1
|
Recknagel H, Zakšek V, Delić T, Gorički Š, Trontelj P. Multiple transitions between realms shape relict lineages of Proteus cave salamanders. Mol Ecol 2024; 33:e16868. [PMID: 36715250 DOI: 10.1111/mec.16868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023]
Abstract
In comparison to biodiversity on Earth's surface, subterranean biodiversity has largely remained concealed. The olm (Proteus anguinus) is one of the most enigmatic extant cave inhabitants, and until now little was known regarding its genetic structure and evolutionary history. Olms inhabit subterranean waters throughout the Dinaric Karst of the western Balkans, with a seemingly uniform phenotypic appearance of cave-specialized traits: an elongate body, snout and limbs, degenerated eyes and loss of pigmentation ("white olm"). Only a single small region in southeastern Slovenia harbours olms with a phenotype typical of surface animals: pigmented skin, eyes, a blunt snout and short limbs ("black olm"). We used a combination of mitochondrial DNA and genome-wide single nucleotide polymorphism data to investigate the molecular diversity, evolutionary history and biogeography of olms along the Dinaric Karst. We found nine deeply divergent species-level lineages that separated between 17 and 4 million years ago, while molecular diversity within lineages was low. We detected no signal of recent admixture between lineages and only limited historical gene flow. Biogeographically, the contemporaneous distribution of lineages mostly mirrors hydrologically separated subterranean environments, while the historical separation of olm lineages follows microtectonic and climatic changes in the area. The reconstructed phylogeny suggests at least four independent transitions to the cave phenotype. Two of the species-level lineages have miniscule ranges and may represent Europe's rarest amphibians. Their rarity and the decline in other lineages call for protection of their subterranean habitats.
Collapse
Affiliation(s)
- H Recknagel
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - V Zakšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - T Delić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Š Gorički
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Scriptorium biologorum, Murska Sobota, Slovenia
| | - P Trontelj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Abstract
Salamanders are an important group of living amphibians and model organisms for understanding locomotion, development, regeneration, feeding, and toxicity in tetrapods. However, their origin and early radiation remain poorly understood, with early fossil stem-salamanders so far represented by larval or incompletely known taxa. This poor record also limits understanding of the origin of Lissamphibia (i.e., frogs, salamanders, and caecilians). We report fossils from the Middle Jurassic of Scotland representing almost the entire skeleton of the enigmatic stem-salamander Marmorerpeton. We use computed tomography to visualize high-resolution three-dimensional anatomy, describing morphologies that were poorly characterized in early salamanders, including the braincase, scapulocoracoid, and lower jaw. We use these data in the context of a phylogenetic analysis intended to resolve the relationships of early and stem-salamanders, including representation of important outgroups alongside data from high-resolution imaging of extant species. Marmorerpeton is united with Karaurus, Kokartus, and others from the Middle Jurassic-Lower Cretaceous of Asia, providing evidence for an early radiation of robustly built neotenous stem-salamanders. These taxa display morphological specializations similar to the extant cryptobranchid "giant" salamanders. Our analysis also demonstrates stem-group affinities for a larger sample of Jurassic species than previously recognized, highlighting an unappreciated diversity of stem-salamanders and cautioning against the use of single species (e.g., Karaurus) as exemplars for stem-salamander anatomy. These phylogenetic findings, combined with knowledge of the near-complete skeletal anatomy of Mamorerpeton, advance our understanding of evolutionary changes on the salamander stem-lineage and provide important data on early salamanders and the origins of Batrachia and Lissamphibia.
Collapse
|
3
|
A global phylogeny of turtles reveals a burst of climate-associated diversification on continental margins. Proc Natl Acad Sci U S A 2021; 118:2012215118. [PMID: 33558231 DOI: 10.1073/pnas.2012215118] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Living turtles are characterized by extraordinarily low species diversity given their age. The clade's extensive fossil record indicates that climate and biogeography may have played important roles in determining their diversity. We investigated this hypothesis by collecting a molecular dataset for 591 individual turtles that, together, represent 80% of all turtle species, including representatives of all families and 98% of genera, and used it to jointly estimate phylogeny and divergence times. We found that the turtle tree is characterized by relatively constant diversification (speciation minus extinction) punctuated by a single threefold increase. We also found that this shift is temporally and geographically associated with newly emerged continental margins that appeared during the Eocene-Oligocene transition about 30 million years before present. In apparent contrast, the fossil record from this time period contains evidence for a major, but regional, extinction event. These seemingly discordant findings appear to be driven by a common global process: global cooling and drying at the time of the Eocene-Oligocene transition. This climatic shift led to aridification that drove extinctions in important fossil-bearing areas, while simultaneously exposing new continental margin habitat that subsequently allowed for a burst of speciation associated with these newly exploitable ecological opportunities.
