1
|
Rees-Baylis E, Pen I, Kreider JJ. Maternal manipulation of offspring size can trigger the evolution of eusociality in promiscuous species. Proc Natl Acad Sci U S A 2024; 121:e2402179121. [PMID: 39110731 PMCID: PMC11331107 DOI: 10.1073/pnas.2402179121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Eusocial organisms typically live in colonies with one reproductive queen supported by thousands of sterile workers. It is widely believed that monogamous mating is a precondition for the evolution of eusociality. Here, we present a theoretical model that simulates a realistic scenario for the evolution of eusociality. In the model, mothers can evolve control over resource allocation to offspring, affecting offspring's body size. The offspring can evolve body-size-dependent dispersal, by which they disperse to breed or stay at the nest as helpers. We demonstrate that eusociality can evolve even if mothers are not strictly monogamous, provided that they can constrain their offspring's reproduction through manipulation. We also observe the evolution of social polymorphism with small individuals that help and larger individuals that disperse to breed. Our model unifies the traditional kin selection and maternal manipulation explanations for the evolution of eusociality and demonstrates that-contrary to current consensus belief-eusociality can evolve despite highly promiscuous mating.
Collapse
Affiliation(s)
- Ella Rees-Baylis
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen9747 AG, The Netherlands
- Institute of Ecology and Evolution, University of Bern, Bern3012, Switzerland
| | - Ido Pen
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen9747 AG, The Netherlands
| | - Jan J. Kreider
- Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen9747 AG, The Netherlands
| |
Collapse
|
2
|
Gonzalez VH, Manweiler R, Smith AR, Oyen K, Cardona D, Wcislo WT. Low heat tolerance and high desiccation resistance in nocturnal bees and the implications for nocturnal pollination under climate change. Sci Rep 2023; 13:22320. [PMID: 38102400 PMCID: PMC10724170 DOI: 10.1038/s41598-023-49815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
Predicting insect responses to climate change is essential for preserving ecosystem services and biodiversity. Due to high daytime temperatures and low humidity levels, nocturnal insects are expected to have lower heat and desiccation tolerance compared to diurnal species. We estimated the lower (CTMin) and upper (CTMax) thermal limits of Megalopta, a group of neotropical, forest-dwelling bees. We calculated warming tolerance (WT) as a metric to assess vulnerability to global warming and measured survival rates during simulated heatwaves and desiccation stress events. We also assessed the impact of body size and reproductive status (ovary area) on bees' thermal limits. Megalopta displayed lower CTMin, CTMax, and WTs than diurnal bees (stingless bees, orchid bees, and carpenter bees), but exhibited similar mortality during simulated heatwave and higher desiccation tolerance. CTMin increased with increasing body size across all bees but decreased with increasing body size and ovary area in Megalopta, suggesting a reproductive cost or differences in thermal environments. CTMax did not increase with increasing body size or ovary area. These results indicate a greater sensitivity of Megalopta to temperature than humidity and reinforce the idea that nocturnal insects are thermally constrained, which might threaten pollination services in nocturnal contexts during global warming.
