1
|
Tait C, Chicco AJ, Naug D. Brain energy metabolism as an underlying basis of slow and fast cognitive phenotypes in honeybees. J Exp Biol 2024; 227:jeb247835. [PMID: 39092671 PMCID: PMC11418170 DOI: 10.1242/jeb.247835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
In the context of slow-fast behavioral variation, fast individuals are hypothesized to be those who prioritize speed over accuracy while slow individuals are those which do the opposite. Since energy metabolism is a critical component of neural and cognitive functioning, this predicts such differences in cognitive style to be reflected at the level of the brain. We tested this idea in honeybees by first classifying individuals into slow and fast cognitive phenotypes based on a learning assay and then measuring their brain respiration with high-resolution respirometry. Our results broadly show that inter-individual differences in cognition are reflected in differences in brain mass and accompanying energy use at the level of the brain and the whole animal. Larger brains had lower mass-specific energy usage and bees with larger brains had a higher metabolic rate. These differences in brain respiration and brain mass were, in turn, associated with cognitive differences, such that bees with larger brains were fast cognitive phenotypes whereas those with smaller brains were slow cognitive phenotypes. We discuss these results in the context of the role of energy in brain functioning and slow-fast decision making and speed accuracy trade-off.
Collapse
Affiliation(s)
- Catherine Tait
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Dhruba Naug
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
AnimalTraits - a curated animal trait database for body mass, metabolic rate and brain size. Sci Data 2022; 9:265. [PMID: 35654905 PMCID: PMC9163144 DOI: 10.1038/s41597-022-01364-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Trait databases have become important resources for large-scale comparative studies in ecology and evolution. Here we introduce the AnimalTraits database, a curated database of body mass, metabolic rate and brain size, in standardised units, for terrestrial animals. The database has broad taxonomic breadth, including tetrapods, arthropods, molluscs and annelids from almost 2000 species and 1000 genera. All data recorded in the database are sourced from their original empirical publication, and the original metrics and measurements are included with each record. This allows for subsequent data transformations as required. We have included rich metadata to allow users to filter the dataset. The additional R scripts we provide will assist researchers with aggregating standardised observations into species-level trait values. Our goals are to provide this resource without restrictions, to keep the AnimalTraits database current, and to grow the number of relevant traits in the future. Measurement(s) | metabolic rate quantification • body mass • brain size | Technology Type(s) | metabolic rate measurement • body mass quantification • brain mass brain volume |
Collapse
|
3
|
Azorsa F, Muscedere ML, Traniello JFA. Socioecology and Evolutionary Neurobiology of Predatory Ants. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.804200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
Muratore IB, Fandozzi EM, Traniello JFA. Behavioral performance and division of labor influence brain mosaicism in the leafcutter ant Atta cephalotes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:325-344. [PMID: 35112161 DOI: 10.1007/s00359-021-01539-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022]
Abstract
Brain evolution is hypothesized to be driven by behavioral selection on neuroarchitecture. We developed a novel metric of relative neuroanatomical investments involved in performing tasks varying in sensorimotor and processing demands across polymorphic task-specialized workers of the leafcutter ant Atta cephalotes and quantified brain size and structure to examine their correlation with our computational approximations. Investment in multisensory and motor integration for task performance was estimated to be greatest for media workers, whose highly diverse repertoire includes leaf-quality discrimination and leaf-harvesting tasks that likely involve demanding sensory and motor processes. Confocal imaging revealed that absolute brain volume increased with worker size and functionally specialized compartmental scaling differed among workers. The mushroom bodies, centers of sensory integration and learning and memory, and the antennal lobes, olfactory input sites, were larger in medias than in minims (gardeners) and significantly larger than in majors ("soldiers"), both of which had lower scores for involvement of olfactory processing in the performance of their characteristic tasks. Minims had a proportionally larger central complex compared to other workers. These results support the hypothesis that variation in task performance influences selection for mosaic brain structure, the independent evolution of proportions of the brain composed of different neuropils.
