summer migration, P. nathusii traveled at an average speed of 6.9±0.7 m s-1, which was significantly higher than the minimum power speed (5.8±1.0 m s-1), yet within the range of expected maximum range speed inferred from wind tunnel experiments. This suggests that P. nathusii may migrate at an energetically optimal speed and that aerial refueling does not substantially lower migratory speed in P. nathusii.
Collapse
Affiliation(s)
- Sara A Troxell
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany.,Freie Universität, Takustrasse 6, 14195 Berlin, Germany.,Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse 11, 82319 Seewiesen, Germany
| | - Marc W Holderied
- School of Biological Sciences, University of Bristol, 24 Tyndale Avenue, Bristol BS8 1TQ, UK
| | - Gunārs Pētersons
- Faculty of Veterinary Medicine, Latvia University of Agriculture, Helamaņa 8, Jelgava 3004, Latvia
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany .,Freie Universität, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
20
|
Voigt CC, Frick WF, Holderied MW, Holland R, Kerth G, Mello MAR, Plowright RK, Swartz S, Yovel Y. PRINCIPLES AND PATTERNS OF BAT MOVEMENTS: FROM AERODYNAMICS TO ECOLOGY. QUARTERLY REVIEW OF BIOLOGY 2019; 92:267-287. [PMID: 29861509 DOI: 10.1086/693847] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Movement ecology as an integrative discipline has advanced associated fields because it presents not only a conceptual framework for understanding movement principles but also helps formulate predictions about the consequences of movements for animals and their environments. Here, we synthesize recent studies on principles and patterns of bat movements in context of the movement ecology paradigm. The motion capacity of bats is defined by their highly articulated, flexible wings. Power production during flight follows a U-shaped curve in relation to speed in bats yet, in contrast to birds, bats use mostly exogenous nutrients for sustained flight. The navigation capacity of most bats is dominated by the echolocation system, yet other sensory modalities, including an iron-based magnetic sense, may contribute to navigation depending on a bat's familiarity with the terrain. Patterns derived from these capacities relate to antagonistic and mutualistic interactions with food items. The navigation capacity of bats may influence their sociality, in particular, the extent of group foraging based on eavesdropping on conspecifics' echolocation calls. We infer that understanding the movement ecology of bats within the framework of the movement ecology paradigm provides new insights into ecological processes mediated by bats, from ecosystem services to diseases.
Collapse
Affiliation(s)
- Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research 10315 Berlin, Germany, Institute of Biology, Freie Universität Berlin 14195 Berlin, Germany
| | - Winifred F Frick
- Bat Conservation International Austin, Texas 78716 USA, Ecology and Evolutionary Biology, University of California Santa Cruz, California 95064 USA
| | - Marc W Holderied
- School of Biological Sciences, Bristol University Bristol BS8 1TQ United Kingdom
| | - Richard Holland
- School of Biological Sciences, Bangor University Bangor, Gwynedd LL57 2UW United Kingdom
| | - Gerald Kerth
- Applied Zoology and Conservation, University of Greifswald D-17489 Greifswald, Germany
| | - Marco A R Mello
- Department of General Biology, Federal University of Minas Gerais 31270-901 Belo Horizonte, MG, Brazil
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University Bozeman, Montana 59717 USA
| | - Sharon Swartz
- Department of Ecology and Evolutionary Biology and School of Engineering, Brown University Providence, Rhode Island 02912 USA
| | - Yossi Yovel
- Department of Zoology, Faculty of Life Sciences, and the "Sagol" School of Neuroscience, Tel-Aviv University Tel-Aviv, Israel
| |
Collapse
|
21
|
Baloun DE, Guglielmo CG. Energetics of migratory bats during stopover: a test of the torpor-assisted migration hypothesis. J Exp Biol 2019; 222:jeb.196691. [DOI: 10.1242/jeb.196691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/13/2019] [Indexed: 02/04/2023]
Abstract
The torpor-assisted migration hypothesis posits that migration is facilitated in bats by the use of torpor during stopover roosting periods, and predicts that at stopover bats regulate time in torpor facultatively so that daily energy expenditure is independent of ambient roosting temperature. Energy savings can thus be directed to migratory movement. However, direct measurements of total roosting energy expenditure in relation to ambient and body temperature are lacking. We captured migratory silver-haired bats (Lasionycteris noctivagans; ∼11g) at Long Point, Ontario, Canada in spring and fall 2016. We used quantitative magnetic resonance analysis to measure body composition change and energy expenditure over a twelve-hour roosting period in a ventilated incubator at 10, 17 and 25°C. We assessed the effects of season, body mass, sex and age on energy expenditure. We found that daily energy expenditure was independent of roosting temperature, and that this was achieved by flexible use of torpor. Variation in body mass at capture was driven mainly by differences in fat, and the amount of body fat was negatively related to torpor use, particularly in spring. Season, sex and age also affected torpor use and energy expenditure, notably with pregnant females being generally fatter and using less torpor than males in spring. We estimate that stopover contributes only 15-20% to the total energy costs of migration in bats compared to 70% or more in typical birds. This study provides support for the torpor-assisted migration hypothesis, and furthers our understanding of the energy budgets of migratory bats.
