1
|
Lucas M, Rašić G, Filazzola A, Matter S, Roland J, Keyghobadi N. Extremes of snow and temperature affect patterns of genetic diversity and differentiation in the alpine butterfly Parnassius smintheus. Mol Ecol 2024; 33:e17503. [PMID: 39162219 DOI: 10.1111/mec.17503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Weather is an important short-term, local driver of population size and dispersal, which in turn contribute to patterns of genetic diversity and differentiation within species. Climate change is leading to greater weather variability and more frequent extreme weather events. While the effects of long-term and broad-scale mean climate conditions on genetic variation are well studied, our understanding of the effects of weather variability and extreme conditions on genetic variation is less developed. We assessed the influence of temperature and snow depth on genetic diversity and differentiation of populations of the alpine butterfly, Parnassius smintheus. We examined the relationships between a suite of variables, including those representing extreme conditions, and population-level genetic diversity and differentiation across 1453 single nucleotide polymorphisms, using both linear and gravity models. We additionally examined effects of land cover variables known to influence dispersal and gene flow in this species. We found that extreme low temperature events and the lowest recorded mean snow depth were significant predictors of genetic diversity. Extreme low temperature events, mean snow depth and land cover resistance were significant predictors of genetic differentiation. These results are congruent with known effects of early winter weather on population size and habitat connectivity on dispersal in P. smintheus. Our results demonstrate the potential for changes in the frequency or magnitude of extreme weather events to alter patterns of genetic diversity and differentiation.
Collapse
Affiliation(s)
- Mel Lucas
- Department of Biology, Western University, London, Ontario, Canada
| | - Gordana Rašić
- Pest and Disease Vector Group, Department of Genetics, The University of Melbourne, Melbourne, Victoria, Australia
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Steve Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jens Roland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nusha Keyghobadi
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Park KY, Lucas M, Chaulk A, Matter SF, Roland J, Keyghobadi N. Immigration allows population persistence and maintains genetic diversity despite an attempted experimental extinction. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240557. [PMID: 39086829 PMCID: PMC11288673 DOI: 10.1098/rsos.240557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Widespread fragmentation and degradation of habitats make organisms increasingly vulnerable to declines in population size. Immigration is a key process potentially affecting the rescue and persistence of populations in the face of such pressures. Field research addressing severe demographic declines in the context of immigration among interconnected local populations is limited owing to difficulties in detecting such demographic events and the need for long-term monitoring of populations. In a 17-subpopulation metapopulation of the butterfly, Parnassius smintheus, all adults observed in two adjacent patches were removed over eight consecutive generations. Despite this severe and long-term reduction in survival and reproduction, the targeted populations did not go extinct. Here, we use genetic data to assess the role of immigration versus in situ reproduction in allowing the persistence of these populations. We genotyped 471 samples collected from the targeted populations throughout the removal experiment at 152 single nucleotide polymorphisms. We found no reduction in the genetic diversity of the targeted populations over time, but a decrease in the number of loci in Hardy-Weinberg equilibrium, consistent with a high level of immigration from multiple surrounding populations. Our results highlight the role of connectivity and movement in making metapopulations resilient to even severe and protracted localized population reductions.
Collapse
Affiliation(s)
- Keon Young Park
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Mel Lucas
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Andrew Chaulk
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland A1C 5S7, Canada
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jens Roland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Nusha Keyghobadi
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
3
|
Huang S, Feigs JT, Holzhauer SIJ, Kramp K, Brunet J, Decocq G, De Frenne P, Diekmann M, Liira J, Spicher F, Vangansbeke P, Vanneste T, Verheyen K, Naaf T. Limited effects of population age on the genetic structure of spatially isolated forest herb populations in temperate Europe. Ecol Evol 2024; 14:e10971. [PMID: 38414568 PMCID: PMC10897356 DOI: 10.1002/ece3.10971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Due to multiple land-cover changes, forest herb populations residing in forest patches embedded in agricultural landscapes display different ages and, thus, experience differences in genetic exchange, mutation accumulation and genetic drift. The extent of divergence in present-day population genetic structure among these populations of different ages remains unclear, considering their diverse breeding systems and associated pollinators. Answering this question is essential to understand these species' persistence, maintenance of evolutionary potential and adaptability to changing environments. We applied a multi-landscape setup to compare the genetic structure of forest herb populations across forest patches of different ages (18-338 years). We studied the impact on three common slow-colonizer herb species with distinct breeding systems and associated pollinators: Polygonatum multiflorum (outcrossing, long-distance pollinators), Anemone nemorosa (outcrossing, short-distance pollinators) and Oxalis acetosella (mixed breeding). We aimed to assess if in general older populations displayed higher genetic diversity and lower differentiation than younger ones. We also anticipated that P. multiflorum would show the smallest while O. acetosella the largest difference, between old and young populations. We found that older populations had a higher observed heterozygosity (H o) but a similar level of allelic richness (A r) and expected heterozygosity (H e) as younger populations, except for A. nemorosa, which exhibited higher A r and H e in younger populations. As populations aged, their pairwise genetic differentiation measured by D PS decreased independent of species identity while the other two genetic differentiation measures showed either comparable levels between old and young populations (G" ST) or inconsistency among three species (cGD). The age difference of the two populations did not explain their genetic differentiation. Synthesis: We found restricted evidence that forest herb populations with different ages differ in their genetic structure, indicating that populations of different ages can reach a similar genetic structure within decades and thus persist in the long term after habitat disturbance. Despite their distinct breeding systems and associated pollinators, the three studied species exhibited partly similar genetic patterns, suggesting that their common characteristics, such as being slow colonizers or their ability to propagate vegetatively, are important in determining their long-term response to land-cover change.