Collapse
|
4
|
Bonett RM, Ledbetter NM, Hess AJ, Herrboldt MA, Denoël M. Repeated ecological and life cycle transitions make salamanders an ideal model for evolution and development. Dev Dyn 2021; 251:957-972. [PMID: 33991029 DOI: 10.1002/dvdy.373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/11/2022] Open
Abstract
Observations on the ontogeny and diversity of salamanders provided some of the earliest evidence that shifts in developmental trajectories have made a substantial contribution to the evolution of animal forms. Since the dawn of evo-devo there have been major advances in understanding developmental mechanisms, phylogenetic relationships, evolutionary models, and an appreciation for the impact of ecology on patterns of development (eco-evo-devo). Molecular phylogenetic analyses have converged on strong support for the majority of branches in the Salamander Tree of Life, which includes 764 described species. Ancestral reconstructions reveal repeated transitions between life cycle modes and ecologies. The salamander fossil record is scant, but key Mesozoic species support the antiquity of life cycle transitions in some families. Colonization of diverse habitats has promoted phenotypic diversification and sometimes convergence when similar environments have been independently invaded. However, unrelated lineages may follow different developmental pathways to arrive at convergent phenotypes. This article summarizes ecological and endocrine-based causes of life cycle transitions in salamanders, as well as consequences to body size, genome size, and skeletal structure. Salamanders offer a rich source of comparisons for understanding how the evolution of developmental patterns has led to phenotypic diversification following shifts to new adaptive zones.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | | | - Alexander J Hess
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Madison A Herrboldt
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma, USA
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Targeting redox-altered plasticity to reactivate synaptic function: A novel therapeutic strategy for cognitive disorder. Acta Pharm Sin B 2021; 11:599-608. [PMID: 33777670 PMCID: PMC7982492 DOI: 10.1016/j.apsb.2020.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Redox-altered plasticity refers to redox-dependent reversible changes in synaptic plasticity via altering functions of key proteins, such as N-methyl-d-aspartate receptor (NMDAR). Age-related cognitive disorders includes Alzheimer's disease (AD), vascular dementia (VD), and age-associated memory impairment (AAMI). Based on the critical role of NMDAR-dependent long-term potentiation (LTP) in memory, the increase of reactive oxygen species in cognitive disorders, and the sensitivity of NMDAR to the redox status, converging lines have suggested the redox-altered NMDAR-dependent plasticity might underlie the synaptic dysfunctions associated with cognitive disorders. In this review, we summarize the involvement of redox-altered plasticity in cognitive disorders by presenting the available evidence. According to reports from our laboratory and other groups, this "redox-altered plasticity" is more similar to functional changes rather than organic injuries, and strategies targeting redox-altered plasticity using pharmacological agents might reverse synaptic dysfunctions and memory abnormalities in the early stage of cognitive disorders. Targeting redox modifications for NMDARs may serve as a novel therapeutic strategy for memory deficits.