Collapse
Affiliation(s)
- Dylan E. Baloun
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Christopher G. Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
22
|
Illuminating the physiological implications of artificial light on an insectivorous bat community. Oecologia 2018; 189:69-77. [PMID: 30446844 DOI: 10.1007/s00442-018-4300-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Global light pollution threatens to disturb numerous wildlife species, but impacts of artificial light will likely vary among species within a community. Thus, artificial lights may change the environment in such a way as to create winners and losers as some species benefit while others do not. Insectivorous bats are nocturnal and a good model to test for differential effects of light pollution on a single community. We used a physiological technique to address this community-level question by measuring plasma ß-hydroxybutyrate (a blood metabolite) concentrations from six species of insectivorous bats in lit and unlit conditions. We also recorded bat calls acoustically to measure activity levels between experimental conditions. Blood metabolite level and acoustic activity data suggest species-specific changes in foraging around lights. In red bats (Lasiurus borealis), ß-hydroxybutyrate levels at lit sites were highest early in the night before decreasing. Acoustic data indicate pronounced peaks in activity at lit sites early in the night. In red bats on dark nights and in the other species in this community, which seem to avoid lights, ß-hydroxybutyrate remained relatively constant. Our results suggest red bats are more willing to expend energy to actively forage around lights despite potential negative impacts, while other, generally rarer species avoid lit areas. Artificial light appears to have a bifurcating effect on bat communities, whereby some species take advantage of concentrated prey resources, yet most do not. Further, this may concentrate light-intolerant species into limited dark refugia, thereby increasing competition for depauperate, phototactic insect communities.
Collapse
|
23
|
Voigt CC, Rehnig K, Lindecke O, Pētersons G. Migratory bats are attracted by red light but not by warm-white light: Implications for the protection of nocturnal migrants. Ecol Evol 2018; 8:9353-9361. [PMID: 30377506 PMCID: PMC6194273 DOI: 10.1002/ece3.4400] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/28/2018] [Accepted: 06/17/2018] [Indexed: 11/14/2022] Open
Abstract
The replacement of conventional lighting with energy-saving light emitting diodes (LED) is a worldwide trend, yet its consequences for animals and ecosystems are poorly understood. Strictly nocturnal animals such as bats are particularly sensitive to artificial light at night (ALAN). Past studies have shown that bats, in general, respond to ALAN according to the emitted light color and that migratory bats, in particular, exhibit phototaxis in response to green light. As red and white light is frequently used in outdoor lighting, we asked how migratory bats respond to these wavelength spectra. At a major migration corridor, we recorded the presence of migrating bats based on ultrasonic recorders during 10-min light-on/light-off intervals to red or warm-white LED, interspersed with dark controls. When the red LED was switched on, we observed an increase in flight activity for Pipistrellus pygmaeus and a trend for a higher activity for Pipistrellus nathusii. As the higher flight activity of bats was not associated with increased feeding, we rule out the possibility that bats foraged at the red LED light. Instead, bats may have flown toward the red LED light source. When exposed to warm-white LED, general flight activity at the light source did not increase, yet we observed an increased foraging activity directly at the light source compared to the dark control. Our findings highlight a response of migratory bats toward LED light that was dependent on light color. The most parsimonious explanation for the response to red LED is phototaxis and for the response to warm-white LED foraging. Our findings call for caution in the application of red aviation lighting, particularly at wind turbines, as this light color might attract bats, leading eventually to an increased collision risk of migratory bats at wind turbines.
Collapse
Affiliation(s)
- Christian C. Voigt
- Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of BiologyFreie Universität BerlinBerlinGermany
| | - Katharina Rehnig
- Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Faculty of Life ScienceUniversity of ViennaViennaAustria
| | - Oliver Lindecke
- Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of BiologyFreie Universität BerlinBerlinGermany
| | - Gunārs Pētersons
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
| |
Collapse
|
24
|
Costantini D, Lindecke O, Pētersons G, Voigt CC. Migratory flight imposes oxidative stress in bats. Curr Zool 2018; 65:147-153. [PMID: 30936903 PMCID: PMC6430974 DOI: 10.1093/cz/zoy039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022] Open
Abstract
Many animal species migrate over long distances, but the physiological challenges of migration are poorly understood. It has recently been suggested that increased molecular oxidative damage might be one important challenge for migratory animals. We tested the hypothesis that autumn migration imposes an oxidative challenge to bats by comparing values of 4 blood-based markers of oxidative status (oxidative damage and both enzymatic and nonenzymatic antioxidants) between Nathusius’ bats Pipistrellus nathusii that were caught during migration flights with those measured in conspecifics after resting for 18 or 24 h. Experiments were carried out at Pape Ornithological Station in Pape (Latvia) in 2016 and 2017. Our results show that flying bats have a blood oxidative status different from that of resting bats due to higher oxidative damage and different expression of both nonenzymatic and enzymatic antioxidants (glutathione peroxidase). The differences in oxidative status markers varied between sampling years and were independent from individual body condition or sex. Our work provides evidence that migratory flight might impose acute oxidative stress to bats and that resting helps animals to recover from oxidative damage accrued en route. Our data suggest that migrating bats and birds might share similar strategies of mitigating and recovering from oxidative stress.
