1
|
Martin CS, Jubelin G, Darsonval M, Leroy S, Leneveu-Jenvrin C, Hmidene G, Omhover L, Stahl V, Guillier L, Briandet R, Desvaux M, Dubois-Brissonnet F. Genetic, physiological, and cellular heterogeneities of bacterial pathogens in food matrices: Consequences for food safety. Compr Rev Food Sci Food Saf 2022; 21:4294-4326. [PMID: 36018457 DOI: 10.1111/1541-4337.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/28/2023]
Abstract
In complex food systems, bacteria live in heterogeneous microstructures, and the population displays phenotypic heterogeneities at the single-cell level. This review provides an overview of spatiotemporal drivers of phenotypic heterogeneity of bacterial pathogens in food matrices at three levels. The first level is the genotypic heterogeneity due to the possibility for various strains of a given species to contaminate food, each of them having specific genetic features. Then, physiological heterogeneities are induced within the same strain, due to specific microenvironments and heterogeneous adaptative responses to the food microstructure. The third level of phenotypic heterogeneity is related to cellular heterogeneity of the same strain in a specific microenvironment. Finally, we consider how these phenotypic heterogeneities at the single-cell level could be implemented in mathematical models to predict bacterial behavior and help ensure microbiological food safety.
Collapse
Affiliation(s)
- Cédric Saint Martin
- MICALIS Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France.,Université Clermont Auvergne, INRAE, UMR454 MEDIS, Clermont-Ferrand, France
| | - Grégory Jubelin
- Université Clermont Auvergne, INRAE, UMR454 MEDIS, Clermont-Ferrand, France
| | - Maud Darsonval
- MICALIS Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, UMR454 MEDIS, Clermont-Ferrand, France
| | - Charlène Leneveu-Jenvrin
- MICALIS Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France.,Association pour le Développement de l'Industrie de la Viande (ADIV), Clermont-Ferrand, France
| | - Ghaya Hmidene
- Risk Assessment Department, ANSES, Maisons-Alfort, France
| | - Lysiane Omhover
- Aerial, Technical Institute of Agro-Industry, Illkirch, France
| | - Valérie Stahl
- Aerial, Technical Institute of Agro-Industry, Illkirch, France
| | | | - Romain Briandet
- MICALIS Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, UMR454 MEDIS, Clermont-Ferrand, France
| | | |
Collapse
|
2
|
Tate AT, Van Cleve J. Bet-hedging in innate and adaptive immune systems. Evol Med Public Health 2022; 10:256-265. [PMID: 35712085 PMCID: PMC9195227 DOI: 10.1093/emph/eoac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immune system evolution is shaped by the fitness costs and trade-offs associated with mounting an immune response. Costs that arise mainly as a function of the magnitude of investment, including energetic and immunopathological costs, are well-represented in studies of immune system evolution. Less well considered, however, are the costs of immune cell plasticity and specialization. Hosts in nature encounter a large diversity of microbes and parasites that require different and sometimes conflicting immune mechanisms for defense, but it takes precious time to recognize and correctly integrate signals for an effective polarized response. In this perspective, we propose that bet-hedging can be a viable alternative to plasticity in immune cell effector function, discuss conditions under which bet-hedging is likely to be an advantageous strategy for different arms of the immune system, and present cases from both innate and adaptive immune systems that suggest bet-hedging at play.
Collapse
Affiliation(s)
- Ann T Tate
- Department of Biological Sciences, Vanderbilt University , 465 21st Ave S. , Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation , Nashville, TN, USA
- Evolutionary Studies Institute, Vanderbilt University , Nashville, TN, USA
| | - Jeremy Van Cleve
- Department of Biology, University of Kentucky , 101 T.H. Morgan Building , Lexington, KY 40506, USA
| |
Collapse
|
3
|
Robinson ML, Schilmiller AL, Wetzel WC. A domestic plant differs from its wild relative along multiple axes of within-plant trait variability and diversity. Ecol Evol 2022; 12:e8545. [PMID: 35127045 PMCID: PMC8794722 DOI: 10.1002/ece3.8545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/28/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
For 10,000 years humans have altered plant traits through domestication and ongoing crop improvement, shaping plant form and function in agroecosystems. To date, studies have focused on how these processes shape whole-plant or average traits; however, plants also have characteristic levels of trait variability among their repeated parts, which can be heritable and mediate critical ecological interactions. Here, we examine an underappreciated scale of trait variation-among leaves, within plants-that may have changed through the process of domestication and improvement. Variability at this scale may itself be a target of selection, or be shaped as a by-product of the domestication process. We explore how levels of among-leaf trait variability differ between cultivars and wild relatives of alfalfa (Medicago sativa), a key forage crop with a 7,000-year domestication history. We grew individual plants from 30 wild populations and 30 cultivars, and quantified variability in a broad suite of physical, nutritive, and chemical leaf traits, including measures of chemical dissimilarity (beta diversity) among leaves within each plant. We find that trait variability has changed over the course of domestication, with effects often larger than changes in trait means. Domestic alfalfa had elevated among-leaf variability in SLA, trichomes, and C:N; increased diversity in defensive compounds; and reduced variability in phytochemical composition. We also elucidate fundamental relationships between trait means and variability, and between overall production of secondary metabolites and patterns of chemical diversity. We conclude that within-plant variability is an overlooked dimension of trait diversity in a globally critical agricultural crop. Trait variability is actually higher in cultivated plants compared to wild progenitors for multiple nutritive, physical, and chemical traits, highlighting a scale of variation that may mitigate loss of trait diversity at other scales in alfalfa agroecosystems, and in other crops with similar histories of domestication and improvement.
Collapse
Affiliation(s)
- Moria L. Robinson
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- Kellogg Biological StationMichigan State UniversityEast LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
| | | | - William C. Wetzel
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- Kellogg Biological StationMichigan State UniversityEast LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- AgBioResearchMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
4
|
Mollá-Albaladejo R, Sánchez-Alcañiz JA. Behavior Individuality: A Focus on Drosophila melanogaster. Front Physiol 2021; 12:719038. [PMID: 34916952 PMCID: PMC8670942 DOI: 10.3389/fphys.2021.719038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Among individuals, behavioral differences result from the well-known interplay of nature and nurture. Minute differences in the genetic code can lead to differential gene expression and function, dramatically affecting developmental processes and adult behavior. Environmental factors, epigenetic modifications, and gene expression and function are responsible for generating stochastic behaviors. In the last decade, the advent of high-throughput sequencing has facilitated studying the genetic basis of behavior and individuality. We can now study the genomes of multiple individuals and infer which genetic variations might be responsible for the observed behavior. In addition, the development of high-throughput behavioral paradigms, where multiple isogenic animals can be analyzed in various environmental conditions, has again facilitated the study of the influence of genetic and environmental variations in animal personality. Mainly, Drosophila melanogaster has been the focus of a great effort to understand how inter-individual behavioral differences emerge. The possibility of using large numbers of animals, isogenic populations, and the possibility of modifying neuronal function has made it an ideal model to search for the origins of individuality. In the present review, we will focus on the recent findings that try to shed light on the emergence of individuality with a particular interest in D. melanogaster.
Collapse
|
5
|
Garre A, den Besten HM, Fernandez PS, Zwietering MH. Not just variability and uncertainty; the relevance of chance for the survival of microbial cells to stress. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
O'Dea RE, Noble DWA, Nakagawa S. Unifying individual differences in personality, predictability and plasticity: A practical guide. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rose E. O'Dea
- Evolution & Ecology Research Centre School of Biological and Environmental Sciences University of New South Wales Sydney NSW Australia
- Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney NSW Australia
| | - Daniel W. A. Noble
- Division of Ecology and Evolution Research School of Biology The Australian National University Canberra ACT Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre School of Biological and Environmental Sciences University of New South Wales Sydney NSW Australia
- Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney NSW Australia
| |
Collapse
|
7
|
Chowdhury D, Wang C, Lu A, Zhu H. Cis-Regulatory Logic Produces Gene-Expression Noise Describing Phenotypic Heterogeneity in Bacteria. Front Genet 2021; 12:698910. [PMID: 34650591 PMCID: PMC8506120 DOI: 10.3389/fgene.2021.698910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 12/04/2022] Open
Abstract
Gene transcriptional process is random. It occurs in bursts and follows single-molecular kinetics. Intermittent bursts are measured based on their frequency and size. They influence temporal fluctuations in the abundance of total mRNA and proteins by generating distinct transcriptional variations referred to as “noise”. Noisy expression induces uncertainty because the association between transcriptional variation and the extent of gene expression fluctuation is ambiguous. The promoter architecture and remote interference of different cis-regulatory elements are the crucial determinants of noise, which is reflected in phenotypic heterogeneity. An alternative perspective considers that cellular parameters dictating genome-wide transcriptional kinetics follow a universal pattern. Research on noise and systematic perturbations of promoter sequences reinforces that both gene-specific and genome-wide regulation occur across species ranging from bacteria and yeast to animal cells. Thus, deciphering gene-expression noise is essential across different genomics applications. Amidst the mounting conflict, it is imperative to reconsider the scope, progression, and rational construction of diversified viewpoints underlying the origin of the noise. Here, we have established an indication connecting noise, gene expression variations, and bacterial phenotypic variability. This review will enhance the understanding of gene-expression noise in various scientific contexts and applications.