Collapse
Affiliation(s)
- Victor H Gonzalez
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| | - Rachel Manweiler
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Adam R Smith
- Department of Biological Sciences, George Washington University, Washington, District of Columbia, USA
| | - Kennan Oyen
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, 99164, USA
| | - David Cardona
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| |
Collapse
|
3
|
Gilbert JD, Rossiter SJ, Bennett NC, Faulkes CG. The elusive role of prolactin in the sociality of the naked mole-rat. Horm Behav 2022; 143:105196. [PMID: 35597054 DOI: 10.1016/j.yhbeh.2022.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Accepted: 05/05/2022] [Indexed: 12/01/2022]
Abstract
Despite decades of research into the evolutionary drivers of sociality, we know relatively little about the underlying proximate mechanisms. Here we investigate the potential role of prolactin in the highly social naked mole-rat. Naked mole-rats live in large social groups but, only a small number of individuals reproduce. The remaining non-breeders are reproductively suppressed and contribute to burrow maintenance, foraging, and allo-parental care. Prolactin has well-documented links with reproductive timing and parental behaviour, and the discovery that non-breeding naked mole-rats have unusually high prolactin levels has led to the suggestion that prolactin may help maintain naked mole-rat sociality. To test this idea, we investigated whether urinary prolactin was correlated with cooperative behaviour and aggression. We then administered the prolactin-suppressing drug Cabergoline to eight female non-breeders for eight weeks and assessed the physiology and behaviour of the animals relative to controls. Contrary to the mammalian norm, and supporting previous findings for plasma, we found non-breeders had elevated urinary prolactin concentrations that were similar to breeding females. Further, prolactin levels were higher in heavier, socially dominant non-breeders. Urinary prolactin concentrations did not explain variation in working behaviour or patterns of aggression. Furthermore, females receiving Cabergoline did not show any behavioural or hormonal (progesterone) differences, and urinary prolactin did not appear to be suppressed in individuals receiving Cabergoline. While the results add to the relatively limited literature experimentally manipulating prolactin to investigate its role in reproduction and behaviour, they fail to explain why prolactin levels are high in non-breeding naked mole-rats, or how female non-breeding phenotypes are maintained.
Collapse
Affiliation(s)
- James D Gilbert
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom of Great Britain and Northern Ireland.
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom of Great Britain and Northern Ireland
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Christopher G Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
4
|
Price TN, Field J. Sisters doing it for themselves: extensive reproductive plasticity in workers of a primitively eusocial bee. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Plasticity is a key trait when an individual’s role in the social environment, and hence its optimum phenotype, fluctuates unpredictably. Plasticity is especially important in primitively eusocial insects where small colony sizes and little morphological caste differentiation mean that individuals may find themselves switching from non-reproductive to reproductive roles. To understand the scope of this plasticity, workers of the primitively eusocial sweat bee Lasioglossum malachurum were experimentally promoted to the reproductive role (worker-queens) and their performance compared with foundress-queens. We focussed on how their developmental trajectory as workers influenced three key traits: group productivity, monopolisation of reproduction, and social control of foraging nest-mates. No significant difference was found between the number of offspring produced by worker-queens and foundress-queens. Genotyping of larvae showed that worker-queens monopolised reproduction in their nests to the same extent as foundress queens. However, non-reproductives foraged less and produced a smaller total offspring biomass when the reproductive was a promoted worker: offspring of worker-queens were all males, which are the cheaper sex to produce. Greater investment in each offspring as the number of foragers increased suggests a limit to both worker-queen and foundress-queen offspring production when a greater quantity of pollen arrives at the nest. The data presented here suggest a remarkable level of plasticity and represent one of the first quantitative studies of worker reproductive plasticity in a non-model primitively eusocial species.
Significance statement
The ability of workers to take on a reproductive role and produce offspring is expected to relate strongly to the size of their colony. Workers in species with smaller colony sizes should have greater reproductive potential to insure against the death of the queen. We quantified the reproductive plasticity of workers in small colonies of sweat bees by removing the queen and allowing the workers to control the reproductive output of the nest. A single worker then took on the reproductive role and hence prevented her fellow workers from producing offspring of their own. These worker-queens produced as many offspring as control queens, demonstrating remarkable worker plasticity in a primitively eusocial species.