Collapse
Key Words
- AAMI, age-associated memory impairment
- AD, Alzheimer's disease
- AMPARs, α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptors
- CaMKII, Ca2+/calmodulin-dependent protein kinase II
- Cognitive disorder
- DG, dentate gyrus
- DS, Down syndrome
- DTNB, 5,5-dithio-bis-2-nitrobenzoic acid
- DTT, dithiothreitol
- EPSPs, excitatory postsynaptic potentials
- GSK-3β, glycogen synthase kinase-3β
- Glu, glutamate
- H2O2, hydrogen peroxide
- HFS, high-frequency stimulation
- Hydrogen sulfide
- LFS, low-frequency stimulation
- LTD, long-term depression
- LTP, long-term potentiation
- Learning and memory
- Long-term potentiation
- MF, mossy fiber
- N-Methyl-d-aspartate receptor
- NAC, N-acetyl cysteine
- NADPH, nicotinamide adenine dinucleotide phosphate
- NMDARs, N-methyl-d-aspartate receptors
- NO, nitric oxide
- Oxidative stress
- PTM, posttranslational modification
- ROS, reactive oxygen species
- Reactive oxygen species
- SC, Schaffer collateral
- SNOC, S-nitrosocysteine
- Synaptic plasticity
- TFAM, mitochondrial transcription factor A
- VD, vascular dementia
Collapse
|
6
|
Huang Y, Wang X, Yang X, Jiang J, Hu J. Unveiling the roles of interspecific competition and local adaptation in phenotypic differentiation of parapatric frogs. Curr Zool 2020; 66:383-392. [PMID: 32617086 PMCID: PMC7319442 DOI: 10.1093/cz/zoaa001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
Understanding how ecological processes affect phenotypic evolution has been and continues to be an important goal of ecology and evolutionary biology. Interspecific competition for resources can be a selective force driving phenotypic differentiation that reduces competition among sympatric species (character divergence), enabling closely-related species to coexist. However, although patterns of character divergence are well documented in both empirical and theoretical researches, how local adaptation to abiotic environment affects trait evolution in the face of interspecific competition is less known. Here, we investigate how patterns in morphological traits of 2 parapatric frog species, Feirana quadranus and F. taihangnica, vary among allopatric and sympatric regions using range-wide data derived from extensive field surveys. Feirana quadranus was overall larger than F. taihangnica in body size (i.e., snout–vent length [SVL]), and the difference between SVL of both species in sympatry was larger than that in allopatry. From allopatry to sympatry, the 2 species diverged in foot and hand traits, but converged in eye size and interorbital span, even when we controlled for the effects of geographic gradients. Sympatric divergence in SVL, hand and foot traits is likely acting as a case of evolutionary shift caused by interspecific competition. In contrast, sympatric convergence of eye-related traits may derive at least partly from adaptation to local environments. These results imply the relative roles of interspecific competition and local adaptation in shaping phenotypic diversification. Our findings illustrate how traits evolve in parapatric species pair due to sympatric divergent and convergent evolution. It thus provides insights into understanding underlying evolutionary processes of parapatric species, that is, competition and local adaptation.
Collapse
Affiliation(s)
- Yan Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Xiaoyi Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Junhua Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
7
|
Miller KE, Brownlee C, Heald R. The power of amphibians to elucidate mechanisms of size control and scaling. Exp Cell Res 2020; 392:112036. [PMID: 32343955 PMCID: PMC7246146 DOI: 10.1016/j.yexcr.2020.112036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023]
Abstract
Size is a fundamental feature of biology that affects physiology at all levels, from the organism to organs and tissues to cells and subcellular structures. How size is determined at these different levels, and how biological structures scale to fit together and function properly are important open questions. Historically, amphibian systems have been extremely valuable to describe scaling phenomena, as they occupy some of the extremes in biological size and are amenable to manipulations that alter genome and cell size. More recently, the application of biochemical, biophysical, and embryological techniques to amphibians has provided insight into the molecular mechanisms underlying scaling of subcellular structures to cell size, as well as how perturbation of normal size scaling impacts other aspects of cell and organism physiology.
Collapse
Affiliation(s)
- Kelly E Miller
- Department of Molecular and Cell Biology, University of California, CA, 94720, Berkeley, USA
| | - Christopher Brownlee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8651, USA.
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, CA, 94720, Berkeley, USA.