Collapse
Affiliation(s)
- Debajyoti Chowdhury
- HKBU Institute for Research and Continuing Education, Shenzhen, China.,Computational Medicine Lab, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chao Wang
- HKBU Institute for Research and Continuing Education, Shenzhen, China.,Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Aiping Lu
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hailong Zhu
- HKBU Institute for Research and Continuing Education, Shenzhen, China.,Computational Medicine Lab, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
8
|
Menden-Deuer S, Rowlett J, Nursultanov M, Collins S, Rynearson T. Biodiversity of marine microbes is safeguarded by phenotypic heterogeneity in ecological traits. PLoS One 2021; 16:e0254799. [PMID: 34347817 PMCID: PMC8336841 DOI: 10.1371/journal.pone.0254799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
Why, contrary to theoretical predictions, do marine microbe communities harbor tremendous phenotypic heterogeneity? How can so many marine microbe species competing in the same niche coexist? We discovered a unifying explanation for both phenomena by investigating a non-cooperative game that interpolates between individual-level competitions and species-level outcomes. We identified all equilibrium strategies of the game. These strategies represent the probability distribution of competitive abilities (e.g. traits) and are characterized by maximal phenotypic heterogeneity. They are also neutral towards each other in the sense that an unlimited number of species can co-exist while competing according to the equilibrium strategies. Whereas prior theory predicts that natural selection would minimize trait variation around an optimum value, here we obtained a mathematical proof that species with maximally variable traits are those that endure. This discrepancy may reflect a disparity between predictions from models developed for larger organisms in contrast to our microbe-centric model. Rigorous mathematics proves that phenotypic heterogeneity is itself a mechanistic underpinning of microbial diversity. This discovery has fundamental ramifications for microbial ecology and may represent an adaptive reservoir sheltering biodiversity in changing environmental conditions.
Collapse
Affiliation(s)
- Susanne Menden-Deuer
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, RI, United States of America
| | - Julie Rowlett
- Mathematical Sciences, Chalmers University and the University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Medet Nursultanov
- School of Mathematics and Statistics, University of Sydney, Camperdown, Australia
| | - Sinead Collins
- Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Tatiana Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, Narragansett, RI, United States of America
| |
Collapse
|
9
|
Miller AK, Brown JS, Enderling H, Basanta D, Whelan CJ. The Evolutionary Ecology of Dormancy in Nature and in Cancer. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.676802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dormancy is an inactive period of an organism’s life cycle that permits it to survive through phases of unfavorable conditions in highly variable environments. Dormancy is not binary. There is a continuum of dormancy phenotypes that represent some degree of reduced metabolic activity (hypometabolism), reduced feeding, and reduced reproduction or proliferation. Similarly, normal cells and cancer cells exhibit a range of states from quiescence to long-term dormancy that permit survival in adverse environmental conditions. In contrast to organismal dormancy, which entails a reduction in metabolism, dormancy in cells (both normal and cancer) is primarily characterized by lack of cell division. “Cancer dormancy” also describes a state characterized by growth stagnation, which could arise from cells that are not necessarily hypometabolic or non-proliferative. This inconsistent terminology leads to confusion and imprecision that impedes progress in interdisciplinary research between ecologists and cancer biologists. In this paper, we draw parallels and contrasts between dormancy in cancer and other ecosystems in nature, and discuss the potential for studies in cancer to provide novel insights into the evolutionary ecology of dormancy.
Collapse
|
10
|
Abley K, Formosa-Jordan P, Tavares H, Chan EY, Afsharinafar M, Leyser O, Locke JC. An ABA-GA bistable switch can account for natural variation in the variability of Arabidopsis seed germination time. eLife 2021; 10:59485. [PMID: 34059197 PMCID: PMC8169117 DOI: 10.7554/elife.59485] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
Genetically identical plants growing in the same conditions can display heterogeneous phenotypes. Here we use Arabidopsis seed germination time as a model system to examine phenotypic variability and its underlying mechanisms. We show extensive variation in seed germination time variability between Arabidopsis accessions and use a multiparent recombinant inbred population to identify two genetic loci involved in this trait. Both loci include genes implicated in modulating abscisic acid (ABA) sensitivity. Mutually antagonistic regulation between ABA, which represses germination, and gibberellic acid (GA), which promotes germination, underlies the decision to germinate and can act as a bistable switch. A simple stochastic model of the ABA-GA network shows that modulating ABA sensitivity can generate the range of germination time distributions we observe experimentally. We validate the model by testing its predictions on the effects of exogenous hormone addition. Our work provides a foundation for understanding the mechanism and functional role of phenotypic variability in germination time.
Collapse
Affiliation(s)
- Katie Abley
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Pau Formosa-Jordan
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Hugo Tavares
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Emily Yt Chan
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Mana Afsharinafar
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Ottoline Leyser
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - James Cw Locke
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Schmutzer M, Wagner A. Gene expression noise can promote the fixation of beneficial mutations in fluctuating environments. PLoS Comput Biol 2020; 16:e1007727. [PMID: 33104710 PMCID: PMC7644098 DOI: 10.1371/journal.pcbi.1007727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 11/05/2020] [Accepted: 09/15/2020] [Indexed: 02/03/2023] Open
Abstract
Nongenetic phenotypic variation can either speed up or slow down adaptive evolution. We show that it can speed up evolution in environments where available carbon and energy sources change over time. To this end, we use an experimentally validated model of Escherichia coli growth on two alternative carbon sources, glucose and acetate. On the superior carbon source (glucose), all cells achieve high growth rates, while on the inferior carbon source (acetate) only a small fraction of the population manages to initiate growth. Consequently, populations experience a bottleneck when the environment changes from the superior to the inferior carbon source. Growth on the inferior carbon source depends on a circuit under the control of a transcription factor that is repressed in the presence of the superior carbon source. We show that noise in the expression of this transcription factor can increase the probability that cells start growing on the inferior carbon source. In doing so, it can decrease the severity of the bottleneck and increase mean population fitness whenever this fitness is low. A modest amount of noise can also enhance the fitness effects of a beneficial allele that increases the fraction of a population initiating growth on acetate. Additionally, noise can protect this allele from extinction, accelerate its spread, and increase its likelihood of going to fixation. Central to the adaptation-enhancing principle we identify is the ability of noise to mitigate population bottlenecks, particularly in environments that fluctuate periodically. Because such bottlenecks are frequent in fluctuating environments, and because periodically fluctuating environments themselves are common, this principle may apply to a broad range of environments and organisms.
Collapse
Affiliation(s)
- Michael Schmutzer
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
12
|
Bruijning M, Metcalf CJE, Jongejans E, Ayroles JF. The Evolution of Variance Control. Trends Ecol Evol 2020; 35:22-33. [PMID: 31519463 PMCID: PMC7482585 DOI: 10.1016/j.tree.2019.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Genetically identical individuals can be phenotypically variable, even in constant environmental conditions. The ubiquity of this phenomenon, known as 'intra-genotypic variability', is increasingly evident and the relevant mechanistic underpinnings are beginning to be understood. In parallel, theory has delineated a number of formal expectations for contexts in which such a feature would be adaptive. Here, we review empirical evidence across biological systems and theoretical expectations, including nonlinear averaging and bet hedging. We synthesize existing results to illustrate the dependence of selection outcomes both on trait characteristics, features of environmental variability, and species' demographic context. We conclude by discussing ways to bridge the gap between empirical evidence of intra-genotypic variability, studies demonstrating its genetic component, and evidence that it is adaptive.