Collapse
|
5
|
Robin AN, Denton KK, Horna Lowell ES, Dulay T, Ebrahimi S, Johnson GC, Mai D, O’Fallon S, Philson CS, Speck HP, Zhang XP, Nonacs P. Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.711556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A small number of extraordinary “Major Evolutionary Transitions” (METs) have attracted attention among biologists. They comprise novel forms of individuality and information, and are defined in relation to organismal complexity, irrespective of broader ecosystem-level effects. This divorce between evolutionary and ecological consequences qualifies unicellular eukaryotes, for example, as a MET although they alone failed to significantly alter ecosystems. Additionally, this definition excludes revolutionary innovations not fitting into either MET type (e.g., photosynthesis). We recombine evolution with ecology to explore how and why entire ecosystems were newly created or radically altered – as Major System Transitions (MSTs). In doing so, we highlight important morphological adaptations that spread through populations because of their immediate, direct-fitness advantages for individuals. These are Major Competitive Transitions, or MCTs. We argue that often multiple METs and MCTs must be present to produce MSTs. For example, sexually-reproducing, multicellular eukaryotes (METs) with anisogamy and exoskeletons (MCTs) significantly altered ecosystems during the Cambrian. Therefore, we introduce the concepts of Facilitating Evolutionary Transitions (FETs) and Catalysts as key events or agents that are insufficient themselves to set a MST into motion, but are essential parts of synergies that do. We further elucidate the role of information in MSTs as transitions across five levels: (I) Encoded; (II) Epigenomic; (III) Learned; (IV) Inscribed; and (V) Dark Information. The latter is ‘authored’ by abiotic entities rather than biological organisms. Level IV has arguably allowed humans to produce a MST, and V perhaps makes us a FET for a future transition that melds biotic and abiotic life into one entity. Understanding the interactive processes involved in past major transitions will illuminate both current events and the surprising possibilities that abiotically-created information may produce.
Collapse
|
6
|
Mikát M, Waldhauserová J, Fraňková T, Čermáková K, Brož V, Zeman Š, Dokulilová M, Straka J. Only mothers feed mature offspring in European Ceratina bees. INSECT SCIENCE 2021; 28:1468-1481. [PMID: 32725763 DOI: 10.1111/1744-7917.12859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/18/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Parental care directed to adult offspring is uncommon in animals. Such parental care has been documented in Xylocopinae bees (Hymenoptera: Apidae). Moreover, some Ceratina bees (Xylocopinae) are known to feed mature siblings, and feeding of mature siblings is achieved by dwarf eldest daughters when mothers died. These daughters are intentionally malnourished by mothers and usually originate from the first brood cell. Here, we examined the pattern of care provided to young adults in three small European carpenter bees: Ceratina (Ceratina) cucurbitina, C. (Euceratina) chalybea, and C. (E.) nigrolabiata. Observations of nest departures and arrivals were performed to study foraging behavior. We detected intensive foraging behavior of mothers in all three studied species. However, we did not observe regular foraging behavior of daughters in any species. The experimental removal of mothers in C. cucurbitina led to the emigration of young adults and did not initiate foraging activity in daughters. We conclude that the feeding of siblings does not occur in these species unlike in the American species C. calcarata. We detected female-biased sex ratios in the first brood cell in C. cucurbitina and C. chalybea. Female offspring in the first brood cell was smaller than other female offspring only in C. cucurbitina. Our results show that a female-biased sex ratio and the small size of daughters in the first brood cell do not provide sufficient evidence for demonstrating the existence of an altruistic daughter and also that the pattern of maternal investment is not exclusively shaped by social interactions.
Collapse
Affiliation(s)
- Michael Mikát
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Tereza Fraňková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kateřina Čermáková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vojtěch Brož
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Šimon Zeman
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marcela Dokulilová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Straka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Kennedy P, Radford AN. Sibling quality and the haplodiploidy hypothesis. Biol Lett 2020; 16:20190764. [PMID: 32183634 PMCID: PMC7115179 DOI: 10.1098/rsbl.2019.0764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/12/2020] [Indexed: 11/12/2022] Open
Abstract
The 'haplodiploidy hypothesis' argues that haplodiploid inheritance in bees, wasps, and ants generates relatedness asymmetries that promote the evolution of altruism by females, who are less related to their offspring than to their sisters ('supersister' relatedness). However, a consensus holds that relatedness asymmetry can only drive the evolution of eusociality if workers can direct their help preferentially to sisters over brothers, either through sex-ratio biases or a pre-existing ability to discriminate sexes among the brood. We show via a kin selection model that a simple feature of insect biology can promote the origin of workers in haplodiploids without requiring either condition. In insects in which females must found and provision new nests, body quality may have a stronger influence on female fitness than on male fitness. If altruism boosts the quality of all larval siblings, sisters may, therefore, benefit more than brothers from receiving the same amount of help. Accordingly, the benefits of altruism would fall disproportionately on supersisters in haplodiploids. Haplodiploid females should be more prone to altruism than diplodiploid females or males of either ploidy when altruism elevates female fitness especially, and even when altruists are blind to sibling sex.