| |
Collapse
|
8
|
Bonett RM, Hess AJ, Ledbetter NM. Facultative Transitions Have Trouble Committing, But Stable Life Cycles Predict Salamander Genome Size Evolution. Evol Biol 2020. [DOI: 10.1007/s11692-020-09497-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Guyer C, Murray C, Bart HL, Crother BI, Chabarria RE, Bailey MA, Dunn K. Colour and size reveal hidden diversity of Necturus (Caudata: Proteidae) from the Gulf Coastal Plain of the United States. J NAT HIST 2020. [DOI: 10.1080/00222933.2020.1736677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Craig Guyer
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Christopher Murray
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA
| | - Henry L. Bart
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Brian I. Crother
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA
| | | | | | - Khorizon Dunn
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
10
|
Siu-Ting K, Torres-Sánchez M, San Mauro D, Wilcockson D, Wilkinson M, Pisani D, O'Connell MJ, Creevey CJ. Inadvertent Paralog Inclusion Drives Artifactual Topologies and Timetree Estimates in Phylogenomics. Mol Biol Evol 2019; 36:1344-1356. [PMID: 30903171 PMCID: PMC6526904 DOI: 10.1093/molbev/msz067] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Increasingly, large phylogenomic data sets include transcriptomic data from nonmodel organisms. This not only has allowed controversial and unexplored evolutionary relationships in the tree of life to be addressed but also increases the risk of inadvertent inclusion of paralogs in the analysis. Although this may be expected to result in decreased phylogenetic support, it is not clear if it could also drive highly supported artifactual relationships. Many groups, including the hyperdiverse Lissamphibia, are especially susceptible to these issues due to ancient gene duplication events and small numbers of sequenced genomes and because transcriptomes are increasingly applied to resolve historically conflicting taxonomic hypotheses. We tested the potential impact of paralog inclusion on the topologies and timetree estimates of the Lissamphibia using published and de novo sequencing data including 18 amphibian species, from which 2,656 single-copy gene families were identified. A novel paralog filtering approach resulted in four differently curated data sets, which were used for phylogenetic reconstructions using Bayesian inference, maximum likelihood, and quartet-based supertrees. We found that paralogs drive strongly supported conflicting hypotheses within the Lissamphibia (Batrachia and Procera) and older divergence time estimates even within groups where no variation in topology was observed. All investigated methods, except Bayesian inference with the CAT-GTR model, were found to be sensitive to paralogs, but with filtering convergence to the same answer (Batrachia) was observed. This is the first large-scale study to address the impact of orthology selection using transcriptomic data and emphasizes the importance of quality over quantity particularly for understanding relationships of poorly sampled taxa.
Collapse
Affiliation(s)
- Karen Siu-Ting
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom.,School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland.,Dpto. de Herpetología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, Madrid, Spain.,Department of Neuroscience, Spinal Cord and Brain Injury Research Center and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY
| | - Diego San Mauro
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, Madrid, Spain
| | - David Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Mark Wilkinson
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Davide Pisani
- Life Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Mary J O'Connell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,School of Life Sciences, University of Nottingham, University Park, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Ledbetter NM, Bonett RM. Terrestriality constrains salamander limb diversification: Implications for the evolution of pentadactyly. J Evol Biol 2019; 32:642-652. [PMID: 30891861 DOI: 10.1111/jeb.13444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/04/2019] [Accepted: 03/07/2019] [Indexed: 01/03/2023]
Abstract
Patterns of phenotypic evolution can abruptly shift as species move between adaptive zones. Extant salamanders display three distinct life cycle strategies that range from aquatic to terrestrial (biphasic), to fully aquatic (paedomorphic) and to fully terrestrial (direct development). Life cycle variation is associated with changes in body form such as loss of digits, limb reduction or body elongation. However, the relationships among these traits and life cycle strategy remain unresolved. Here, we use a Bayesian modelling approach to test whether life cycle transitions by salamanders have influenced rates, optima and integration of primary locomotory structures (limbs and trunk). We show that paedomorphic salamanders have elevated rates of limb evolution with optima shifted towards smaller size and fewer digits compared to all other salamanders. Rate of hindlimb digit evolution is shown to decrease in a gradient as life cycles become more terrestrial. Paedomorphs have a higher correlation between hindlimb digit loss and increases in vertebral number, as well as reduced correlations between limb lengths. Our results support the idea that terrestrial plantigrade locomotion constrains limb evolution and, when lifted, leads to higher rates of trait diversification and shifts in optima and integration. The basic tetrapod body form of most salamanders and the independent losses of terrestrial life stages provide an important framework for understanding the evolutionary and developmental mechanisms behind major shifts in ecological zones as seen among early tetrapods during their transition from water to land.