Collapse
Affiliation(s)
- David Costantini
- UMR 7221 CNRS/MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, 7 rue Cuvier, Paris, France.,Department of Biology, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium
| | - Oliver Lindecke
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin, Germany.,Institute of Biology, Freie Universität Berlin, Takustr. 6, Berlin, Germany
| | - Gunārs Pētersons
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmaņa 8, Jelgava, LV, Latvia
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, Berlin, Germany.,Institute of Biology, Freie Universität Berlin, Takustr. 6, Berlin, Germany
| |
Collapse
|
25
|
Abstract
Migratory birds are physiologically specialized to accumulate massive fat stores (up to 50-60% of body mass), and to transport and oxidize fatty acids at very high rates to sustain flight for many hours or days. Target gene, protein and enzyme analyses and recent -omic studies of bird flight muscles confirm that high capacities for fatty acid uptake, cytosolic transport, and oxidation are consistent features that make fat-fueled migration possible. Augmented circulatory transport by lipoproteins is suggested by field data but has not been experimentally verified. Migratory bats have high aerobic capacity and fatty acid oxidation potential; however, endurance flight fueled by adipose-stored fat has not been demonstrated. Patterns of fattening and expression of muscle fatty acid transporters are inconsistent, and bats may partially fuel migratory flight with ingested nutrients. Changes in energy intake, digestive capacity, liver lipid metabolism and body temperature regulation may contribute to migratory fattening. Although control of appetite is similar in birds and mammals, neuroendocrine mechanisms regulating seasonal changes in fuel store set-points in migrants remain poorly understood. Triacylglycerol of birds and bats contains mostly 16 and 18 carbon fatty acids with variable amounts of 18:2n-6 and 18:3n-3 depending on diet. Unsaturation of fat converges near 70% during migration, and unsaturated fatty acids are preferentially mobilized and oxidized, making them good fuel. Twenty and 22 carbon n-3 and n-6 polyunsaturated fatty acids (PUFA) may affect membrane function and peroxisome proliferator-activated receptor signaling. However, evidence for dietary PUFA as doping agents in migratory birds is equivocal and requires further study.
Collapse
Affiliation(s)
- Christopher G Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada N6A5B7
| |
Collapse
|
26
|
Corduneanu A, Hrazdilová K, Sándor AD, Matei IA, Ionică AM, Barti L, Ciocănău MA, Măntoiu DȘ, Coroiu I, Hornok S, Fuehrer HP, Leitner N, Bagó Z, Stefke K, Modrý D, Mihalca AD. Babesia vesperuginis, a neglected piroplasmid: new host and geographical records, and phylogenetic relations. Parasit Vectors 2017; 10:598. [PMID: 29208011 PMCID: PMC5718032 DOI: 10.1186/s13071-017-2536-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Babesia spp. are hemoparasites which infect the red blood cells of a large variety of mammals. In bats, the only known species of the genus is Babesia vesperuginis. However, except a few old reports, the host range and geographical distribution of this bat parasite have been poorly studied. This study aimed to investigate the presence of piroplasms in tissues of bats collected in four different countries from eastern and central Europe: Austria, Czech Republic, Hungary and Romania. METHODS A total of 461 bat carcasses (24 species) were collected between 2001 and 2016 from caves, mines and buildings. PCR was performed using specific primers targeting a portion of the 18S rDNA nuclear gene and cytochrome c oxidase subunit 1 mitochondrial gene, followed by sequencing. RESULTS The results of this study show for the first time the presence of B. vesperuginis in bats in central and eastern Europe. The phylogenetic analysis of the 18S rDNA nuclear gene revealed no variability between the sequences and the phylogenetic analysis of the cox1 mitochondrial gene proved that B. vesperuginis could be divided into two subclades. CONCLUSION Our study showed a broad geographical distribution of B. vesperuginis in European bats, reporting its presence in five new host species (M. cf. alcathoe, M. bechsteinii, M. myotis, Pi. nathusii and V. murinus) and three new countries.