Collapse
Affiliation(s)
- P. Kennedy
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | | |
Collapse
|
8
|
Smith AR, Kapheim KM, Kingwell CJ, Wcislo WT. A split sex ratio in solitary and social nests of a facultatively social bee. Biol Lett 2019; 15:20180740. [PMID: 30940017 DOI: 10.1098/rsbl.2018.0740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A classic prediction of kin selection theory is that a mixed population of social and solitary nests of haplodiploid insects should exhibit a split sex ratio among offspring: female biased in social nests, male biased in solitary nests. Here, we provide the first evidence of a solitary-social split sex ratio, using the sweat bee Megalopta genalis (Halictidae). Data from 2502 offspring collected from naturally occurring nests across 6 years spanning the range of the M. genalis reproductive season show that despite significant yearly and seasonal variation, the offspring sex ratio of social nests is consistently more female biased than in solitary nests. This suggests that split sex ratios may facilitate the evolutionary origins of cooperation based on reproductive altruism via kin selection.
Collapse
Affiliation(s)
- Adam R Smith
- 1 Department of Biological Sciences, George Washington University , Washington, DC , USA
| | - Karen M Kapheim
- 2 Department of Biology, Utah State University , Logan, UT , USA.,4 Smithsonian Tropical Research Institute , Panama City , Panama
| | - Callum J Kingwell
- 3 Department of Neurobiology and Behavior, Cornell University , Ithaca, NY , USA.,4 Smithsonian Tropical Research Institute , Panama City , Panama
| | - William T Wcislo
- 4 Smithsonian Tropical Research Institute , Panama City , Panama
| |
Collapse
|
9
|
Nonacs P. Reproductive skew in cooperative breeding: Environmental variability, antagonistic selection, choice, and control. Ecol Evol 2019; 9:10163-10175. [PMID: 31624543 PMCID: PMC6787806 DOI: 10.1002/ece3.5502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/05/2023] Open
Abstract
A multitude of factors may determine reproductive skew among cooperative breeders. One explanation, derived from inclusive fitness theory, is that groups can partition reproduction such that subordinates do at least as well as noncooperative solitary individuals. The majority of recent data, however, fails to support this prediction; possibly because inclusive fitness models cannot easily incorporate multiple factors simultaneously to predict skew. Notable omissions are antagonistic selection (across generations, genes will be in both dominant and subordinate bodies), constraints on the number of sites suitable for successful reproduction, choice in which group an individual might join, and within-group control or suppression of competition. All of these factors and more are explored through agent-based evolutionary simulations. The results suggest the primary drivers for the initial evolution of cooperative breeding may be a combination of limited suitable sites, choice across those sites, and parental manipulation of offspring into helping roles. Antagonistic selection may be important when subordinates are more frequent than dominants. Kinship matters, but its main effect may be in offspring being available for manipulation while unrelated individuals are not. The greater flexibility of evolutionary simulations allows the incorporation of species-specific life histories and ecological constraints to better predict sociobiology.