Collapse
Affiliation(s)
| | - Ronald M Bonett
- Department of Biological Science, The University of Tulsa, Tulsa, Oklahoma
| |
Collapse
|
12
|
Bonett RM, Phillips JG, Ledbetter NM, Martin SD, Lehman L. Rapid phenotypic evolution following shifts in life cycle complexity. Proc Biol Sci 2019; 285:rspb.2017.2304. [PMID: 29343600 DOI: 10.1098/rspb.2017.2304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/11/2017] [Indexed: 01/18/2023] Open
Abstract
Life cycle strategies have evolved extensively throughout the history of metazoans. The expression of disparate life stages within a single ontogeny can present conflicts to trait evolution, and therefore may have played a major role in shaping metazoan forms. However, few studies have examined the consequences of adding or subtracting life stages on patterns of trait evolution. By analysing trait evolution in a clade of closely related salamander lineages we show that shifts in the number of life cycle stages are associated with rapid phenotypic evolution. Specifically, salamanders with an aquatic-only (paedomorphic) life cycle have frequently added vertebrae to their trunk skeleton compared with closely related lineages with a complex aquatic-to-terrestrial (biphasic) life cycle. The rate of vertebral column evolution is also substantially lower in biphasic lineages, which may reflect the functional compromise of a complex cycle. This study demonstrates that the consequences of life cycle evolution can be detected at very fine scales of divergence. Rapid evolutionary responses can result from shifts in selective regimes following changes in life cycle complexity.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - John G Phillips
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | | | - Samuel D Martin
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| | - Luke Lehman
- Department of Biological Science, University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
13
|
Graham SP, Kline R, Steen DA, Kelehear C. Description of an extant salamander from the Gulf Coastal Plain of North America: The Reticulated Siren, Siren reticulata. PLoS One 2018; 13:e0207460. [PMID: 30517124 PMCID: PMC6281224 DOI: 10.1371/journal.pone.0207460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/30/2018] [Indexed: 12/02/2022] Open
Abstract
The salamander family Sirenidae is represented by four extant species that are restricted to North America. Sirens are abundant throughout the southern United States and are among the world’s largest amphibians, yet the biology, ecology, and phylogeography of this group is poorly-known. In this study we use morphological and genetic evidence to describe a previously unrecognized species from southern Alabama and the Florida panhandle. We name this species the Reticulated Siren, Siren reticulata. Future studies will enable more precise phylogenetic information about S. reticulata and will almost surely reveal additional undescribed species within the family.
Collapse
Affiliation(s)
- Sean P. Graham
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, Texas, United States of America
- * E-mail:
| | - Richard Kline
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, United States of America
| | - David A. Steen
- Georgia Sea Turtle Center, Jekyll Island Authority, Jekyll Island, Georgia, United States of America
| | - Crystal Kelehear
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, Texas, United States of America
- Smithsonian Tropical Research Institute, Apartado, Ancon, Panama, Republic of Panama
| |
Collapse
|
14
|
Chabarria RE, Murray CM, Moler PE, Bart HL, Crother BI, Guyer C. Evolutionary insights into the North American Necturus beyericomplex (Amphibia: Caudata) based on molecular genetic and morphological analyses. J ZOOL SYST EVOL RES 2018. [DOI: 10.1111/jzs.12203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Paul E. Moler
- Florida Fish and Wildlife Conservation Commission; Gainesville FL USA
| | - Henry L. Bart
- Department of Ecology and Evolutionary Biology; Tulane University; New Orleans LA USA
| | - Brian I. Crother
- Department of Biological Sciences; Southeastern Louisiana University; Hammond LA USA
| | - Craig Guyer
- Department of Biological Sciences; Auburn University; Auburn AL USA
| |
Collapse
|
15
|
Co-occurrence and Hybridization between Necturus maculosus and a Heretofore Unknown Necturus in the Southern Appalachians. J HERPETOL 2017. [DOI: 10.1670/17-006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Affiliation(s)
- David B. Wake
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720-3160, USA
| |
Collapse
|
17
|
Evidence for complex life cycle constraints on salamander body form diversification. Proc Natl Acad Sci U S A 2017; 114:9936-9941. [PMID: 28851828 DOI: 10.1073/pnas.1703877114] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Metazoans display a tremendous diversity of developmental patterns, including complex life cycles composed of morphologically disparate stages. In this regard, the evolution of life cycle complexity promotes phenotypic diversity. However, correlations between life cycle stages can constrain the evolution of some structures and functions. Despite the potential macroevolutionary consequences, few studies have tested the impacts of life cycle evolution on broad-scale patterns of trait diversification. Here we show that larval and adult salamanders with a simple, aquatic-only (paedomorphic) life cycle had an increased rate of vertebral column and body form diversification compared to lineages with a complex, aquatic-terrestrial (biphasic) life cycle. These differences in life cycle complexity explain the variations in vertebral number and adult body form better than larval ecology. In addition, we found that lineages with a simple terrestrial-only (direct developing) life cycle also had a higher rate of adult body form evolution than biphasic lineages, but still 10-fold lower than aquatic-only lineages. Our analyses demonstrate that prominent shifts in phenotypic evolution can follow long-term transitions in life cycle complexity, which may reflect underlying stage-dependent constraints.