Collapse
Affiliation(s)
- Alexandra Corduneanu
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.
| | - Kristýna Hrazdilová
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.,Department of Virology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Attila D Sándor
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioana Adriana Matei
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Angela Monica Ionică
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Levente Barti
- Romanian Bat Protection Association- Central Branch, Odorheiu Secuiesc, Romania
| | - Marius-Alexandru Ciocănău
- Department of Infection Diseases, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| | | | - Ioan Coroiu
- Faculty of Biology and Geology, University Babes- Bolyai, Cluj-Napoca, Romania
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Hans-Peter Fuehrer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Natascha Leitner
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Zoltán Bagó
- Institute for Veterinary Disease Control, Austrian Agency for Health and Food Safety (AGES), Robert Koch Gasse 17, 2340, Mödling, Austria
| | | | - David Modrý
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.,Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
27
|
Dechmann DKN, Wikelski M, Ellis-Soto D, Safi K, O'Mara MT. Determinants of spring migration departure decision in a bat. Biol Lett 2017; 13:rsbl.2017.0395. [PMID: 28931730 PMCID: PMC5627173 DOI: 10.1098/rsbl.2017.0395] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/29/2017] [Indexed: 12/03/2022] Open
Abstract
Migratory decisions in birds are closely tied to environmental cues and fat stores, but it remains unknown if the same variables trigger bat migration. To learn more about the rare phenomenon of bat migration, we studied departure decisions of female common noctules (Nyctalus noctula) in southern Germany. We did not find the fattening period that modulates departure decisions in birds. Female noctules departed after a regular evening foraging session, uniformly heading northeast. As the day of year increased, migratory decisions were based on the interactions among wind speed, wind direction and air pressure. As the migration season progressed, bats were likely to migrate on nights with higher air pressure and faster tail winds in the direction of travel, and also show high probability of migration on low-pressure nights with slow head winds. Common noctules thus monitor complex environmental conditions to find the optimal migration night.
Collapse
Affiliation(s)
- Dina K N Dechmann
- Department of Immuno-ecology and Migration, Max Planck Institute for Ornithology, 78315 Radolfzell, Germany .,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - M Wikelski
- Department of Immuno-ecology and Migration, Max Planck Institute for Ornithology, 78315 Radolfzell, Germany.,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - D Ellis-Soto
- Department of Immuno-ecology and Migration, Max Planck Institute for Ornithology, 78315 Radolfzell, Germany.,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - K Safi
- Department of Immuno-ecology and Migration, Max Planck Institute for Ornithology, 78315 Radolfzell, Germany.,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - M Teague O'Mara
- Department of Immuno-ecology and Migration, Max Planck Institute for Ornithology, 78315 Radolfzell, Germany .,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
28
|
Voigt CC, Roeleke M, Marggraf L, Pētersons G, Voigt-Heucke SL. Migratory bats respond to artificial green light with positive phototaxis. PLoS One 2017; 12:e0177748. [PMID: 28562607 PMCID: PMC5451015 DOI: 10.1371/journal.pone.0177748] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/02/2017] [Indexed: 12/02/2022] Open
Abstract
Artificial light at night is spreading worldwide at unprecedented rates, exposing strictly nocturnal animals such as bats to a novel anthropogenic stressor. Previous studies about the effect of artificial light on bats focused almost exclusively on non-migratory species, yet migratory animals such as birds are known to be largely affected by light pollution. Thus, we conducted a field experiment to evaluate if bat migration is affected by artificial light at night. In late summer, we presented artificial green light of 520 nm wavelength to bats that were migrating south along the shoreline of the Baltic Sea. Using a light on-off treatment, we observed that the activity of Pipistrellus nathusii and P. pygmaeus, the two most abundant migratory species at our site, increased by more than 50% in the light-on compared to the light-off treatment. We observed an increased number of feeding buzzes during the light-on compared to the light-off treatment for P. nathusii. However, feeding activity was low in general and did not increase disproportionately during the light-on treatment in relation to the overall echolocation call activity of bats. Further, P. nathusii were attracted towards the green light at a distance of about 23 m, which is way beyond the echolocation detection range for insects of Nathusius’ bats. We therefore infer that migratory bats were not attracted to artificial green light because of high insect densities, but instead by positive phototaxis. We conclude that artificial light at night may potentially impact bat migration in a yet unrecognized way.
Collapse
Affiliation(s)
- Christian C. Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- AG Verhaltensbiologie, Institute of Biology, Freie Universität Berlin, Takustr. 6, Berlin, Germany
- * E-mail:
| | - Manuel Roeleke
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- AG Verhaltensbiologie, Institute of Biology, Freie Universität Berlin, Takustr. 6, Berlin, Germany
| | - Lara Marggraf
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Maulbeerallee 1, Potsdam, Germany
| | - Gunārs Pētersons
- Faculty of Veterinary Medicine, Latvia University of Agriculture, Jelgava, Latvia
| | - Silke L. Voigt-Heucke
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- AG Verhaltensbiologie, Institute of Biology, Freie Universität Berlin, Takustr. 6, Berlin, Germany
| |
Collapse
|
29
|
Rosner E, Voigt CC. Oxidation of linoleic and palmitic acid in pre-hibernating and hibernating common noctule bats revealed by 13C breath testing. J Exp Biol 2017; 221:jeb.168096. [DOI: 10.1242/jeb.168096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022]
Abstract
Mammals fuel hibernation by oxidizing saturated and unsaturated fatty acids from triacylglycerols in adipocytes, yet the relative importance of these two categories as an oxidative fuel may change during hibernation. We studied the selective use of fatty acids as an oxidative fuel in noctule bats (Nyctalus noctula). Pre-hibernating noctule bats that were fed 13C-enriched linoleic acid (LA) showed 12 times higher tracer oxidation rates compared to conspecifics fed 13C-enriched palmitic acid (PA). After this experiment, we supplemented the diet of bats with the same fatty acids on 5 subsequent days to enrich their fat depots with the respective tracer. We then compared the excess 13C enrichment (APE) in breath of bats for torpor and arousal events during early and late hibernation. We observed higher APE values in breath of bats fed 13C-enriched LA than in bats fed 13C-enriched PA for both states, torpor and arousal, and also for both periods. Thus, hibernating bats oxidized selectively endogenous LA instead of PA, most likely because of faster transportation rates of PUFA compared with SFA. We did not observe changes in APE values in the breath of torpid animals between early and late hibernation. Skin temperature of torpid animals increased by 0.7°C between early and late hibernation in bats fed PA, whereas it decreased by -0.8°C in bats fed LA, highlighting that endogenous LA may fulfil two functions when available in excess: serving as an oxidative fuel and supporting cell membrane functionality.