Collapse
Affiliation(s)
- Peter Nonacs
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
10
|
Socias-Martínez L, Kappeler PM. Catalyzing Transitions to Sociality: Ecology Builds on Parental Care. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Couchoux C, Field J. Parental manipulation of offspring size in social groups: a test using paper wasps. Behav Ecol Sociobiol 2019; 73:36. [PMID: 30880867 PMCID: PMC6394940 DOI: 10.1007/s00265-019-2646-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/03/2022]
Abstract
Abstract Maternal effects should be especially likely when mothers actively provision offspring with resources that influence offspring phenotype. In cooperatively breeding and eusocial taxa, there is potential for parents to strategically manipulate offspring phenotype in their own interests. Social insect queens are nearly always larger than their worker offspring, and queens could benefit by producing small daughter workers in several ways. If queens use aggression to dominate or coerce workers, a queen producing small workers might minimize potential conflict or competition from her offspring. In addition, because of the trade-off between the number of workers she is able to produce and their individual size, a queen may produce small workers to optimize colony work effort. In this study, we investigate why queens of the primitively eusocial paper wasp Polistes gallicus limit the size of their workers. We created queen–worker size mismatches by cross-fostering queens between nests. We then tested whether the queen–worker size difference affects worker foraging and reproductive effort, or the amount of aggression in the group. Some of our results were consistent with the idea that queens limit worker size strategically: small workers were no less successful foragers, so that producing a larger number of smaller workers may overall increase queen fitness. We found that queens were less likely to attack large workers, perhaps because attempting to coerce large workers is riskier. However, larger workers did not forage less, did not invest more in ovarian development, and were not more aggressive themselves. There was therefore little evidence overall that queens limit conflict by producing smaller workers. Significance statement In social animals, parents might manipulate phenotypic traits of their offspring in their own interests. In paper wasps (Polistes), the first offspring produced are smaller than the queen and become workers: instead of founding their own nests, they stay and help their mother to rear new queens and males. We investigated whether P. gallicus queens could benefit by producing small daughter workers by using cross-fostering to create size mismatches between queens and their offspring. We then recorded foraging activity, reproductive effort, and aggression on nests. Queens were less likely to attack larger workers, but overall, there was limited evidence of size-based queen–worker conflict. However, because small workers were no less successful foragers, producing a larger number of smaller workers may optimize colony work effort.
Collapse
Affiliation(s)
- Christelle Couchoux
- Centre for Ecology & Conservation, University of Exeter, Penryn campus, Penryn, Cornwall, TR10 9FE UK
| | - Jeremy Field
- Centre for Ecology & Conservation, University of Exeter, Penryn campus, Penryn, Cornwall, TR10 9FE UK
| |
Collapse
|
12
|
McFrederick QS, Rehan SM. Wild Bee Pollen Usage and Microbial Communities Co-vary Across Landscapes. MICROBIAL ECOLOGY 2019; 77:513-522. [PMID: 30069710 DOI: 10.1007/s00248-018-1232-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/12/2018] [Indexed: 05/11/2023]
Abstract
Bees forage for pollen and nectar at flowers but simultaneously acquire pathogenic, commensal, and likely beneficial microbes from these same flowers. Characterizing pollen usage of wild bees is therefore crucial to their conservation yet remains a challenging task. To understand pollen usage across landscapes and how this affects microbial communities found in the pollen provisions collected from flowers, we studied the generalist small carpenter bee Ceratina australensis. We collected C. australensis nests from three different climatic zones across eastern and southern Australia. To characterize the plant, fungal, and bacterial composition of these pollen provisions, we used a metabarcoding and next-generation sequencing approach. We found that the species richness of plant types, fungi, and bacteria was highest in a subtropical zone compared to a temperate or a grassland zone. The composition of these communities also differentiated by zone, particularly in pollen composition and fungal communities. Moreover, pollen composition strongly correlated with fungal community composition, suggesting that variation in pollen usage across landscapes results in variation in microbial communities. While how these pollen usage and microbial community patterns affect bee health merits additional work, these data further our understanding of how flowering plant community composition affects not only the pollen usage of a generalist bee but also its associated microbial communities.