Collapse
Affiliation(s)
- Marjolein Bruijning
- Department of Animal Ecology and Physiology, Radboud University, 6500, GL, Nijmegen, The Netherlands; Department of Ecology and Evolutionary Biology, Princeton University, 08540 Princeton, NJ, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, 08540 Princeton, NJ, USA
| | - Eelke Jongejans
- Department of Animal Ecology and Physiology, Radboud University, 6500, GL, Nijmegen, The Netherlands
| | - Julien F Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, 08540 Princeton, NJ, USA.
| |
Collapse
|
13
|
Guillemin A, Duchesne R, Crauste F, Gonin-Giraud S, Gandrillon O. Drugs modulating stochastic gene expression affect the erythroid differentiation process. PLoS One 2019; 14:e0225166. [PMID: 31751364 PMCID: PMC6872177 DOI: 10.1371/journal.pone.0225166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022] Open
Abstract
To better understand the mechanisms behind cells decision-making to differentiate, we assessed the influence of stochastic gene expression (SGE) modulation on the erythroid differentiation process. It has been suggested that stochastic gene expression has a role in cell fate decision-making which is revealed by single-cell analyses but studies dedicated to demonstrate the consistency of this link are still lacking. Recent observations showed that SGE significantly increased during differentiation and a few showed that an increase of the level of SGE is accompanied by an increase in the differentiation process. However, a consistent relation in both increasing and decreasing directions has never been shown in the same cellular system. Such demonstration would require to be able to experimentally manipulate simultaneously the level of SGE and cell differentiation in order to observe if cell behavior matches with the current theory. We identified three drugs that modulate SGE in primary erythroid progenitor cells. Both Artemisinin and Indomethacin decreased SGE and reduced the amount of differentiated cells. On the contrary, a third component called MB-3 simultaneously increased the level of SGE and the amount of differentiated cells. We then used a dynamical modelling approach which confirmed that differentiation rates were indeed affected by the drug treatment. Using single-cell analysis and modeling tools, we provide experimental evidence that, in a physiologically relevant cellular system, SGE is linked to differentiation.
Collapse
Affiliation(s)
- Anissa Guillemin
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Supérieure - Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique: UMR5239, Institut National de la Santé et de la Recherche Médicale: U1210 - Ecole Normale Supérieure de Lyon 46 allée d’Italie 69007 Lyon, France
| | - Ronan Duchesne
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Supérieure - Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique: UMR5239, Institut National de la Santé et de la Recherche Médicale: U1210 - Ecole Normale Supérieure de Lyon 46 allée d’Italie 69007 Lyon, France
- Inria Dracula, Villeurbanne, France
| | - Fabien Crauste
- Inria Dracula, Villeurbanne, France
- Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400, Talence, France
| | - Sandrine Gonin-Giraud
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Supérieure - Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique: UMR5239, Institut National de la Santé et de la Recherche Médicale: U1210 - Ecole Normale Supérieure de Lyon 46 allée d’Italie 69007 Lyon, France
| | - Olivier Gandrillon
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Supérieure - Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique: UMR5239, Institut National de la Santé et de la Recherche Médicale: U1210 - Ecole Normale Supérieure de Lyon 46 allée d’Italie 69007 Lyon, France
- Inria Dracula, Villeurbanne, France
| |
Collapse
|
14
|
Papantonopoulos G, Delatola C, Takahashi K, Laine ML, Loos BG. Hidden noise in immunologic parameters might explain rapid progression in early-onset periodontitis. PLoS One 2019; 14:e0224615. [PMID: 31675372 PMCID: PMC6824576 DOI: 10.1371/journal.pone.0224615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/17/2019] [Indexed: 11/24/2022] Open
Abstract
To investigate in datasets of immunologic parameters from early-onset and late-onset periodontitis patients (EOP and LOP), the existence of hidden random fluctuations (anomalies or noise), which may be the source for increased frequencies and longer periods of exacerbation, resulting in rapid progression in EOP. Principal component analysis (PCA) was applied on a dataset of 28 immunologic parameters and serum IgG titers against periodontal pathogens derived from 68 EOP and 43 LOP patients. After excluding the PCA parameters that explain the majority of variance in the datasets, i.e. the overall aberrant immune function, the remaining parameters of the residual subspace were analyzed by computing their sample entropy to detect possible anomalies. The performance of entropy anomaly detection was tested by using unsupervised clustering based on a log-likelihood distance yielding parameters with anomalies. An aggregate local outlier factor score (LOF) was used for a supervised classification of EOP and LOP. Entropy values on data for neutrophil chemotaxis, CD4, CD8, CD20 counts and serum IgG titer against Aggregatibacter actinomycetemcomitans indicated the existence of possible anomalies. Unsupervised clustering confirmed that the above parameters are possible sources of anomalies. LOF presented 94% sensitivity and 83% specificity in identifying EOP (87% sensitivity and 83% specificity in 10-fold cross-validation). Any generalization of the result should be performed with caution due to a relatively high false positive rate (17%). Random fluctuations in immunologic parameters from a sample of EOP and LOP patients were detected, suggesting that their existence may cause more frequently periods of disease activity, where the aberrant immune response in EOP patients result in the phenotype "rapid progression".
Collapse
Affiliation(s)
- George Papantonopoulos
- Center for Research and Applications of Nonlinear Systems, Department of Mathematics, University of Patras, Patras, Greece
| | - Chryssa Delatola
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Keiso Takahashi
- Department of Conservative Dentistry, School of Dentistry, Ohu University, Fukushima, Fukushima, Japan
| | - Marja L. Laine
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bruno G. Loos
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Vazquez-Jimenez A, Rodriguez-Gonzalez J. On Information Extraction and Decoding Mechanisms Improved by Noisy Amplification in Signaling Pathways. Sci Rep 2019; 9:14365. [PMID: 31591406 PMCID: PMC6779762 DOI: 10.1038/s41598-019-50631-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/12/2019] [Indexed: 02/04/2023] Open
Abstract
The cells need to process information about extracellular stimuli. They encode, transmit and decode the information to elicit an appropriate response. Studies aimed at understanding how such information is decoded in the signaling pathways to generate a specific cellular response have become essential. Eukaryotic cells decode information through two different mechanisms: the feed-forward loop and the promoter affinity. Here, we investigate how these two mechanisms improve information transmission. A detailed comparison is made between the stochastic model of the MAPK/ERK pathway and a stochastic minimal decoding model. The maximal amount of transmittable information was computed. The results suggest that the decoding mechanism of the MAPK/ERK pathway improve the channel capacity because it behaves as a noisy amplifier. We show a positive dependence between the noisy amplification and the amount of information extracted. Additionally, we show that the extrinsic noise can be tuned to improve information transmission. This investigation has revealed that the feed-forward loop and the promoter affinity motifs extract information thanks to processes of amplification and noise addition. Moreover, the channel capacity is enhanced when both decoding mechanisms are coupled. Altogether, these findings suggest novel characteristics in how decoding mechanisms improve information transmission.
Collapse
Affiliation(s)
- Aaron Vazquez-Jimenez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Vía del conocimiento 201, Parque de Investigación e Innovación Tecnológica, 66600, Apodaca, NL, Mexico.
| | - Jesus Rodriguez-Gonzalez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Vía del conocimiento 201, Parque de Investigación e Innovación Tecnológica, 66600, Apodaca, NL, Mexico.
| |
Collapse
|
16
|
Hoo R, Bruske E, Dimonte S, Zhu L, Mordmüller B, Sim BKL, Kremsner PG, Hoffman SL, Bozdech Z, Frank M, Preiser PR. Transcriptome profiling reveals functional variation in Plasmodium falciparum parasites from controlled human malaria infection studies. EBioMedicine 2019; 48:442-452. [PMID: 31521613 PMCID: PMC6838377 DOI: 10.1016/j.ebiom.2019.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/01/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The transcriptome of Plasmodium falciparum clinical isolates varies according to strain, mosquito bites, disease severity and clinical history. Therefore, it remains a challenge to directly interpret the parasite's transcriptomic information into a more general biological signature in a natural human malaria infection. These confounding variations can be potentially overcome with parasites derived from controlled-human malaria infection (CHMI) studies. METHODS We performed CHMI studies in healthy and immunologically naïve volunteers receiving the same P. falciparum strain ((Sanaria® PfSPZ Challenge (NF54)), but with different sporozoite dosage and route of infection. Parasites isolated from these volunteers at the day of patency were subjected to in vitro culture for several generations and synchronized ring-stage parasites were subjected to transcriptome profiling. FINDINGS We observed clear deviations between CHMI-derived parasites from volunteer groups receiving different PfSPZ dose and route. CHMI-derived parasites and the pre-mosquito strain used for PfSPZ generation showed significant transcriptional variability for gene clusters associated with malaria pathogenesis, immune evasion and transmission. These transcriptional variation signature clusters were also observed in the transcriptome of P. falciparum isolates from acute clinical infections. INTERPRETATION Our work identifies a previously unrecognized transcriptional pattern in malaria infections in a non-immune background. Significant transcriptome heterogeneity exits between parasites derived from human infections and the pre-mosquito strain, implying that the malaria parasites undergo a change in functional state to adapt to its host environment. Our work also highlights the potential use of transcriptomics data from CHMI study advance our understanding of malaria parasite adaptation and transmission in humans. FUND: This work is supported by German Israeli Foundation, German ministry for education and research, MOE Tier 1 from the Singapore Ministry of Education Academic Research Fund, Singapore Ministry of Health's National Medical Research Council, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA and the German Centre for Infection Research (Deutsches Zentrum für Infektionsforschung-DZIF).