Collapse
Affiliation(s)
- Elisabeth Rosner
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
- Zoological Institute and Museum, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
| | - Christian C. Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
- Institute of Biology, Freie Universität Berlin, Takustr 6 , 14195 Berlin, Germany
| |
Collapse
|
30
|
Smith AD, McWilliams SR. Bat activity during autumn relates to atmospheric conditions: implications for coastal wind energy development. J Mammal 2016. [DOI: 10.1093/jmammal/gyw116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Voigt-Heucke SL, Zimmer S, Kipper S. Does Interspecific Eavesdropping Promote Aerial Aggregations in European Pipistrelle Bats During Autumn? Ethology 2016. [DOI: 10.1111/eth.12519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Silke L. Voigt-Heucke
- Animal Behaviour Group; Institute of Biology; Freie Universität Berlin; Berlin Germany
| | - Stefanie Zimmer
- Animal Behaviour Group; Institute of Biology; Freie Universität Berlin; Berlin Germany
| | - Silke Kipper
- Animal Behaviour Group; Institute of Biology; Freie Universität Berlin; Berlin Germany
- Chair of Zoology; Technische Universität München; Freising Germany
| |
Collapse
|
32
|
Voigt CC, Lindecke O, Schönborn S, Kramer-Schadt S, Lehmann D. Habitat use of migratory bats killed during autumn at wind turbines. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:771-783. [PMID: 27411249 DOI: 10.1890/15-0671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The killing of large numbers of migratory bats at wind turbines is a pressing conservation problem. Even though avoidance and mitigation measures could benefit from a better knowledge of the species' migratory habits, we lack basic information about what habitats and corridors bats use during migration. We studied the isotopic niche dimensions of three bat species that are frequently killed at wind turbines in Germany: non-migratory Pipistrellus pipistrellus, mid-distance migratory Nyctalus noctula, and long- distance migratory Pipistrellus nathusii. We measured stable carbon and nitrogen isotope ratios (δ¹³C, δ¹⁵N) in five tissues that differed in isotopic retention time (fur, wing membrane tissue, muscle, liver, blood) to shed light on the species-specific habitat use during the autumn migration period using standard ellipse areas (SEAc). Further, we used stable isotope ratios of non-exchangeable hydrogen (δ²H(K)) in fur keratin to assess the breeding origin of bats. We inferred from isotopic composition (δ¹³C, δ¹⁵N) of fur keratin that isotopic niche dimensions of P. nathusii was distinct from that of N. noctula and P. pipistrellus, probably because P. nathusii was using more aquatic habitats than the other two species. Isoscape origin models supported that traveled distances before dying at wind turbines was largest for P. nathusii, intermediate for N. noctula, and shortest for P. pipistrellus. Isotopic niche dimensions calculated for each sample type separately reflected the species' migratory behavior. Pipistrellus pipistrellus and N. noctula showed similar isotopic niche breadth across all tissue types, whereas SEAc values of P. nathusii increased in tissues with slow turnaround time. Isotopic data suggested that P. nathusii consistently used aquatic habitats throughout the autumn period, whereas N. noctula showed a stronger association with terrestrial habitats during autumn compared to the pre-migration period.