Collapse
Affiliation(s)
- Siyu Huang
- Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
| | - Jannis Till Feigs
- Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
| | | | - Katja Kramp
- Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
| | - Jörg Brunet
- Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesLommaSweden
| | - Guillaume Decocq
- Research Unit Ecology and Dynamics of Anthropized SystemsUniversity of Picardie Jules VerneAmiens CedexFrance
| | - Pieter De Frenne
- Forest & Nature Lab, Department of EnvironmentGhent UniversityGontrodeBelgium
| | - Martin Diekmann
- Vegetation Ecology and Conservation Biology, Institute of Ecology, FB 2University of BremenBremenGermany
| | - Jaan Liira
- Institute of Ecology and Earth ScienceUniversity of TartuTartuEstonia
| | - Fabien Spicher
- Research Unit Ecology and Dynamics of Anthropized SystemsUniversity of Picardie Jules VerneAmiens CedexFrance
| | - Pieter Vangansbeke
- Forest & Nature Lab, Department of EnvironmentGhent UniversityGontrodeBelgium
| | - Thomas Vanneste
- Forest & Nature Lab, Department of EnvironmentGhent UniversityGontrodeBelgium
| | - Kris Verheyen
- Forest & Nature Lab, Department of EnvironmentGhent UniversityGontrodeBelgium
| | - Tobias Naaf
- Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
| |
Collapse
|
4
|
Jangjoo M, Matter SF, Roland J, Keyghobadi N. Demographic fluctuations lead to rapid and cyclic shifts in genetic structure among populations of an alpine butterfly, Parnassius smintheus. J Evol Biol 2020; 33:668-681. [PMID: 32052525 DOI: 10.1111/jeb.13603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
Many populations, especially in insects, fluctuate in size, and periods of particularly low population size can have strong effects on genetic variation. Effects of demographic bottlenecks on genetic diversity of single populations are widely documented. Effects of bottlenecks on genetic structure among multiple interconnected populations are less studied, as are genetic changes across multiple cycles of demographic collapse and recovery. We take advantage of a long-term data set comprising demographic, genetic and movement data from a network of populations of the butterfly, Parnassius smintheus, to examine the effects of fluctuating population size on spatial genetic structure. We build on a previous study that documented increased genetic differentiation and loss of spatial genetic patterns (isolation by distance and by intervening forest cover) after a network-wide bottleneck event. Here, we show that genetic differentiation was reduced again and spatial patterns returned to the system extremely rapidly, within three years (i.e. generations). We also show that a second bottleneck had similar effects to the first, increasing differentiation and erasing spatial patterns. Thus, bottlenecks consistently drive random divergence of allele frequencies among populations in this system, but these effects are rapidly countered by gene flow during demographic recovery. Our results reveal a system in which the relative influence of genetic drift and gene flow continually shift as populations fluctuate in size, leading to cyclic changes in genetic structure. Our results also suggest caution in the interpretation of patterns of spatial genetic structure, and its association with landscape variables, when measured at only a single point in time.
Collapse
Affiliation(s)
- Maryam Jangjoo
- Department of Biology, Western University, London, ON, Canada
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jens Roland
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
5
|
Baden AL, Mancini AN, Federman S, Holmes SM, Johnson SE, Kamilar J, Louis EE, Bradley BJ. Anthropogenic pressures drive population genetic structuring across a Critically Endangered lemur species range. Sci Rep 2019; 9:16276. [PMID: 31700150 PMCID: PMC6838192 DOI: 10.1038/s41598-019-52689-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/22/2019] [Indexed: 11/09/2022] Open
Abstract
In recent decades Madagascar has experienced significant habitat loss and modification, with minimal understanding of how human land use practices have impacted the evolution of its flora and fauna. In light of ongoing and intensifying anthropogenic pressures, we seek new insight into mechanisms driving genetic variability on this island, using a Critically Endangered lemur species, the black-and-white ruffed lemur (Varecia variegata), as a test case. Here, we examine the relative influence of natural and anthropogenic landscape features that we predict will impose barriers to dispersal and promote genetic structuring across the species range. Using circuit theory, we model functional connectivity among 18 sampling localities using population-based genetic distance (FST). We optimized resistance surfaces using genetic algorithms and assessed their performance using maximum-likelihood population-effects mixed models. The best supported resistance model was a composite surface that included two anthropogenic features, habitat cover and distance to villages, suggesting that rapid land cover modification by humans has driven change in the genetic structure of wild lemurs. Primary conservation priority should be placed on mitigating further forest loss and connecting regions identified as having low dispersal potential to prevent further loss of genetic diversity and promote the survival of other moist forest specialists.