Collapse
Affiliation(s)
- Regina Hoo
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ellen Bruske
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany
| | - Sandra Dimonte
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany; German Center for Infection Research, partner site Tübingen, Germany
| | - B Kim Lee Sim
- Sanaria Inc, 9800 Medical Center Dr A209, Rockville, MD 20850, USA
| | - Peter G Kremsner
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
| | | | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Matthias Frank
- Institute of Tropical Medicine, Wilhelmstr. 27, University of Tübingen, 72074 Tübingen, Germany.
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
17
|
Liu J, François JM, Capp JP. Gene Expression Noise Produces Cell-to-Cell Heterogeneity in Eukaryotic Homologous Recombination Rate. Front Genet 2019; 10:475. [PMID: 31164905 PMCID: PMC6536703 DOI: 10.3389/fgene.2019.00475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/03/2019] [Indexed: 11/13/2022] Open
Abstract
Variation in gene expression among genetically identical individual cells (called gene expression noise) directly contributes to phenotypic diversity. Whether such variation can impact genome stability and lead to variation in genotype remains poorly explored. We addressed this question by investigating whether noise in the expression of genes affecting homologous recombination (HR) activity either directly (RAD52) or indirectly (RAD27) confers cell-to-cell heterogeneity in HR rate in Saccharomyces cerevisiae. Using cell sorting to isolate subpopulations with various expression levels, we show that spontaneous HR rate is highly heterogeneous from cell-to-cell in clonal populations depending on the cellular amount of proteins affecting HR activity. Phleomycin-induced HR is even more heterogeneous, showing that RAD27 expression variation strongly affects the rate of recombination from cell-to-cell. Strong variations in HR rate between subpopulations are not correlated to strong changes in cell cycle stage. Moreover, this heterogeneity occurs even when simultaneously sorting cells at equal expression level of another gene involved in DNA damage response (BMH1) that is upregulated by DNA damage, showing that the initiating DNA damage is not responsible for the observed heterogeneity in HR rate. Thus gene expression noise seems mainly responsible for this phenomenon. Finally, HR rate non-linearly scales with Rad27 levels showing that total amount of HR cannot be explained solely by the time- or population-averaged Rad27 expression. Altogether, our data reveal interplay between heterogeneity at the gene expression and genetic levels in the production of phenotypic diversity with evolutionary consequences from microbial to cancer cell populations.
Collapse
Affiliation(s)
- Jian Liu
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Institut National des Sciences Appliquées de Toulouse, UMR CNRS 5504, UMR INRA 792, Université de Toulouse, Toulouse, France
| | - Jean-Marie François
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Institut National des Sciences Appliquées de Toulouse, UMR CNRS 5504, UMR INRA 792, Université de Toulouse, Toulouse, France
| | - Jean-Pascal Capp
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Institut National des Sciences Appliquées de Toulouse, UMR CNRS 5504, UMR INRA 792, Université de Toulouse, Toulouse, France
| |
Collapse
|
18
|
Heterogeneity of single cell inactivation: Assessment of the individual cell time to death and implications in population behavior. Food Microbiol 2018; 80:85-92. [PMID: 30704600 DOI: 10.1016/j.fm.2018.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/01/2018] [Accepted: 12/21/2018] [Indexed: 11/22/2022]
Abstract
A direct microscopic time-lapse method, using appropriate staining for cell viability in a confocal scanning laser microscope, was used for the direct assessment of Salmonella Agona individual cell inactivation in small two-dimensional colonies exposed to osmotic stress. Individual cell inactivation times were fitted to a variety of continuous distributions using @Risk software. The best fitted distribution (LogLogistic) was further used to predict the inactivation of Salmonella populations of various initial levels using Monte Carlo simulation. The simulation results showed that the variability in inactivation kinetics is negligible for concentrations down to 100 cells and the population behavior can be described with a deterministic model. As the concentration decreases below 100 cells, however, the variability increases significantly indicating that the traditional D-value used in deterministic first order kinetic models is not valid. At a second stage, single cell behavior was monitored in larger three dimensional colonies. The results showed that colony size can affect the inactivation pattern. The effect of colony size on microbial inactivation was confirmed with validation experiments which showed a higher inactivation rate for populations consisting of single cells or small colonies compared to those consisting of cells organized in larger colonies.
Collapse
|
19
|
Serra L, Arnaud N, Selka F, Rechenmann C, Andrey P, Laufs P. Heterogeneity and its multiscale integration in plant morphogenesis. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:18-24. [PMID: 30015106 DOI: 10.1016/j.pbi.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Heterogeneity is observed at all levels in living organisms, but its role during the development of an individual is not well understood. Heterogeneity has either to be limited to ensure robust development or can be an actor of the biological processes leading to reproducible development. Here we review the sources of heterogeneity in plants, stress the interplay between noise in elementary processes and regulated biological mechanisms, and highlight how heterogeneity is integrated at multiple scales during plant morphogenesis.
Collapse
Affiliation(s)
- Léo Serra
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Nicolas Arnaud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Faïçal Selka
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Catherine Rechenmann
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Philippe Andrey
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Patrick Laufs
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
20
|
Duveau F, Hodgins-Davis A, Metzger BP, Yang B, Tryban S, Walker EA, Lybrook T, Wittkopp PJ. Fitness effects of altering gene expression noise in Saccharomyces cerevisiae. eLife 2018; 7:37272. [PMID: 30124429 PMCID: PMC6133559 DOI: 10.7554/elife.37272] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/17/2018] [Indexed: 01/22/2023] Open
Abstract
Gene expression noise is an evolvable property of biological systems that describes differences in expression among genetically identical cells in the same environment. Prior work has shown that expression noise is heritable and can be shaped by selection, but the impact of variation in expression noise on organismal fitness has proven difficult to measure. Here, we quantify the fitness effects of altering expression noise for the TDH3 gene in Saccharomyces cerevisiae. We show that increases in expression noise can be deleterious or beneficial depending on the difference between the average expression level of a genotype and the expression level maximizing fitness. We also show that a simple model relating single-cell expression levels to population growth produces patterns consistent with our empirical data. We use this model to explore a broad range of average expression levels and expression noise, providing additional insight into the fitness effects of variation in expression noise.
Collapse
Affiliation(s)
- Fabien Duveau
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States.,Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot, Paris, France
| | - Andrea Hodgins-Davis
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Brian Ph Metzger
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States.,Department of Ecology and Evolution, University of Chicago, Chicago, United States
| | - Bing Yang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Stephen Tryban
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Elizabeth A Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Tricia Lybrook
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States.,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
21
|
Carey JN, Goulian M. A bacterial signaling system regulates noise to enable bet hedging. Curr Genet 2018; 65:65-70. [PMID: 29947971 DOI: 10.1007/s00294-018-0856-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 11/26/2022]
Abstract
Phenotypic diversity helps populations persist in changing and often unpredictable environments. One diversity-generating strategy is for individuals to switch randomly between phenotypic states such that one subpopulation has high fitness in the present environment, and another subpopulation has high fitness in an environment that might be encountered in the future. This sort of biological bet hedging can be found in all domains of life. Here, we discuss a recently described example from the bacterium Escherichia coli. When exposed to both oxygen and trimethylamine oxide (TMAO), E. coli hedges its bets on the possibility of oxygen loss by generating high cell-to-cell variability in the expression of the TMAO respiratory system. If oxygen is rapidly depleted from the environment, only those cells that had been expressing the TMAO respiratory system at high levels can continue to grow. This particular bet-hedging scheme possesses some unusual characteristics, most notably the decoupling of gene expression noise from the mean expression level. This decoupling allows bacteria to sense oxygen and regulate the amount of variability in TMAO reductase expression (that is, to turn bet hedging on or off) without having to adjust the mean TMAO reductase expression level. In this review, we discuss the features of the TMAO signaling pathway that permit the decoupling of gene expression noise from the mean and the regulation of bet hedging. We also highlight some open questions regarding the TMAO respiratory system and its regulatory architecture that may be relevant to many signaling systems.