Collapse
|
33
|
McCue MD, Welch KC. (13)C-Breath testing in animals: theory, applications, and future directions. J Comp Physiol B 2015; 186:265-85. [PMID: 26660654 DOI: 10.1007/s00360-015-0950-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/11/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
The carbon isotope values in the exhaled breath of an animal mirror the carbon isotope values of the metabolic fuels being oxidized. The measurement of stable carbon isotopes in carbon dioxide is called (13)C-breath testing and offers a minimally invasive method to study substrate oxidation in vivo. (13)C-breath testing has been broadly used to study human exercise, nutrition, and pathologies since the 1970s. Owing to reduced use of radioactive isotopes and the increased convenience and affordability of (13)C-analyzers, the past decade has witnessed a sharp increase in the use of breath testing throughout comparative physiology--especially to answer questions about how and when animals oxidize particular nutrients. Here, we review the practical aspects of (13)C-breath testing and identify the strengths and weaknesses of different methodological approaches including the use of natural abundance versus artificially-enriched (13)C tracers. We critically compare the information that can be obtained using different experimental protocols such as diet-switching versus fuel-switching. We also discuss several factors that should be considered when designing breath testing experiments including extrinsic versus intrinsic (13)C-labelling and different approaches to model nutrient oxidation. We use case studies to highlight the myriad applications of (13)C-breath testing in basic and clinical human studies as well as comparative studies of fuel use, energetics, and carbon turnover in multiple vertebrate and invertebrate groups. Lastly, we call for increased and rigorous use of (13)C-breath testing to explore a variety of new research areas and potentially answer long standing questions related to thermobiology, locomotion, and nutrition.
Collapse
|
34
|
McCue MD, Guzman RM, Passement CA, Davidowitz G. How and When Do Insects Rely on Endogenous Protein and Lipid Resources during Lethal Bouts of Starvation? A New Application for 13C-Breath testing. PLoS One 2015; 10:e0140053. [PMID: 26465334 PMCID: PMC4605643 DOI: 10.1371/journal.pone.0140053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/21/2015] [Indexed: 01/16/2023] Open
Abstract
Most of our understanding about the physiology of fasting and starvation comes from studies of vertebrates; however, for ethical reasons, studies that monitor vertebrates through the lethal endpoint are scant. Insects are convenient models to characterize the comparative strategies used to cope with starvation because they have diverse life histories and have evolved under the omnipresent challenge of food limitation. Moreover, we can study the physiology of starvation through its natural endpoint. In this study we raised populations of five species of insects (adult grasshoppers, crickets, cockroaches, and larval beetles and moths) on diets labeled with either 13C-palmitic acid or 13C-leucine to isotopically enrich the lipids or the proteins in their bodies, respectively. The insects were allowed to become postabsorptive and then starved. We periodically measured the δ13C of the exhaled breath to characterize how each species adjusted their reliance on endogenous lipids and proteins as energy sources. We found that starving insects employ a wide range of strategies for regulating lipid and protein oxidation. All of the insects except for the beetle larvae were capable of sharply reducing reliance on protein oxidation; however, this protein sparing strategy was usually unsustainable during the entire starvation period. All insects increased their reliance on lipid oxidation, but while some species (grasshoppers, cockroaches, and beetle larvae) were still relying extensively on lipids at the time of death, other species (crickets and moth larvae) allowed rates of lipid oxidation to return to prestarvation levels. Although lipids and proteins are critical metabolic fuels for both vertebrates and insects, insects apparently exhibit a much wider range of strategies for rationing these limited resources during starvation.
Collapse
Affiliation(s)
- Marshall D. McCue
- St. Mary’s University, Department of Biological Sciences, San Antonio, Texas, United States of America
- * E-mail:
| | - R. Marena Guzman
- St. Mary’s University, Department of Biological Sciences, San Antonio, Texas, United States of America
| | - Celeste A. Passement
- St. Mary’s University, Department of Biological Sciences, San Antonio, Texas, United States of America
| | - Goggy Davidowitz
- University of Arizona, Department of Entomology, Tucson, Arizona, United States of America
| |
Collapse
|
35
|
McCue MD, Guzman RM, Passement CA. Digesting pythons quickly oxidize the proteins in their meals and save the lipids for later. ACTA ACUST UNITED AC 2015; 218:2089-96. [PMID: 25987734 DOI: 10.1242/jeb.118349] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/29/2015] [Indexed: 01/03/2023]
Abstract
Pythons digesting rodent meals exhibit up to 10-fold increases in their resting metabolic rate (RMR); this increase in RMR is termed specific dynamic action (SDA). Studies have shown that SDA is partially fueled by oxidizing dietary nutrients, yet it remains unclear whether the proteins and the lipids in their meals contribute equally to this energy demand. We raised two populations of mice on diets labeled with either [(13)C]leucine or [(13)C]palmitic acid to intrinsically enrich the proteins and lipids in their bodies, respectively. Ball pythons (Python regius) were fed whole mice (and pureed mice 3 weeks later), after which we measured their metabolic rates and the δ(13)C in the breath. The δ(13)C values in the whole bodies of the protein- and lipid-labeled mice were generally similar (i.e. 5.7±4.7‰ and 2.8±5.4‰, respectively) but the oxidative kinetics of these two macronutrient pools were quite different. We found that the snakes oxidized 5% of the protein and only 0.24% of the lipids in their meals within 14 days. Oxidation of the dietary proteins peaked 24 h after ingestion, at which point these proteins provided ∼90% of the metabolic requirement of the snakes, and by 14 days the oxidation of these proteins decreased to nearly zero. The oxidation of the dietary lipids peaked 1 day later, at which point these lipids supplied ∼25% of the energy demand. Fourteen days after ingestion, these lipids were still being oxidized and continued to account for ∼25% of the metabolic rate. Pureeing the mice reduced the cost of gastric digestion and decreased SDA by 24%. Pureeing also reduced the oxidation of dietary proteins by 43%, but it had no effect on the rates of dietary lipid oxidation. Collectively, these results demonstrate that pythons are able to effectively partition the two primary metabolic fuels in their meals. This approach of uniquely labeling the different components of the diet will allow researchers to examine new questions about how and when animals use the nutrients in their meals.