Collapse
|
18
|
Suzuki TK. On the Origin of Complex Adaptive Traits: Progress Since the Darwin Versus Mivart Debate. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:304-320. [PMID: 28397400 DOI: 10.1002/jez.b.22740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 01/12/2023]
Abstract
The evolutionary origin of complex adaptive traits has been a controversial topic in the history of evolutionary biology. Although Darwin argued for the gradual origins of complex adaptive traits within the theory of natural selection, Mivart insisted that natural selection could not account for the incipient stages of complex traits. The debate starting from Darwin and Mivart eventually engendered two opposite views: gradualism and saltationism. Although this has been a long-standing debate, the issue remains unresolved. However, recent studies have interrogated classic examples of complex traits, such as the asymmetrical eyes of flatfishes and leaf mimicry of butterfly wings, whose origins were debated by Darwin and Mivart. Here, I review recent findings as a starting point to provide a modern picture of the evolution of complex adaptive traits. First, I summarize the empirical evidence that unveils the evolutionary steps toward complex traits. I then argue that the evolution of complex traits could be understood within the concept of "reducible complexity." Through these discussions, I propose a conceptual framework for the formation of complex traits, named as reducible-composable multicomponent systems, that satisfy two major characteristics: reducibility into a sum of subcomponents and composability to construct traits from various additional and combinatorial arrangements of the subcomponents. This conceptual framework provides an analytical foundation for exploring evolutionary pathways to build up complex traits. This review provides certain essential avenues for deciphering the origin of complex adaptive traits.
Collapse
Affiliation(s)
- Takao K Suzuki
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, NARO, Ibaraki, 305-8634, Japan
| |
Collapse
|
19
|
Shen XX, Liang D, Chen MY, Mao RL, Wake DB, Zhang P. Enlarged Multilocus Data set Provides Surprisingly Younger Time of Origin for the Plethodontidae, the Largest Family of Salamanders. Syst Biol 2015; 65:66-81. [PMID: 26385618 DOI: 10.1093/sysbio/syv061] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/15/2015] [Indexed: 11/14/2022] Open
Abstract
Deep phylogenetic relationships of the largest salamander family Plethodontidae have been difficult to resolve, probably reflecting a rapid diversification early in their evolutionary history. Here, data from 50 independent nuclear markers (total 48,582 bp) are used to reconstruct the phylogeny and divergence times for plethodontid salamanders, using both concatenation and coalescence-based species tree analyses. Our results robustly resolve the position of the enigmatic eastern North American four-toed salamander (Hemidactylium) as the sister taxon of Batrachoseps + Tribe Bolitoglossini, thus settling a long-standing question. Furthermore, we statistically reject sister taxon status of Karsenia and Hydromantes, the only plethodontids to occur outside the Americas, leading us to new biogeographic hypotheses. Contrary to previous long-standing arguments that plethodontid salamanders are an old lineage originating in the Cretaceous (more than 90 Ma), our analyses lead to the hypothesis that these salamanders are much younger, arising close to the K-T boundary (~66 Ma). These time estimates are highly stable using alternative calibration schemes and dating methods. Our data simulation highlights the potential risk of making strong arguments about phylogenetic timing based on inferences from a handful of nuclear genes, a common practice. Based on the newly obtained timetree and ancestral area reconstruction results, we argue that (i) the classic "Out of Appalachia" hypothesis of plethodontid origins is problematic; (ii) the common ancestor of extant plethodontids may have originated in northwestern North America in the early Paleocene; (iii) origins of Eurasian plethodontids likely result from two separate dispersal events from western North America via Beringia in the late Eocene (~42 Ma) and the early Miocene (~23 Ma), respectively.