Collapse
Affiliation(s)
- Jeffrey N Carey
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark Goulian
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biology and Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Liu J, Arabaciyan S, François JM, Capp JP. Bimodality of gene expression from yeast promoter can be instigated by DNA context, inducing conditions and strain background. FEMS Yeast Res 2018; 18:4978428. [PMID: 29684123 DOI: 10.1093/femsyr/foy047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
Bimodality in gene expression is thought to provide a high phenotypic heterogeneity that can be favourable for adaptation or unfavourable notably in industrial processes that require stable and homogeneous properties. Whether this property is produced or suppressed in different conditions has been understudied. Here we identified tens of Saccharomyces cerevisiae genomic fragments conferring bimodal yEGFP expression on centromeric plasmid and studied some of these promoters in different DNA contexts, inducing conditions or strain backgrounds. First, we observed that the bimodal behaviour identified on plasmid is generally suppressed at the genomic level. Second, an inducible promoter such as the copper-regulated CUP1 promoter can produce bimodal expression in a time- and dose-dependent fashion. For a given copper sulphate concentration, a constant proportion of the subpopulation is induced and only the induction level of this subpopulation changed with induction duration, while for a same induction time, higher copper sulphate concentrations induced more cells at higher levels. Third, we showed that bimodality conferred by the CUP1 promoter in expression profile is strain background dependent, revealing epistasis in the generation of bimodality. The influence of these parameters on bimodality has to be taken into account when considering transgene expression for industrial microbial productions.
Collapse
Affiliation(s)
- Jian Liu
- INSA/Université de Toulouse, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, 31077 Toulouse, France
| | - Sevan Arabaciyan
- INSA/Université de Toulouse, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, 31077 Toulouse, France
| | - Jean Marie François
- INSA/Université de Toulouse, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, 31077 Toulouse, France
| | - Jean-Pascal Capp
- INSA/Université de Toulouse, Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, 31077 Toulouse, France
| |
Collapse
|
23
|
Amherd M, Velicer GJ, Rendueles O. Spontaneous nongenetic variation of group size creates cheater-free groups of social microbes. Behav Ecol 2018. [DOI: 10.1093/beheco/arx184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michaela Amherd
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Olaya Rendueles
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- UMR 3525, CNRS, Paris, France
| |
Collapse
|
24
|
Zheng Q, Shen J, Wang Z. Pattern dynamics of the reaction-diffusion immune system. PLoS One 2018; 13:e0190176. [PMID: 29385145 PMCID: PMC5791964 DOI: 10.1371/journal.pone.0190176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/08/2017] [Indexed: 11/30/2022] Open
Abstract
In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.
Collapse
Affiliation(s)
- Qianqian Zheng
- College of Information Science and Technology, Donghua University, Shanghai, Shanghai, China
| | - Jianwei Shen
- Institute of Applied Mathematics, Xuchang University, Xuchang, Henan, China
| | - Zhijie Wang
- College of Information Science and Technology, Donghua University, Shanghai, Shanghai, China
| |
Collapse
|
25
|
Barroso GV, Puzovic N, Dutheil JY. The Evolution of Gene-Specific Transcriptional Noise Is Driven by Selection at the Pathway Level. Genetics 2018; 208:173-189. [PMID: 29097405 PMCID: PMC5753856 DOI: 10.1534/genetics.117.300467] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
Biochemical reactions within individual cells result from the interactions of molecules, typically in small numbers. Consequently, the inherent stochasticity of binding and diffusion processes generates noise along the cascade that leads to the synthesis of a protein from its encoding gene. As a result, isogenic cell populations display phenotypic variability even in homogeneous environments. The extent and consequences of this stochastic gene expression have only recently been assessed on a genome-wide scale, owing, in particular, to the advent of single-cell transcriptomics. However, the evolutionary forces shaping this stochasticity have yet to be unraveled. Here, we take advantage of two recently published data sets for the single-cell transcriptome of the domestic mouse Mus musculus to characterize the effect of natural selection on gene-specific transcriptional stochasticity. We show that noise levels in the mRNA distributions (also known as transcriptional noise) significantly correlate with three-dimensional nuclear domain organization, evolutionary constraints on the encoded protein, and gene age. However, the position of the encoded protein in a biological pathway is the main factor that explains observed levels of transcriptional noise, in agreement with models of noise propagation within gene networks. Because transcriptional noise is under widespread selection, we argue that it constitutes an important component of the phenotype and that variance of expression is a potential target of adaptation. Stochastic gene expression should therefore be considered together with the mean expression level in functional and evolutionary studies of gene expression.
Collapse
Affiliation(s)
- Gustavo Valadares Barroso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Natasa Puzovic
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Julien Y Dutheil
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Unité mixte de recherche 5554, Institut des Sciences de l'Évolution, Université de Montpellier, 34095, France
| |
Collapse
|
26
|
Chen Z, Chen L, Zhang W. Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level. Front Microbiol 2017; 8:1831. [PMID: 28979258 PMCID: PMC5611438 DOI: 10.3389/fmicb.2017.01831] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022] Open
Abstract
Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS), and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented.
Collapse
Affiliation(s)
- Zixi Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China.,Center for Biosafety Research and Strategy, Tianjin UniversityTianjin, China
| |
Collapse
|
27
|
Variation in gene expression within clones of the earthworm Dendrobaena octaedra. PLoS One 2017; 12:e0174960. [PMID: 28384196 PMCID: PMC5383104 DOI: 10.1371/journal.pone.0174960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/19/2017] [Indexed: 12/23/2022] Open
Abstract
Gene expression is highly plastic, which can help organisms to both acclimate and adapt to changing environments. Possible variation in gene expression among individuals with the same genotype (among clones) is not widely considered, even though it could impact the results of studies that focus on gene expression phenotypes, for example studies using clonal lines. We examined the extent of within and between clone variation in gene expression in the earthworm Dendrobaena octaedra, which reproduces through apomictic parthenogenesis. Five microsatellite markers were developed and used to confirm that offspring are genetic clones of their parent. After that, expression of 12 genes was measured from five individuals each from six clonal lines after exposure to copper contaminated soil. Variation in gene expression was higher over all genotypes than within genotypes, as initially assumed. A subset of the genes was also examined in the offspring of exposed individuals in two of the clonal lines. In this case, variation in gene expression within genotypes was as high as that observed over all genotypes. One gene in particular (chymotrypsin inhibitor) also showed significant differences in the expression levels among genetically identical individuals. Gene expression can vary considerably, and the extent of variation may depend on the genotypes and genes studied. Ensuring a large sample, with many different genotypes, is critical in studies comparing gene expression phenotypes. Researchers should be especially cautious inferring gene expression phenotypes when using only a single clonal or inbred line, since the results might be specific to only certain genotypes.
Collapse
|
28
|
Saxena A, Sitaraman R. Osmoregulation in Saccharomyces cerevisiae via mechanisms other than the high-osmolarity glycerol pathway. Microbiology (Reading) 2016; 162:1511-1526. [DOI: 10.1099/mic.0.000360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Abhishek Saxena
- Department of Biotechnology, TERI University, New Delhi, India
| | | |
Collapse
|
29
|
Stratz S, Dittrich PS. A Microfluidic Device for Immunoassay-Based Protein Analysis of Single E. coli Bacteria. Methods Mol Biol 2016; 1346:11-25. [PMID: 26542712 DOI: 10.1007/978-1-4939-2987-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We present a method suitable for quantitative analysis of intracellular proteins, metabolites and secondary messengers of single bacterial cells. The method integrates the concept of immunoassays on a microfluidic device that facilitates single cell trapping and isolating in a small volume of a few tens of picoliters. Combination of the benefits of microfluidic systems for single cell analysis with the high analytical selectivity and sensitivity of immunoassays enables the detection of even low abundant intracellular analytes which occur only at a few hundred copies per bacterium.
Collapse
Affiliation(s)
- Simone Stratz
- Department of Biosystems Science and Engineering, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, 8091, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, 8091, Switzerland.
| |
Collapse
|
30
|
Healey D, Axelrod K, Gore J. Negative frequency-dependent interactions can underlie phenotypic heterogeneity in a clonal microbial population. Mol Syst Biol 2016; 12:877. [PMID: 27487817 PMCID: PMC5119493 DOI: 10.15252/msb.20167033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Genetically identical cells in microbial populations often exhibit a remarkable degree of phenotypic heterogeneity even in homogenous environments. Such heterogeneity is commonly thought to represent a bet‐hedging strategy against environmental uncertainty. However, evolutionary game theory predicts that phenotypic heterogeneity may also be a response to negative frequency‐dependent interactions that favor rare phenotypes over common ones. Here we provide experimental evidence for this alternative explanation in the context of the well‐studied yeast GAL network. In an environment containing the two sugars glucose and galactose, the yeast GAL network displays stochastic bimodal activation. We show that in this mixed sugar environment, GAL‐ON and GAL‐OFF phenotypes can each invade the opposite phenotype when rare and that there exists a resulting stable mix of phenotypes. Consistent with theoretical predictions, the resulting stable mix of phenotypes is not necessarily optimal for population growth. We find that the wild‐type mixed strategist GAL network can invade populations of both pure strategists while remaining uninvasible by either. Lastly, using laboratory evolution we show that this mixed resource environment can directly drive the de novo evolution of clonal phenotypic heterogeneity from a pure strategist population. Taken together, our results provide experimental evidence that negative frequency‐dependent interactions can underlie the phenotypic heterogeneity found in clonal microbial populations.