Collapse
Affiliation(s)
- Quinn S McFrederick
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH, 03824, USA
| |
Collapse
|
13
|
Nonacs P. Hamilton's rule is essential but insufficient for understanding monogamy's role in social evolution. ROYAL SOCIETY OPEN SCIENCE 2019; 6:180913. [PMID: 30800348 PMCID: PMC6366207 DOI: 10.1098/rsos.180913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
|
14
|
Jones BM, Robinson GE. Genetic accommodation and the role of ancestral plasticity in the evolution of insect eusociality. J Exp Biol 2018; 221:jeb153163. [PMID: 30478152 PMCID: PMC6288071 DOI: 10.1242/jeb.153163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For over a century, biologists have proposed a role for phenotypic plasticity in evolution, providing an avenue for adaptation in addition to 'mutation-first' models of evolutionary change. According to the various versions of this idea, the ability of organisms to respond adaptively to their environment through phenotypic plasticity may lead to novel phenotypes that can be screened by natural selection. If these initially environmentally induced phenotypes increase fitness, then genetic accommodation can lead to allele frequency change, influencing the expression of those phenotypes. Despite the long history of 'plasticity-first' models, the importance of genetic accommodation in shaping evolutionary change has remained controversial - it is neither fully embraced nor completely discarded by most evolutionary biologists. We suggest that the lack of acceptance of genetic accommodation in some cases is related to a lack of information on its molecular mechanisms. However, recent reports of epigenetic transgenerational inheritance now provide a plausible mechanism through which genetic accommodation may act, and we review this research here. We also discuss current evidence supporting a role for genetic accommodation in the evolution of eusociality in social insects, which have long been models for studying the influence of the environment on phenotypic variation, and may be particularly good models for testing hypotheses related to genetic accommodation. Finally, we introduce 'eusocial engineering', a method by which novel social phenotypes are first induced by environmental modification and then studied mechanistically to understand how environmentally induced plasticity may lead to heritable changes in social behavior. We believe the time is right to incorporate genetic accommodation into models of the evolution of complex traits, armed with new molecular tools and a better understanding of non-genetic heritable elements.
Collapse
Affiliation(s)
- Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gene E Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
|
16
|
Piekarski PK, Carpenter JM, Lemmon AR, Moriarty Lemmon E, Sharanowski BJ. Phylogenomic Evidence Overturns Current Conceptions of Social Evolution in Wasps (Vespidae). Mol Biol Evol 2018; 35:2097-2109. [PMID: 29924339 PMCID: PMC6107056 DOI: 10.1093/molbev/msy124] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The hypothesis that eusociality originated once in Vespidae has shaped interpretation of social evolution for decades and has driven the supposition that preimaginal morphophysiological differences between castes were absent at the outset of eusociality. Many researchers also consider casteless nest-sharing an antecedent to eusociality. Together, these ideas endorse a stepwise progression of social evolution in wasps (solitary → casteless nest-sharing → eusociality with rudimentary behavioral castes → eusociality with preimaginal caste-biasing (PCB) → morphologically differentiated castes). Here, we infer the phylogeny of Vespidae using sequence data generated via anchored hybrid enrichment from 378 loci across 136 vespid species and perform ancestral state reconstructions to test whether rudimentary and monomorphic castes characterized the initial stages of eusocial evolution. Our results reject the single origin of eusociality hypothesis, contest the supposition that eusociality emerged from a casteless nest-sharing ancestor, and suggest that eusociality in Polistinae + Vespinae began with castes having morphological differences. An abrupt appearance of castes with ontogenetically established morphophysiological differences conflicts with the current conception of stepwise social evolution and suggests that the climb up the ladder of sociality does not occur through sequential mutation. Phenotypic plasticity and standing genetic variation could explain how cooperative brood care evolved in concert with nest-sharing and how morphologically dissimilar castes arose without a rudimentary intermediate. Furthermore, PCB at the outset of eusociality implicates a subsocial route to eusociality in Polistinae + Vespinae, emphasizing the role of mother-daughter interactions and subfertility (i.e. the cost component of kin selection) in the origin of workers.