Collapse
Affiliation(s)
- I B Muratore
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| | - E M Fandozzi
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - J F A Traniello
- Department of Biology, Boston University, Boston, MA, 02215, USA.,Graduate Program in Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
5
|
Baudier KM, Bennett MM, Barrett M, Cossio FJ, Wu RD, O'Donnell S, Pavlic TP, Fewell JH. Soldier neural architecture is temporarily modality-specialized but poorly predicted by repertoire size in the stingless bee Tetragonisca angustula. J Comp Neurol 2021; 530:672-682. [PMID: 34773646 DOI: 10.1002/cne.25273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022]
Abstract
Individual heterogeneity within societies provides opportunities to test hypotheses about adaptive neural investment in the context of group cooperation. Here we explore neural investment in defense specialist soldiers of the eusocial stingless bee (Tetragonisca angustula) which are age sub-specialized on distinct defense tasks and have an overall higher lifetime task repertoire than other sterile workers within the colony. Consistent with predicted behavioral demands, soldiers had higher relative visual (optic lobe) investment than non-soldiers but only during the period when they were performing the most visually demanding defense task (hovering guarding). As soldiers aged into the less visually demanding task of standing guarding this difference disappeared. Neural investment was otherwise similar across all colony members. Despite having larger task repertoires, soldiers had similar absolute brain size and smaller relative brain size compared to other workers, meaning that lifetime task repertoire size was a poor predictor of brain size. Both high behavioral specialization in stable environmental conditions and reassignment across task groups during a crisis occur in T. angustula. The differences in neurobiology we report here are consistent with these specialized but flexible defense strategies. This work broadens our understanding of how neurobiology mediates age and morphological task specialization in highly cooperative societies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kaitlin M Baudier
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA.,School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| | - Meghan M Bennett
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA.,USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, USA
| | - Meghan Barrett
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Frank J Cossio
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| | - Robert D Wu
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| | - Sean O'Donnell
- Department of Biology, Drexel University, Philadelphia, PA, USA.,Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA
| | - Theodore P Pavlic
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA.,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.,School of Sustainability, Arizona State University, Tempe, AZ, USA.,School of Complex Adaptive Systems, Arizona State University, Tempe, AZ, USA
| | - Jennifer H Fewell
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
6
|
DeSilva JM, Traniello JFA, Claxton AG, Fannin LD. When and Why Did Human Brains Decrease in Size? A New Change-Point Analysis and Insights From Brain Evolution in Ants. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.742639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human brain size nearly quadrupled in the six million years since Homo last shared a common ancestor with chimpanzees, but human brains are thought to have decreased in volume since the end of the last Ice Age. The timing and reason for this decrease is enigmatic. Here we use change-point analysis to estimate the timing of changes in the rate of hominin brain evolution. We find that hominin brains experienced positive rate changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo and technological innovations evident in the archeological record. But we also find that human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our dating does not support hypotheses concerning brain size reduction as a by-product of body size reduction, a result of a shift to an agricultural diet, or a consequence of self-domestication. We suggest our analysis supports the hypothesis that the recent decrease in brain size may instead result from the externalization of knowledge and advantages of group-level decision-making due in part to the advent of social systems of distributed cognition and the storage and sharing of information. Humans live in social groups in which multiple brains contribute to the emergence of collective intelligence. Although difficult to study in the deep history of Homo, the impacts of group size, social organization, collective intelligence and other potential selective forces on brain evolution can be elucidated using ants as models. The remarkable ecological diversity of ants and their species richness encompasses forms convergent in aspects of human sociality, including large group size, agrarian life histories, division of labor, and collective cognition. Ants provide a wide range of social systems to generate and test hypotheses concerning brain size enlargement or reduction and aid in interpreting patterns of brain evolution identified in humans. Although humans and ants represent very different routes in social and cognitive evolution, the insights ants offer can broadly inform us of the selective forces that influence brain size.