Collapse
Affiliation(s)
- David Healey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin Axelrod
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Jeff Gore
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
31
|
Fischer EK, Ghalambor CK, Hoke KL. Can a Network Approach Resolve How Adaptive vs Nonadaptive Plasticity Impacts Evolutionary Trajectories? Integr Comp Biol 2016; 56:877-888. [DOI: 10.1093/icb/icw087] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Koutsoumanis KP, Aspridou Z. Individual cell heterogeneity in Predictive Food Microbiology: Challenges in predicting a "noisy" world. Int J Food Microbiol 2016; 240:3-10. [PMID: 27412586 DOI: 10.1016/j.ijfoodmicro.2016.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/13/2016] [Accepted: 06/19/2016] [Indexed: 11/25/2022]
Abstract
Gene expression is a fundamentally noisy process giving rise to a significant cell to cell variability at the phenotype level. The phenotypic noise is manifested in a wide range of microbial traits. Heterogeneous behavior of individual cells is observed at the growth, survival and inactivation responses and should be taken into account in the context of Predictive Food Microbiology (PMF). Recent methodological advances can be employed for the study and modeling of single cell dynamics leading to a new generation of mechanistic models which can provide insight into the link between phenotype, gene-expression, protein and metabolic functional units at the single cell level. Such models however, need to deal with an enormous amount of interactions and processes that influence each other, forming an extremely complex system. In this review paper, we discuss the importance of noise and present the future challenges in predicting the "noisy" microbial responses in foods.
Collapse
Affiliation(s)
- Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Zafiro Aspridou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
33
|
Liu J, François JM, Capp JP. Use of noise in gene expression as an experimental parameter to test phenotypic effects. Yeast 2016; 33:209-16. [DOI: 10.1002/yea.3152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/12/2023] Open
Affiliation(s)
- Jian Liu
- INSA/Université Fédérale Toulouse Midi-Pyrénées; Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés; UMR CNRS 5504 UMR INRA 792 Toulouse France
| | - Jean-Marie François
- INSA/Université Fédérale Toulouse Midi-Pyrénées; Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés; UMR CNRS 5504 UMR INRA 792 Toulouse France
| | - Jean-Pascal Capp
- INSA/Université Fédérale Toulouse Midi-Pyrénées; Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés; UMR CNRS 5504 UMR INRA 792 Toulouse France
| |
Collapse
|
34
|
Abley K, Locke JCW, Leyser HMO. Developmental mechanisms underlying variable, invariant and plastic phenotypes. ANNALS OF BOTANY 2016; 117:733-48. [PMID: 27072645 PMCID: PMC4845803 DOI: 10.1093/aob/mcw016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Discussions of phenotypic robustness often consider scenarios where invariant phenotypes are optimal and assume that developmental mechanisms have evolved to buffer the phenotypes of specific traits against stochastic and environmental perturbations. However, plastic plant phenotypes that vary between environments or variable phenotypes that vary stochastically within an environment may also be advantageous in some scenarios. SCOPE Here the conditions under which invariant, plastic and variable phenotypes of specific traits may confer a selective advantage in plants are examined. Drawing on work from microbes and multicellular organisms, the mechanisms that may give rise to each type of phenotype are discussed. CONCLUSION In contrast to the view of robustness as being the ability of a genotype to produce a single, invariant phenotype, changes in a phenotype in response to the environment, or phenotypic variability within an environment, may also be delivered consistently (i.e. robustly). Thus, for some plant traits, mechanisms have probably evolved to produce plasticity or variability in a reliable manner.
Collapse
Affiliation(s)
- Katie Abley
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - James C W Locke
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - H M Ottoline Leyser
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
35
|
Roberfroid S, Vanderleyden J, Steenackers H. Gene expression variability in clonal populations: Causes and consequences. Crit Rev Microbiol 2016; 42:969-84. [PMID: 26731119 DOI: 10.3109/1040841x.2015.1122571] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During the last decade it has been shown that among cell variation in gene expression plays an important role within clonal populations. Here, we provide an overview of the different mechanisms contributing to gene expression variability in clonal populations. These are ranging from inherent variations in the biochemical process of gene expression itself, such as intrinsic noise, extrinsic noise and bistability to individual responses to variations in the local micro-environment, a phenomenon called phenotypic plasticity. Also genotypic variations caused by clonal evolution and phase variation can contribute to gene expression variability. Consequently, gene expression studies need to take these fluctuations in expression into account. However, frequently used techniques for expression quantification, such as microarrays, RNA sequencing, quantitative PCR and gene reporter fusions classically determine the population average of gene expression. Here, we discuss how these techniques can be adapted towards single cell analysis by integration with single cell isolation, RNA amplification and microscopy. Alternatively more qualitative selection-based techniques, such as mutant screenings, in vivo expression technology (IVET) and recombination-based IVET (RIVET) can be applied for detection of genes expressed only within a subpopulation. Finally, differential fluorescence induction (DFI), a protocol specially designed for single cell expression is discussed.
Collapse
Affiliation(s)
- Stefanie Roberfroid
- a Department of Microbial and Molecular Systems , Centre of Microbial and Plant Genetics, KU Leuven , Leuven , Belgium
| | - Jos Vanderleyden
- a Department of Microbial and Molecular Systems , Centre of Microbial and Plant Genetics, KU Leuven , Leuven , Belgium
| | - Hans Steenackers
- a Department of Microbial and Molecular Systems , Centre of Microbial and Plant Genetics, KU Leuven , Leuven , Belgium
| |
Collapse
|
36
|
Vogt G. Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J Biosci 2015; 40:159-204. [PMID: 25740150 DOI: 10.1007/s12038-015-9506-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article reviews the production of different phenotypes from the same genotype in the same environment by stochastic cellular events, nonlinear mechanisms during patterning and morphogenesis, and probabilistic self-reinforcing circuitries in the adult life. These aspects of phenotypic variation are summarized under the term 'stochastic developmental variation' (SDV) in the following. In the past, SDV has been viewed primarily as a nuisance, impairing laboratory experiments, pharmaceutical testing, and true-to-type breeding. This article also emphasizes the positive biological effects of SDV and discusses implications for genotype-to-phenotype mapping, biological individuation, ecology, evolution, and applied biology. There is strong evidence from experiments with genetically identical organisms performed in narrowly standardized laboratory set-ups that SDV is a source of phenotypic variation in its own right aside from genetic variation and environmental variation. It is obviously mediated by molecular and higher-order epigenetic mechanisms. Comparison of SDV in animals, plants, fungi, protists, bacteria, archaeans, and viruses suggests that it is a ubiquitous and phylogenetically old phenomenon. In animals, it is usually smallest for morphometric traits and highest for life history traits and behaviour. SDV is thought to contribute to phenotypic diversity in all populations but is particularly relevant for asexually reproducing and genetically impoverished populations, where it generates individuality despite genetic uniformity. In each generation, SDV produces a range of phenotypes around a well-adapted target phenotype, which is interpreted as a bet-hedging strategy to cope with the unpredictability of dynamic environments. At least some manifestations of SDV are heritable, adaptable, selectable, and evolvable, and therefore, SDV may be seen as a hitherto overlooked evolution factor. SDV is also relevant for husbandry, agriculture, and medicine because most pathogens are asexuals that exploit this third source of phenotypic variation to modify infectivity and resistance to antibiotics. Since SDV affects all types of organisms and almost all aspects of life, it urgently requires more intense research and a better integration into biological thinking.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 230, D-69120, Heidelberg, Germany,
| |
Collapse
|
37
|
Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. Proc Natl Acad Sci U S A 2015; 112:13970-5. [PMID: 26483466 DOI: 10.1073/pnas.1515937112] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phenotypic plasticity is important in adaptation and shapes the evolution of organisms. However, we understand little about what aspects of the genome are important in facilitating plasticity. Eusocial insect societies produce plastic phenotypes from the same genome, as reproductives (queens) and nonreproductives (workers). The greatest plasticity is found in the simple eusocial insect societies in which individuals retain the ability to switch between reproductive and nonreproductive phenotypes as adults. We lack comprehensive data on the molecular basis of plastic phenotypes. Here, we sequenced genomes, microRNAs (miRNAs), and multiple transcriptomes and methylomes from individual brains in a wasp (Polistes canadensis) and an ant (Dinoponera quadriceps) that live in simple eusocial societies. In both species, we found few differences between phenotypes at the transcriptional level, with little functional specialization, and no evidence that phenotype-specific gene expression is driven by DNA methylation or miRNAs. Instead, phenotypic differentiation was defined more subtly by nonrandom transcriptional network organization, with roles in these networks for both conserved and taxon-restricted genes. The general lack of highly methylated regions or methylome patterning in both species may be an important mechanism for achieving plasticity among phenotypes during adulthood. These findings define previously unidentified hypotheses on the genomic processes that facilitate plasticity and suggest that the molecular hallmarks of social behavior are likely to differ with the level of social complexity.