Collapse
Affiliation(s)
| | - James M Carpenter
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL
| | | | | |
Collapse
|
17
|
Davies NG, Gardner A. Monogamy promotes altruistic sterility in insect societies. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172190. [PMID: 29892408 PMCID: PMC5990772 DOI: 10.1098/rsos.172190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Monogamy is associated with sibling-directed altruism in multiple animal taxa, including insects, birds and mammals. Inclusive-fitness theory readily explains this pattern by identifying high relatedness as a promoter of altruism. In keeping with this prediction, monogamy should promote the evolution of voluntary sterility in insect societies if sterile workers make for better helpers. However, a recent mathematical population-genetics analysis failed to identify a consistent effect of monogamy on voluntary worker sterility. Here, we revisit that analysis. First, we relax genetic assumptions, considering not only alleles of extreme effect-encoding either no sterility or complete sterility-but also alleles with intermediate effects on worker sterility. Second, we broaden the stability analysis-which focused on the invasibility of populations where either all workers are fully sterile or all workers are fully reproductive-to identify where intermediate pure or mixed evolutionarily stable states may occur. Third, we consider a broader range of demographically explicit ecological scenarios relevant to altruistic worker non-reproduction and to the evolution of eusociality more generally. We find that, in the absence of genetic constraints, monogamy always promotes altruistic worker sterility and may inhibit spiteful worker sterility. Our extended analysis demonstrates that an exact population-genetics approach strongly supports the prediction of inclusive-fitness theory that monogamy promotes sib-directed altruism in social insects.
Collapse
Affiliation(s)
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
18
|
Limited social plasticity in the socially polymorphic sweat bee Lasioglossum calceatum. Behav Ecol Sociobiol 2018; 72:56. [PMID: 29568150 PMCID: PMC5845590 DOI: 10.1007/s00265-018-2475-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/02/2018] [Accepted: 03/02/2018] [Indexed: 11/12/2022]
Abstract
Abstract Eusociality is characterised by a reproductive division of labour, where some individuals forgo direct reproduction to instead help raise kin. Socially polymorphic sweat bees are ideal models for addressing the mechanisms underlying the transition from solitary living to eusociality, because different individuals in the same species can express either eusocial or solitary behaviour. A key question is whether alternative social phenotypes represent environmentally induced plasticity or predominantly genetic differentiation between populations. In this paper, we focus on the sweat bee Lasioglossum calceatum, in which northern or high-altitude populations are solitary, whereas more southern or low-altitude populations are typically eusocial. To test whether social phenotype responds to local environmental cues, we transplanted adult females from a solitary, northern population, to a southern site where native bees are typically eusocial. Nearly all native nests were eusocial, with foundresses producing small first brood (B1) females that became workers. In contrast, nine out of ten nests initiated by transplanted bees were solitary, producing female offspring that were the same size as the foundress and entered directly into hibernation. Only one of these ten nests became eusocial. Social phenotype was unlikely to be related to temperature experienced by nest foundresses when provisioning B1 offspring, or by B1 emergence time, both previously implicated in social plasticity seen in two other socially polymorphic sweat bees. Our results suggest that social polymorphism in L. calceatum predominantly reflects genetic differentiation between populations, and that plasticity is in the process of being lost by bees in northern populations. Significance statement Phenotypic plasticity is thought to play a key role in the early stages of the transition from solitary to eusocial behaviour, but may then be lost if environmental conditions become less variable. Socially polymorphic sweat bees exhibit either solitary or eusocial behaviour in different geographic populations, depending on the length of the nesting season. We tested for plasticity in the socially polymorphic sweat bee Lasioglossum calceatum by transplanting nest foundresses from a northern, non-eusocial population to a southern, eusocial population. Plasticity would be detected if transplanted bees exhibited eusocial behaviour. We found that while native bees were eusocial, 90% of transplanted bees and their offspring did not exhibit traits associated with eusociality. Environmental variables such as time of offspring emergence or temperatures experienced by foundresses during provisioning could not explain these differences. Our results suggest that the ability of transplanted bees to express eusociality is being lost, and that social polymorphism predominantly reflects genetic differences between populations. Electronic supplementary material The online version of this article (10.1007/s00265-018-2475-9) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Shell WA, Rehan SM. The price of insurance: costs and benefits of worker production in a facultatively social bee. Behav Ecol 2017. [DOI: 10.1093/beheco/arx146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wyatt A Shell