Collapse
|
7
|
A Review of Effects of Environment on Brain Size in Insects. INSECTS 2021; 12:insects12050461. [PMID: 34067515 PMCID: PMC8156428 DOI: 10.3390/insects12050461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary What makes a big brain is fascinating since it is considered as a measure of intelligence. Above all, brain size is associated with body size. If species that have evolved with complex social behaviours possess relatively bigger brains than those deprived of such behaviours, this does not constitute the only factor affecting brain size. Other factors such as individual experience or surrounding environment also play roles in the size of the brain. In this review, I summarize the recent findings about the effects of environment on brain size in insects. I also discuss evidence about how the environment has an impact on sensory systems and influences brain size. Abstract Brain size fascinates society as well as researchers since it is a measure often associated with intelligence and was used to define species with high “intellectual capabilities”. In general, brain size is correlated with body size. However, there are disparities in terms of relative brain size between species that may be explained by several factors such as the complexity of social behaviour, the ‘social brain hypothesis’, or learning and memory capabilities. These disparities are used to classify species according to an ‘encephalization quotient’. However, environment also has an important role on the development and evolution of brain size. In this review, I summarise the recent studies looking at the effects of environment on brain size in insects, and introduce the idea that the role of environment might be mediated through the relationship between olfaction and vision. I also discussed this idea with studies that contradict this way of thinking.
Collapse
|
8
|
Sheehan ZBV, Kamhi JF, Seid MA, Narendra A. Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants. J Comp Neurol 2019; 527:1261-1277. [PMID: 30592041 DOI: 10.1002/cne.24617] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/07/2018] [Accepted: 12/22/2018] [Indexed: 12/29/2022]
Abstract
Animals are active at different times of the day. Each temporal niche offers a unique light environment, which affects the quality of the available visual information. To access reliable visual signals in dim-light environments, insects have evolved several visual adaptations to enhance their optical sensitivity. The extent to which these adaptations reflect on the sensory processing and integration capabilities within the brain of a nocturnal insect is unknown. To address this, we analyzed brain organization in congeneric species of the Australian bull ant, Myrmecia, that rely predominantly on visual information and range from being strictly diurnal to strictly nocturnal. Weighing brains and optic lobes of seven Myrmecia species, showed that after controlling for body mass, the brain mass was not significantly different between diurnal and nocturnal ants. However, the optic lobe mass, after controlling for central brain mass, differed between day- and night-active ants. Detailed volumetric analyses showed that the nocturnal ants invested relatively less in the primary visual processing regions but relatively more in both the primary olfactory processing regions and in the integration centers of visual and olfactory sensory information. We discuss how the temporal niche occupied by each species may affect cognitive demands, thus shaping brain organization among insects active in dim-light conditions.
Collapse
Affiliation(s)
- Zachary B V Sheehan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - J Frances Kamhi
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marc A Seid
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.,Biology Department, Neuroscience Program, The University of Scranton, Scranton, Pennsylvania
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Brain evolution in social insects: advocating for the comparative approach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:13-32. [DOI: 10.1007/s00359-019-01315-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
10
|
Synaptic organization and division of labor in the exceptionally polymorphic ant Pheidole rhea. Neurosci Lett 2018; 676:46-50. [PMID: 29625207 DOI: 10.1016/j.neulet.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/18/2018] [Accepted: 04/01/2018] [Indexed: 11/22/2022]
Abstract
Social insect polyphenisms provide models to examine the neural basis of division of labor and anatomy of the invertebrate social brain. Worker size-related behavior is hypothesized to enhance task performance, raising questions concerning the integration of morphology, behavior, and cellular neuroarchitecture, and how variation in sensory inputs and cognitive demands of behaviorally differentiated workers is reflected in higher-order processing ability. We used the highly polymorphic ant Pheidole rhea, which has three distinct worker size classes - minors, soldiers, and supersoldiers - to examine variation in synaptic circuitry across worker size and social role. We hypothesized that the density and size of synaptic complexes (microglomeruli, MG) would be positively associated with behavioral repertoire and the relative size of the mushroom bodies (MB). Supersoldiers had significantly larger and less dense MG in the lip (olfactory region) of the MB calyx (MBC), and larger MG in the collar (visual region) compared to minors. Soldiers were intermediate in synaptic phenotype: they did not differ significantly in MG density from minors and supersoldiers, had MG of similar size to minors in the lip, and did not differ from these two worker groups in MG size in the collar. Results suggest a complex relationship between MG density, size, behavior, and worker body size involving a conserved and plastic neurobiological development plan, although workers show strong variation in size and social role.