Collapse
Affiliation(s)
- Xing-Xing Shen
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China and
| | - Dan Liang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China and
| | - Meng-Yun Chen
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China and
| | - Rong-Li Mao
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China and
| | - David B Wake
- Museum of Vertebrate Zoology and Department of Integrative Biology, 3101 Valley Life Sciences Bldg, University of California, Berkeley, CA 94720, USA
| | - Peng Zhang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China and
| |
Collapse
|
20
|
Rovito SM, Parra-Olea G, Recuero E, Wake DB. Diversification and biogeographical history of Neotropical plethodontid salamanders. Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12271] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean M. Rovito
- Museum of Vertebrate Zoology; University of California; 3101 Valley Life Sciences Building Berkeley CA 94720-3160 USA
- Instituto de Biología; Universidad Nacional Autónoma de México; AP 70-153 Circuito Exterior Ciudad Universitaria México DF CP 04510 México
| | - Gabriela Parra-Olea
- Instituto de Biología; Universidad Nacional Autónoma de México; AP 70-153 Circuito Exterior Ciudad Universitaria México DF CP 04510 México
| | - Ernesto Recuero
- Departamento de Ecología de la Biodiversidad; Instituto de Ecología; Universidad Nacional Autónoma de México; AP 70-275 Ciudad Universitaria México DF 04510 Mexico
| | - David B. Wake
- Museum of Vertebrate Zoology; University of California; 3101 Valley Life Sciences Building Berkeley CA 94720-3160 USA
- Department of Integrative Biology; University of California; 3040 Valley Life Sciences Building Berkeley CA 94720-3140 USA
| |
Collapse
|
21
|
Aran RP, Steffen MA, Martin SD, Lopez OI, Bonett RM. Reduced effects of thyroid hormone on gene expression and metamorphosis in a paedomorphic plethodontid salamander. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:294-303. [DOI: 10.1002/jez.b.22580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/08/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Robert P. Aran
- Department of Biological Science; University of Tulsa; Tulsa Oklahoma
| | | | - Samuel D. Martin
- Department of Biological Science; University of Tulsa; Tulsa Oklahoma
| | - Olivia I. Lopez
- Department of Biological Science; University of Tulsa; Tulsa Oklahoma
| | - Ronald M. Bonett
- Department of Biological Science; University of Tulsa; Tulsa Oklahoma
| |
Collapse
|
22
|
Bonett RM, Steffen MA, Lambert SM, Wiens JJ, Chippindale PT. Evolution of paedomorphosis in plethodontid salamanders: ecological correlates and re-evolution of metamorphosis. Evolution 2013; 68:466-82. [PMID: 24102140 DOI: 10.1111/evo.12274] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/05/2013] [Indexed: 01/08/2023]
Abstract
Life-history modes can profoundly impact the biology of a species, and a classic example is the dichotomy between metamorphic (biphasic) and paedomorphic (permanently aquatic) life-history strategies in salamanders. However, despite centuries of research on this system, several basic questions about the evolution of paedomorphosis in salamanders have not been addressed. Here, we use a nearly comprehensive, time-calibrated phylogeny of spelerpine plethodontids to reconstruct the evolution of paedomorphosis and to test if paedomorphosis is (1) reversible; (2) associated with living in caves; (3) associated with relatively dry climatic conditions on the surface; and (4) correlated with limited range size and geographic dispersal. We find that paedomorphosis arose multiple times in spelerpines. We also find evidence for re-evolution of metamorphosis after several million years of paedomorphosis in a lineage of Eurycea from the Edwards Plateau region of Texas. We also show for the first time using phylogenetic comparative methods that paedomorphosis is highly correlated with cave-dwelling, arid surface environments, and small geographic range sizes, providing insights into both the causes and consequences of this major life history transition.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, Oklahoma, 74104.
| | | | | | | | | |
Collapse
|