Collapse
Affiliation(s)
- Marshall D McCue
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - R Marena Guzman
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - Celeste A Passement
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| |
Collapse
|
36
|
Welch KC, Péronnet F, Hatch KA, Voigt CC, McCue MD. Carbon stable-isotope tracking in breath for comparative studies of fuel use. Ann N Y Acad Sci 2015; 1365:15-32. [PMID: 25817456 DOI: 10.1111/nyas.12737] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Almost half a century ago, researchers demonstrated that the ratio of stable carbon isotopes in exhaled breath of rats and humans could reveal the oxidation of labeled substrates in vivo, opening a new chapter in the study of fuel use, the fate of ingested substrates, and aerobic metabolism. Until recently, the combined use of respirometry and stable-isotope tracer techniques had not been broadly employed to study fuel use in other animal groups. In this review, we summarize the history of this approach in human and animal research and define best practices that maximize its utility. We also summarize several case studies that use stable-isotope measurements of breath to explore the limits of aerobic metabolism and substrate turnover among several species and various physiological states. We highlight the importance of a comparative approach in revealing the profound effects that phylogeny, ecology, and behavior can have in shaping aerobic metabolism and energetics as well as the fundamental biological principles that underlie fuel use and metabolic function across taxa. New analytical equipment and refinement of methodology make the combined use of respirometry and stable-isotope tracer techniques simpler to perform, less costly, and more field ready than ever before.
Collapse
Affiliation(s)
- Kenneth C Welch
- Department of Biology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - François Péronnet
- Département de Kinésiologie, Université de Montréal, Montréal, Québec, Canada
| | - Kent A Hatch
- Department of Biology, Long Island University Post, Brookville, New York
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marshall D McCue
- Department of Biological Sciences, St. Mary's University, San Antonio, Texas
| |
Collapse
|
37
|
McCue MD, Passement CA, Rodriguez M. The magnitude of the naturally occurring isotopic enrichment of 13C in exhaled CO2 is directly proportional to exercise intensity in humans. Comp Biochem Physiol A Mol Integr Physiol 2015; 179:164-71. [DOI: 10.1016/j.cbpa.2014.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
38
|
McGuire LP, Jonasson KA, Guglielmo CG. Bats on a budget: torpor-assisted migration saves time and energy. PLoS One 2014; 9:e115724. [PMID: 25551615 PMCID: PMC4281203 DOI: 10.1371/journal.pone.0115724] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/28/2014] [Indexed: 11/18/2022] Open
Abstract
Bats and birds must balance time and energy budgets during migration. Migrating bats face similar physiological challenges to birds, but nocturnality creates special challenges for bats, such as a conflict between travelling and refueling, which many birds avoid by feeding in daylight and flying at night. As endothermic animals, bats and birds alike must expend substantial amounts of energy to maintain high body temperatures. For migratory birds refueling at stopovers, remaining euthermic during inactive periods reduces the net refuelling rate, thereby prolonging stopover duration and delaying subsequent movement. We hypothesized that bats could mitigate similar ambient-temperature dependent costs by using a torpor-assisted migration strategy. We studied silver-haired bats Lasionycteris noctivagans during autumn migration using a combination of respirometry and temperature-sensitive radiotelemetry to estimate energy costs incurred under ambient temperature conditions, and the energy that bats saved by using torpor during daytime roosting periods. All bats, regardless of sex, age, or body condition used torpor at stopover and saved up to 91% of the energy they would have expended to remain euthermic. Furthermore, bats modulated use of torpor depending on ambient temperature. By adjusting the time spent torpid, bats achieved a rate of energy expenditure independent of the ambient temperature encountered at stopover. By lowering body temperature during inactive periods, fuel stores are spared, reducing the need for refuelling. Optimal migration models consider trade-offs between time and energy. Heterothermy provides a physiological strategy that allows bats to conserve energy without paying a time penalty as they migrate. Although uncommon, some avian lineages are known to use heterothermy, and current theoretical models of migration may not be appropriate for these groups. We propose that thermoregulatory strategies should be an important consideration of future migration studies of both bats and birds.