Collapse
|
11
|
Narendra A, Ramirez-Esquivel F. Subtle changes in the landmark panorama disrupt visual navigation in a nocturnal bull ant. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0068. [PMID: 28193813 DOI: 10.1098/rstb.2016.0068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 11/12/2022] Open
Abstract
The ability of ants to navigate when the visual landmark information is altered has often been tested by creating large and artificial discrepancies in their visual environment. Here, we had an opportunity to slightly modify the natural visual environment around the nest of the nocturnal bull ant Myrmecia pyriformis We achieved this by felling three dead trees, two located along the typical route followed by the foragers of that particular nest and one in a direction perpendicular to their foraging direction. An image difference analysis showed that the change in the overall panorama following the removal of these trees was relatively little. We filmed the behaviour of ants close to the nest and tracked their entire paths, both before and after the trees were removed. We found that immediately after the trees were removed, ants walked slower and were less directed. Their foraging success decreased and they looked around more, including turning back to look towards the nest. We document how their behaviour changed over subsequent nights and discuss how the ants may detect and respond to a modified visual environment in the evening twilight period.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Ajay Narendra
- Department of Biological Sciences, Macquarie University, 205 Culloden Road, Sydney, New South Wales 2109, Australia
| | - Fiorella Ramirez-Esquivel
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
12
|
Steinhoff POM, Liedtke J, Sombke A, Schneider JM, Uhl G. Early environmental conditions affect the volume of higher-order brain centers in a jumping spider. J Zool (1987) 2017. [DOI: 10.1111/jzo.12512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- P. O. M. Steinhoff
- General and Systematic Zoology; Zoological Institute and Museum; University of Greifswald; Greifswald Germany
| | - J. Liedtke
- Biocenter Grindel; Zoological Institute; University of Hamburg; Hamburg Germany
| | - A. Sombke
- Cytology and Evolutionary Biology; Zoological Institute and Museum; University of Greifswald; Greifswald Germany
| | - J. M. Schneider
- Biocenter Grindel; Zoological Institute; University of Hamburg; Hamburg Germany
| | - G. Uhl
- General and Systematic Zoology; Zoological Institute and Museum; University of Greifswald; Greifswald Germany
| |
Collapse
|
13
|
Giraldo YM, Kamhi JF, Fourcassié V, Moreau M, Robson SKA, Rusakov A, Wimberly L, Diloreto A, Kordek A, Traniello JFA. Lifespan behavioural and neural resilience in a social insect. Proc Biol Sci 2016; 283:rspb.2015.2603. [PMID: 26740614 DOI: 10.1098/rspb.2015.2603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Analyses of senescence in social species are important to understanding how group living influences the evolution of ageing in society members. Social insects exhibit remarkable lifespan polyphenisms and division of labour, presenting excellent opportunities to test hypotheses concerning ageing and behaviour. Senescence patterns in other taxa suggest that behavioural performance in ageing workers would decrease in association with declining brain functions. Using the ant Pheidole dentata as a model, we found that 120-day-old minor workers, having completed 86% of their laboratory lifespan, showed no decrease in sensorimotor functions underscoring complex tasks such as alloparenting and foraging. Collaterally, we found no age-associated increases in apoptosis in functionally specialized brain compartments or decreases in synaptic densities in the mushroom bodies, regions associated with integrative processing. Furthermore, brain titres of serotonin and dopamine--neuromodulators that could negatively impact behaviour through age-related declines--increased in old workers. Unimpaired task performance appears to be based on the maintenance of brain functions supporting olfaction and motor coordination independent of age. Our study is the first to comprehensively assess lifespan task performance and its neurobiological correlates and identify constancy in behavioural performance and the absence of significant age-related neural declines.