Collapse
Affiliation(s)
- Andrea L Baden
- Department of Anthropology, Hunter College of the City University of New York, 695 Park Avenue, New York, NY, 10065, USA.
- Department of Anthropology, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, USA.
| | - Amanda N Mancini
- Department of Anthropology, The Graduate Center of the City University of New York, New York, NY, 10016, USA
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, USA
| | - Sarah Federman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Sheila M Holmes
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - Steig E Johnson
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - Jason Kamilar
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Edward E Louis
- Omaha's Henry Doorly Zoo and Aquarium, 3701S 10th St, Omaha, NE68107, USA
| | - Brenda J Bradley
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
6
|
Robertson EP, Fletcher RJ, Austin JD. The number of breeders explains genetic connectivity in an endangered bird. Mol Ecol 2019; 28:2746-2756. [DOI: 10.1111/mec.15109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Ellen P. Robertson
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | - Robert J. Fletcher
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| | - James D. Austin
- Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
| |
Collapse
|
7
|
|
8
|
Population size changes and selection drive patterns of parallel evolution in a host-virus system. Nat Commun 2018; 9:1706. [PMID: 29703896 PMCID: PMC5923231 DOI: 10.1038/s41467-018-03990-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/26/2018] [Indexed: 11/09/2022] Open
Abstract
Predicting the repeatability of evolution remains elusive. Theory and empirical studies suggest that strong selection and large population sizes increase the probability for parallel evolution at the phenotypic and genotypic levels. However, selection and population sizes are not constant, but rather change continuously and directly affect each other even on short time scales. Here, we examine the degree of parallel evolution shaped through eco-evolutionary dynamics in an algal host population coevolving with a virus. We find high degrees of parallelism at the level of population size changes (ecology) and at the phenotypic level between replicated populations. At the genomic level, we find evidence for parallelism, as the same large genomic region was duplicated in all replicated populations, but also substantial novel sequence divergence between replicates. These patterns of genome evolution can be explained by considering population size changes as an important driver of rapid evolution.
Collapse
|
9
|
Genetic diversity through time and space: diversity and demographic history from natural history specimens and serially sampled contemporary populations of the threatened Gouldian finch (Erythrura gouldiae). CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1051-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network. Proc Natl Acad Sci U S A 2016; 113:10914-9. [PMID: 27621433 DOI: 10.1073/pnas.1600865113] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Demographic bottlenecks that occur when populations fluctuate in size erode genetic diversity, but that diversity can be recovered through immigration. Connectivity among populations and habitat patches in the landscape enhances immigration and should in turn facilitate recovery of genetic diversity after a sudden reduction in population size. For the conservation of genetic diversity, it may therefore be particularly important to maintain connectivity in the face of factors that increase demographic instability, such as climate change. However, a direct link between connectivity and recovery of genetic diversity after a demographic bottleneck has not been clearly demonstrated in an empirical system. Here, we show that connectivity of habitat patches in the landscape contributes to the maintenance of genetic diversity after a demographic bottleneck. We were able to monitor genetic diversity in a network of populations of the alpine butterfly, Parnassius smintheus, before, during, and after a severe reduction in population size that lasted two generations. We found that allelic diversity in the network declined after the demographic bottleneck but that less allelic diversity was lost from populations occupying habitat patches with higher connectivity. Furthermore, the effect of connectivity on allelic diversity was important during the demographic recovery phase. Our results demonstrate directly the ability of connectivity to mediate the rescue of genetic diversity in a natural system.
Collapse
|
11
|
Abstract
Genetic polymorphism varies among species and within genomes, and has important implications for the evolution and conservation of species. The determinants of this variation have been poorly understood, but population genomic data from a wide range of organisms now make it possible to delineate the underlying evolutionary processes, notably how variation in the effective population size (Ne) governs genetic diversity. Comparative population genomics is on its way to providing a solution to 'Lewontin's paradox' - the discrepancy between the many orders of magnitude of variation in population size and the much narrower distribution of diversity levels. It seems that linked selection plays an important part both in the overall genetic diversity of a species and in the variation in diversity within the genome. Genetic diversity also seems to be predictable from the life history of a species.
Collapse
|
12
|
Epps CW, Keyghobadi N. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 2015; 24:6021-40. [DOI: 10.1111/mec.13454] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Clinton W. Epps
- Oregon State University; Nash Hall Room 104 Corvallis OR 97331 USA
| | - Nusha Keyghobadi
- Department of Biology; Western University; London ON N6A 5B7 Canada
| |
Collapse
|