Collapse
|
38
|
Vilanova C, Tanner K, Dorado-Morales P, Villaescusa P, Chugani D, Frías A, Segredo E, Molero X, Fritschi M, Morales L, Ramón D, Peña C, Peretó J, Porcar M. Standards not that standard. J Biol Eng 2015; 9:17. [PMID: 26435739 PMCID: PMC4591577 DOI: 10.1186/s13036-015-0017-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/16/2015] [Indexed: 01/10/2023] Open
Abstract
There is a general assent on the key role of standards in Synthetic Biology. In two consecutive letters to this journal, suggestions on the assembly methods for the Registry of standard biological parts have been described. We fully agree with those authors on the need of a more flexible building strategy and we highlight in the present work two major functional challenges standardization efforts have to deal with: the need of both universal and orthogonal behaviors. We provide experimental data that clearly indicate that such engineering requirements should not be taken for granted in Synthetic Biology.
Collapse
Affiliation(s)
- Cristina Vilanova
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C. Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Kristie Tanner
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C. Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Pedro Dorado-Morales
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C. Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Paula Villaescusa
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C. Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Divya Chugani
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C. Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Alba Frías
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C. Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Ernesto Segredo
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C. Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Xavier Molero
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C. Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Marco Fritschi
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C. Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Lucas Morales
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C. Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Daniel Ramón
- Biopolis S.L, Parc Cientific Universitat de València, Paterna, Valencia Spain
| | - Carlos Peña
- Instituto de Física Corpuscular (IFIC), CSIC - Universitat de València, Burjassot, 46100 Spain
| | - Juli Peretó
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C. Catedràtic José Beltrán 2, 46980 Paterna, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, 46100 Spain
| | - Manuel Porcar
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C. Catedràtic José Beltrán 2, 46980 Paterna, Spain.,Fundació General de la Universitat de València, Valencia, Spain
| |
Collapse
|
39
|
Atkins WM. Biological messiness vs. biological genius: Mechanistic aspects and roles of protein promiscuity. J Steroid Biochem Mol Biol 2015; 151:3-11. [PMID: 25218442 PMCID: PMC4920067 DOI: 10.1016/j.jsbmb.2014.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 02/06/2023]
Abstract
In contrast to the traditional biological paradigms focused on 'specificity', recent research and theoretical efforts have focused on functional 'promiscuity' exhibited by proteins and enzymes in many biological settings, including enzymatic detoxication, steroid biochemistry, signal transduction and immune responses. In addition, divergent evolutionary processes are apparently facilitated by random mutations that yield promiscuous enzyme intermediates. The intermediates, in turn, provide opportunities for further evolution to optimize new functions from existing protein scaffolds. In some cases, promiscuity may simply represent the inherent plasticity of proteins resulting from their polymeric nature with distributed conformational ensembles. Enzymes or proteins that bind or metabolize noncognate substrates create 'messiness' or noise in the systems they contribute to. With our increasing awareness of the frequency of these promiscuous behaviors it becomes interesting and important to understand the molecular bases for promiscuous behavior and to distinguish between evolutionarily selected promiscuity and evolutionarily tolerated messiness. This review provides an overview of current understanding of these aspects of protein biochemistry and enzymology.
Collapse
Affiliation(s)
- William M Atkins
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610, USA.
| |
Collapse
|
40
|
Seco-Hidalgo V, Osuna A, Pablos LMD. To bet or not to bet: deciphering cell to cell variation in protozoan infections. Trends Parasitol 2015; 31:350-6. [PMID: 26070403 DOI: 10.1016/j.pt.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/11/2015] [Accepted: 05/13/2015] [Indexed: 11/16/2022]
Abstract
Some of the most crucial phenotypic aspects of parasites, such as an antigen-coated surface, parasite sexual differentiation, virulence, and drug resistance, rely on adaptive plasticity and/or stochastic events. At a population level, cell to cell variability represents an avenue for rapid response to drastic changes in the environment. Single cell approaches can be used to unravel the different strategies used by parasites to survive in the context of regulated transcriptional control (apicomplexa) or in its absence (kinetoplastids).
Collapse
Affiliation(s)
- Víctor Seco-Hidalgo
- Biochemistry and Molecular Parasitology Research Group, Department of Parasitology, University of Granada, Campus de Fuentenueva, Granada, Spain
| | - Antonio Osuna
- Biochemistry and Molecular Parasitology Research Group, Department of Parasitology, University of Granada, Campus de Fuentenueva, Granada, Spain
| | - Luis Miguel De Pablos
- Biochemistry and Molecular Parasitology Research Group, Department of Parasitology, University of Granada, Campus de Fuentenueva, Granada, Spain; Centre for Immunology and Infection (CII), Biology Department, University of York, York, UK.
| |
Collapse
|
41
|
Pinho R, Garcia V, Feldman MW. Phenotype accessibility and noise in random threshold gene regulatory networks. PLoS One 2015; 10:e0119972. [PMID: 25919290 PMCID: PMC4412837 DOI: 10.1371/journal.pone.0119972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/02/2015] [Indexed: 11/20/2022] Open
Abstract
Evolution requires phenotypic variation in a population of organisms for selection to function. Gene regulatory processes involved in organismal development affect the phenotypic diversity of organisms. Since only a fraction of all possible phenotypes are predicted to be accessed by the end of development, organisms may evolve strategies to use environmental cues and noise-like fluctuations to produce additional phenotypic diversity, and hence to enhance the speed of adaptation. We used a generic model of organismal development --gene regulatory networks-- to investigate how different levels of noise on gene expression states (i.e. phenotypes) may affect access to new, unique phenotypes, thereby affecting phenotypic diversity. We studied additional strategies that organisms might adopt to attain larger phenotypic diversity: either by augmenting their genome or the number of gene expression states. This was done for different types of gene regulatory networks that allow for distinct levels of regulatory influence on gene expression or are more likely to give rise to stable phenotypes. We found that if gene expression is binary, increasing noise levels generally decreases phenotype accessibility for all network types studied. If more gene expression states are considered, noise can moderately enhance the speed of discovery if three or four gene expression states are allowed, and if there are enough distinct regulatory networks in the population. These results were independent of the network types analyzed, and were robust to different implementations of noise. Hence, for noise to increase the number of accessible phenotypes in gene regulatory networks, very specific conditions need to be satisfied. If the number of distinct regulatory networks involved in organismal development is large enough, and the acquisition of more genes or fine tuning of their expression states proves costly to the organism, noise can be useful in allowing access to more unique phenotypes.
Collapse
Affiliation(s)
- Ricardo Pinho
- Department of Biological Sciences, Stanford University, Stanford, California, USA
- PhD Program in Computational Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| | - Victor Garcia
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Marcus W. Feldman
- Department of Biological Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
42
|
Massey SE. Genetic code evolution reveals the neutral emergence of mutational robustness, and information as an evolutionary constraint. Life (Basel) 2015; 5:1301-32. [PMID: 25919033 PMCID: PMC4500140 DOI: 10.3390/life5021301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 01/09/2023] Open
Abstract
The standard genetic code (SGC) is central to molecular biology and its origin and evolution is a fundamental problem in evolutionary biology, the elucidation of which promises to reveal much about the origins of life. In addition, we propose that study of its origin can also reveal some fundamental and generalizable insights into mechanisms of molecular evolution, utilizing concepts from complexity theory. The first is that beneficial traits may arise by non-adaptive processes, via a process of "neutral emergence". The structure of the SGC is optimized for the property of error minimization, which reduces the deleterious impact of point mutations. Via simulation, it can be shown that genetic codes with error minimization superior to the SGC can emerge in a neutral fashion simply by a process of genetic code expansion via tRNA and aminoacyl-tRNA synthetase duplication, whereby similar amino acids are added to codons related to that of the parent amino acid. This process of neutral emergence has implications beyond that of the genetic code, as it suggests that not all beneficial traits have arisen by the direct action of natural selection; we term these "pseudaptations", and discuss a range of potential examples. Secondly, consideration of genetic code deviations (codon reassignments) reveals that these are mostly associated with a reduction in proteome size. This code malleability implies the existence of a proteomic constraint on the genetic code, proportional to the size of the proteome (P), and that its reduction in size leads to an "unfreezing" of the codon - amino acid mapping that defines the genetic code, consistent with Crick's Frozen Accident theory. The concept of a proteomic constraint may be extended to propose a general informational constraint on genetic fidelity, which may be used to explain variously, differences in mutation rates in genomes with differing proteome sizes, differences in DNA repair capacity and genome GC content between organisms, a selective pressure in the evolution of sexual reproduction, and differences in translational fidelity. Lastly, the utility of the concept of an informational constraint to other diverse fields of research is explored.