Collapse
Affiliation(s)
| | - J Frances Kamhi
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Vincent Fourcassié
- Research Center on Animal Cognition, CNRS, Toulouse 31062 Cedex 9, France Research Center on Animal Cognition, Université de Toulouse, Toulouse 31062 Cedex 9, France
| | - Mathieu Moreau
- Research Center on Animal Cognition, CNRS, Toulouse 31062 Cedex 9, France Research Center on Animal Cognition, Université de Toulouse, Toulouse 31062 Cedex 9, France
| | - Simon K A Robson
- College of Marine and Environmental Science, James Cook University, Townsville 4811, Australia
| | - Adina Rusakov
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | | - Adrianna Kordek
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
14
|
Farris SM. Insect societies and the social brain. CURRENT OPINION IN INSECT SCIENCE 2016; 15:1-8. [PMID: 27436726 DOI: 10.1016/j.cois.2016.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 06/06/2023]
Abstract
The 'social brain hypothesis,' the relationship between social behavior and brain size, does not apply to insects. In social insects, especially those of the Order Hymenoptera (ants, bees and wasps), sociality has not always increased individual behavioral repertoires and is associated with only subtle variation in the size of a higher brain center, the mushroom bodies. Rather than sociality, selection for novel visual behavior, perhaps spatial learning, has led to the acquisition of novel visual inputs and profound increases in mushroom body size. This occurred in nonsocial ancestors suggesting that the sensory and cognitive advantages of large mushroom bodies may be preadaptations to sociality. Adaptations of the insect mushroom bodies are more reliably associated with sensory ecology than social behavior.
Collapse
Affiliation(s)
- Sarah M Farris
- Department of Biology, West Virginia University, 3139 Life Sciences Building, 53 Campus Drive, Morgantown, WV 26506, USA.
| |
Collapse
|
15
|
Seid MA, Junge E. Social isolation and brain development in the ant Camponotus floridanus. Naturwissenschaften 2016; 103:42. [PMID: 27126402 DOI: 10.1007/s00114-016-1364-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 11/29/2022]
Abstract
Social interactions play a key role in the healthy development of social animals and are most pronounced in species with complex social networks. When developing offspring do not receive proper social interaction, they show developmental impairments. This effect is well documented in mammalian species but controversial in social insects. It has been hypothesized that the enlargement of the mushroom bodies, responsible for learning and memory, observed in social insects is needed for maintaining the large social networks and/or task allocation. This study examines the impact of social isolation on the development of mushroom bodies of the ant Camponotus floridanus. Ants raised in isolation were shown to exhibit impairment in the growth of the mushroom bodies as well as behavioral differences when compared to ants raised in social groups. These results indicate that social interaction is necessary for the proper development of C. floridanus mushroom bodies.
Collapse
Affiliation(s)
- Marc A Seid
- Program in Neuroscience, The University of Scranton, Scranton, PA, 18510, USA. .,Biology Department, The University of Scranton, Scranton, PA, 18510, USA.
| | - Erich Junge
- Program in Neuroscience, The University of Scranton, Scranton, PA, 18510, USA
| |
Collapse
|
16
|
Social complexity, diet, and brain evolution: modeling the effects of colony size, worker size, brain size, and foraging behavior on colony fitness in ants. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-2035-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Ilieş I, Muscedere ML, Traniello JF. Neuroanatomical and Morphological Trait Clusters in the Ant Genus Pheidole: Evidence for Modularity and Integration in Brain Structure. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:63-76. [DOI: 10.1159/000370100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/28/2014] [Indexed: 11/19/2022]
Abstract
A central question in brain evolution concerns how selection has structured neuromorphological variation to generate adaptive behavior. In social insects, brain structures differ between reproductive and sterile castes, and worker behavioral specializations related to morphology, age, and ecology are associated with intra- and interspecific variation in investment in functionally different brain compartments. Workers in the hyperdiverse ant genus Pheidole are morphologically and behaviorally differentiated into minor and major subcastes that exhibit distinct species-typical patterns of brain compartment size variation. We examined integration and modularity in brain organization and its developmental patterning in three ecotypical Pheidole species by analyzing intra- and interspecific morphological and neuroanatomical covariation. Our results identified two trait clusters, the first involving olfaction and social information processing and the second composed of brain regions regulating nonolfactory sensorimotor functions. Patterns of size covariation between brain compartments within subcastes were consistent with levels of behavioral differentiation between minor and major workers. Globally, brains of mature workers were more heterogeneous than brains of newly eclosed workers, suggesting diversified developmental trajectories underscore species- and subcaste-typical brain organization. Variation in brain structure associated with the striking worker polyphenism in our sample of Pheidole appears to originate from initially differentiated brain templates that further diverge through species- and subcaste-specific processes of maturation and behavioral development.
Collapse
|