Collapse
Affiliation(s)
- Liam P. McGuire
- Department of Biology, Advanced Facility for Avian Research, Western University, London, Ontario, Canada
- * E-mail:
| | - Kristin A. Jonasson
- Department of Biology, Advanced Facility for Avian Research, Western University, London, Ontario, Canada
| | - Christopher G. Guglielmo
- Department of Biology, Advanced Facility for Avian Research, Western University, London, Ontario, Canada
| |
Collapse
|
39
|
Dechmann DKN, Wikelski M, Varga K, Yohannes E, Fiedler W, Safi K, Burkhard WD, O'Mara MT. Tracking post-hibernation behavior and early migration does not reveal the expected sex-differences in a "female-migrating" bat. PLoS One 2014; 9:e114810. [PMID: 25517947 PMCID: PMC4269398 DOI: 10.1371/journal.pone.0114810] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/12/2014] [Indexed: 11/24/2022] Open
Abstract
Long-distance migration is a rare phenomenon in European bats. Genetic analyses and banding studies show that females can cover distances of up to 1,600 km, whereas males are sedentary or migrate only short distances. The onset of this sex-biased migration is supposed to occur shortly after rousing from hibernation and when the females are already pregnant. We therefore predicted that the sexes are exposed to different energetic pressures in early spring, and this should be reflected in their behavior and physiology. We investigated this in one of the three Central European long-distance migrants, the common noctule (Nyctalus noctula) in Southern Germany recording the first individual partial migration tracks of this species. In contrast to our predictions, we found no difference between male and female home range size, activity, habitat use or diet. Males and females emerged from hibernation in similar body condition and mass increase rate was the same in males and females. We followed the first migration steps, up to 475 km, of radio-tagged individuals from an airplane. All females, as well as some of the males, migrated away from the wintering area in the same northeasterly direction. Sex differences in long-distance migratory behavior were confirmed through stable isotope analysis of hair, which showed greater variation in females than in males. We hypothesize that both sexes faced similarly good conditions after hibernation and fattened at maximum rates, thus showing no differences in their local behavior. Interesting results that warrant further investigation are the better initial condition of the females and the highly consistent direction of the first migratory step in this population as summering habitats of the common noctule occur at a broad range in Northern Europe. Only research focused on individual strategies will allow us to fully understand the migratory behavior of European bats.
Collapse
Affiliation(s)
- Dina K. N. Dechmann
- Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- * E-mail:
| | - Martin Wikelski
- Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Katarina Varga
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany
| | | | - Wolfgang Fiedler
- Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany
| | - Kamran Safi
- Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany
| | | | - M. Teague O'Mara
- Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
40
|
Krüger F, Clare EL, Symondson WOC, Keišs O, Pētersons G. Diet of the insectivorous bat Pipistrellus nathusii during autumn migration and summer residence. Mol Ecol 2013; 23:3672-83. [PMID: 24118366 DOI: 10.1111/mec.12547] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022]
Abstract
Migration is widespread among vertebrates, yet bat migration has received little attention and only in the recent decades has a better understanding of it been gained. Migration can cause significant changes in behaviour and physiology, due to increasing energy demands and aerodynamic constraints. Dietary shifts, for example, have been shown to occur in birds before onset of migration. For bats, it is not known if a change in diet occurs during migration, although breeding season-related dietary preference has been documented. It is known that a diet rich in fats and the accumulation of fat deposits do increase the flight range of migratory bats. Some bat species can be regarded as long-distance migrants, covering up to 2000 km between summer and winter roosting areas. Pipistrellus nathusii (Vespertilionidae), a European long-distant migrant, travels each year along the Baltic Sea from north-eastern Europe to hibernate in central and southern Europe. This study presents data on the dietary habits of migrating Pipistrellus nathusii compared with those during the breeding season. We analysed faecal samples from bats on fall migration caught at the Ornithological Field Station in Pape, Latvia and from samples collected in North-Latvian summer roosts. We applied both morphological identification and molecular methods, as morphological methods also recognize life stages of prey and can contribute frequency data. The diets of bats on migration and breeding bats were similar, with Diptera and Lepidoptera comprising the major prey categories. However, certain prey groups could be explained by the different hunting habitats exploited during migration vs. summer residence.
Collapse
Affiliation(s)
- Frauke Krüger
- Institute of Natural Resource Conservation, University of Kiel, Olshausenstr. 75, 24118, Kiel, Germany; Echolot Gbr, Eulerstr. 12, 48155, Münster, Germany
| | | | | | | | | |
Collapse
|
41
|
Voigt CC, Melzheimer J, Thalwitzer S, Wachter B. A breath test to assign carnivore diets to browsers or grazers. WILDLIFE BIOLOGY 2013. [DOI: 10.2981/13-012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
42
|
Seasonal upregulation of catabolic enzymes and fatty acid transporters in the flight muscle of migrating hoary bats, Lasiurus cinereus. Comp Biochem Physiol B Biochem Mol Biol 2013; 165:138-43. [DOI: 10.1016/j.cbpb.2013.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 01/14/2023]
|
43
|
Fly-and-Forage Strategy in the Bat Pipistrellus nathusii During Autumn Migration. ACTA CHIROPTEROLOGICA 2012. [DOI: 10.3161/150811012x661693] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|