Collapse
Affiliation(s)
- Steven E Massey
- Biology Department, PO Box 23360, University of Puerto Rico-Rio Piedras, San Juan, PR 00931, USA.
| |
Collapse
|
43
|
Liu J, Martin-Yken H, Bigey F, Dequin S, François JM, Capp JP. Natural yeast promoter variants reveal epistasis in the generation of transcriptional-mediated noise and its potential benefit in stressful conditions. Genome Biol Evol 2015; 7:969-84. [PMID: 25762217 PMCID: PMC4419794 DOI: 10.1093/gbe/evv047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The increase in phenotypic variability through gene expression noise is proposed to be an evolutionary strategy in selective environments. Differences in promoter-mediated noise between Saccharomyces cerevisiae strains could have been selected for thanks to the benefit conferred by gene expression heterogeneity in the stressful conditions, for instance, those experienced by industrial strains. Here, we used a genome-wide approach to identify promoters conferring high noise levels in the industrial wine strain EC1118. Many promoters of genes related to environmental factors were identified, some of them containing genetic variations compared with their counterpart in the laboratory strain S288c. Each variant of eight promoters has been fused to yeast-Enhanced Green Fluorescent Protein and integrated in the genome of both strains. Some industrial variants conferred higher expression associated, as expected, with lower noise, but other variants either increased or decreased expression without modifying variability, so that they might exhibit different levels of transcriptional-mediated noise at equal mean. At different induction conditions giving similar expression for both variants of the CUP1 promoter, we indeed observed higher noise with the industrial variant. Nevertheless, this difference was only observed in the industrial strain, revealing epistasis in the generation of promoter-mediated noise. Moreover, the increased expression variability conferred by this natural yeast promoter variant provided a clear benefit in the face of an environmental stress. Thus, modulation of gene expression noise by a combination of promoter modifications and trans-influences might be a possible adaptation mechanism in yeast.
Collapse
Affiliation(s)
- Jian Liu
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, INSA/Université de Toulouse, France
| | - Hélène Martin-Yken
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, INSA/Université de Toulouse, France
| | - Frédéric Bigey
- INRA, UMR 1083 Sciences Pour l'Œnologie, Montpellier, France
| | - Sylvie Dequin
- INRA, UMR 1083 Sciences Pour l'Œnologie, Montpellier, France
| | - Jean-Marie François
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, INSA/Université de Toulouse, France
| | - Jean-Pascal Capp
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, UMR CNRS 5504, UMR INRA 792, INSA/Université de Toulouse, France
| |
Collapse
|
44
|
Bradley RW, Wang B. Designer cell signal processing circuits for biotechnology. N Biotechnol 2015; 32:635-43. [PMID: 25579192 PMCID: PMC4571992 DOI: 10.1016/j.nbt.2014.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/02/2014] [Accepted: 12/31/2014] [Indexed: 01/13/2023]
Abstract
Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field.
Collapse
Affiliation(s)
- Robert W Bradley
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK; Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Baojun Wang
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
45
|
Székely T, Burrage K. Stochastic simulation in systems biology. Comput Struct Biotechnol J 2014; 12:14-25. [PMID: 25505503 PMCID: PMC4262058 DOI: 10.1016/j.csbj.2014.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/03/2022] Open
Abstract
Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest.
Collapse
Affiliation(s)
- Tamás Székely
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Kevin Burrage
- Department of Computer Science, University of Oxford, Oxford, United Kingdom ; Department of Mathematics, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
46
|
Diaz SA, Viney M. Genotypic-specific variance in Caenorhabditis elegans lifetime fecundity. Ecol Evol 2014; 4:2058-69. [PMID: 25360248 PMCID: PMC4201421 DOI: 10.1002/ece3.1057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 12/19/2022] Open
Abstract
Organisms live in heterogeneous environments, so strategies that maximze fitness in such environments will evolve. Variation in traits is important because it is the raw material on which natural selection acts during evolution. Phenotypic variation is usually thought to be due to genetic variation and/or environmentally induced effects. Therefore, genetically identical individuals in a constant environment should have invariant traits. Clearly, genetically identical individuals do differ phenotypically, usually thought to be due to stochastic processes. It is now becoming clear, especially from studies of unicellular species, that phenotypic variance among genetically identical individuals in a constant environment can be genetically controlled and that therefore, in principle, this can be subject to selection. However, there has been little investigation of these phenomena in multicellular species. Here, we have studied the mean lifetime fecundity (thus a trait likely to be relevant to reproductive success), and variance in lifetime fecundity, in recently-wild isolates of the model nematode Caenorhabditis elegans. We found that these genotypes differed in their variance in lifetime fecundity: some had high variance in fecundity, others very low variance. We find that this variance in lifetime fecundity was negatively related to the mean lifetime fecundity of the lines, and that the variance of the lines was positively correlated between environments. We suggest that the variance in lifetime fecundity may be a bet-hedging strategy used by this species.
Collapse
Affiliation(s)
- S Anaid Diaz
- School of Biological Sciences, University of Bristol Woodland Road, Bristol, BS8 1UG, UK
| | - Mark Viney
- School of Biological Sciences, University of Bristol Woodland Road, Bristol, BS8 1UG, UK
| |
Collapse
|
47
|
Leggett HC, Brown SP, Reece SE. War and peace: social interactions in infections. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130365. [PMID: 24686936 PMCID: PMC3982666 DOI: 10.1098/rstb.2013.0365] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One of the most striking facts about parasites and microbial pathogens that has emerged in the fields of social evolution and disease ecology in the past few decades is that these simple organisms have complex social lives, indulging in a variety of cooperative, communicative and coordinated behaviours. These organisms have provided elegant experimental tests of the importance of relatedness, kin discrimination, cooperation and competition, in driving the evolution of social strategies. Here, we briefly review the social behaviours of parasites and microbial pathogens, including their contributions to virulence, and outline how inclusive fitness theory has helped to explain their evolution. We then take a mechanistically inspired ‘bottom-up’ approach, discussing how key aspects of the ways in which parasites and pathogens exploit hosts, namely public goods, mobile elements, phenotypic plasticity, spatial structure and multi-species interactions, contribute to the emergent properties of virulence and transmission. We argue that unravelling the complexities of within-host ecology is interesting in its own right, and also needs to be better incorporated into theoretical evolution studies if social behaviours are to be understood and used to control the spread and severity of infectious diseases.
Collapse
Affiliation(s)
- Helen C Leggett
- Department of Zoology, Oxford University, , South Parks Road, Oxford OX1 3PS, UK
| | | | | |
Collapse
|
48
|
Pancaldi V. Biological noise to get a sense of direction: an analogy between chemotaxis and stress response. Front Genet 2014; 5:52. [PMID: 24659996 PMCID: PMC3952082 DOI: 10.3389/fgene.2014.00052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 02/21/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vera Pancaldi
- Structural Computational Biology, Spanish National Cancer Research Centre (CNIO) Madrid, Spain
| |
Collapse
|
49
|
Hassell MP. Editorial. Proc Biol Sci 2014. [DOI: 10.1098/rspb.2013.2784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Hasegawa Y, Arita M. Circadian clocks optimally adapt to sunlight for reliable synchronization. J R Soc Interface 2013; 11:20131018. [PMID: 24352677 PMCID: PMC3899870 DOI: 10.1098/rsif.2013.1018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Circadian oscillation provides selection advantages through synchronization to the daylight cycle. However, a reliable clock must be designed through two conflicting properties: entrainability to synchronize internal time with periodic stimuli such as sunlight, and regularity to oscillate with a precise period. These two aspects do not easily coexist, because better entrainability favours higher sensitivity which may sacrifice regularity. To investigate conditions for satisfying the two properties, we analytically calculated the optimal phase-response curve with a variational method. Our results indicate an existence of a dead zone, i.e. a time period during which input stimuli neither advance nor delay the clock. A dead zone appears only when input stimuli obey the time course of actual solar radiation, but a simple sine curve cannot yield a dead zone. Our calculation demonstrates that every circadian clock with a dead zone is optimally adapted to the daylight cycle.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, , Tokyo 113-0033, Japan
| | | |
Collapse
|