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
20
|
Brooks KC, Maia R, Duffy JE, Hultgren KM, Rubenstein DR. Ecological generalism facilitates the evolution of sociality in snapping shrimps. Ecol Lett 2017; 20:1516-1525. [DOI: 10.1111/ele.12857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/22/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Katherine C. Brooks
- Department of Ecology, Evolution and Environmental Biology; Columbia University; New York NY 10027 USA
| | - Rafael Maia
- Department of Ecology, Evolution and Environmental Biology; Columbia University; New York NY 10027 USA
| | - J. Emmett Duffy
- Tennenbaum Marine Observatories Network; Smithsonian Institution; Washington DC 20013 USA
| | | | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental Biology; Columbia University; New York NY 10027 USA
- Center for Integrative Animal Behavior; Columbia University; New York NY 10027 USA
| |
Collapse
|
21
|
Lawson SP, Helmreich SL, Rehan SM. Effects of nutritional deprivation on development and behavior in the subsocial bee Ceratina calcarata (Hymenoptera: Xylocopinae). ACTA ACUST UNITED AC 2017; 220:4456-4462. [PMID: 28970348 DOI: 10.1242/jeb.160531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/26/2017] [Indexed: 01/11/2023]
Abstract
By manipulating resources or dispersal opportunities, mothers can force offspring to remain at the nest to help raise siblings, creating a division of labor. In the subsocial bee Ceratina calcarata, mothers manipulate the quantity and quality of pollen provided to the first female offspring, producing a dwarf eldest daughter that is physically smaller and behaviorally subordinate. This daughter forages for her siblings and forgoes her own reproduction. To understand how the mother's manipulation of pollen affects the physiology and behavior of her offspring, we manipulated the amount of pollen provided to offspring and measured the effects of pollen quantity on offspring development, adult body size and behavior. We found that by experimentally manipulating pollen quantities we could recreate the dwarf eldest daughter phenotype, demonstrating how nutrient deficiency alone can lead to the development of a worker-like daughter. Specifically, by reducing the pollen and nutrition to offspring, we significantly reduced adult body size and lipid stores, creating significantly less aggressive, subordinate individuals. Worker behavior in an otherwise solitary bee begins to explain how maternal manipulation of resources could lead to the development of social organization and reproductive hierarchies, a major step in the transition to highly social behaviors.
Collapse
Affiliation(s)
- Sarah P Lawson
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
22
|
Maternal manipulation of pollen provisions affects worker production in a small carpenter bee. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2194-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Séguret A, Bernadou A, Paxton RJ. Facultative social insects can provide insights into the reversal of the longevity/fecundity trade-off across the eusocial insects. CURRENT OPINION IN INSECT SCIENCE 2016; 16:95-103. [PMID: 27720058 DOI: 10.1016/j.cois.2016.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
In eusocial insects, reversal of the fecundity/longevity trade-off and extreme differences in life histories between castes of the same species garner scientific and public interest. Facultative social species at the threshold of sociality, in which individuals are socially plastic, provide an excellent opportunity to understand the causes and mechanisms underlying this reversal in life history trade-off associated with eusociality. We briefly present the ultimate factors favoring sociality and the association between fecundity and longevity in facultative eusocial insects, including kin selection and disposable soma, as well as proximate mechanisms observed in such species, such as differences in hormone titers and functions. Potential genetic underpinnings of lifespan and fecundity differences between castes are discussed and future research directions are proposed.
Collapse
Affiliation(s)
- Alice Séguret
- Institute for Biology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Abel Bernadou
- Zoology/Evolutionary Biology, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Robert J Paxton
- Institute for Biology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; iDiv, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany.
| |
Collapse
|
24
|
Gadagkar R. Evolution of social behaviour in the primitively eusocial wasp Ropalidia marginata: do we need to look beyond kin selection? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150094. [PMID: 26729933 DOI: 10.1098/rstb.2015.0094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ropalidia marginata is a primitively eusocial wasp widely distributed in peninsular India. Although solitary females found a small proportion of nests, the vast majority of new nests are founded by small groups of females. In such multiple foundress nests, a single dominant female functions as the queen and lays eggs, while the rest function as sterile workers and care for the queen's brood. Previous attempts to understand the evolution of social behaviour and altruism in this species have employed inclusive fitness theory (kin selection) as a guiding framework. Although inclusive fitness theory is quite successful in explaining the high propensity of the wasps to found nests in groups, several features of their social organization suggest that forces other than kin selection may also have played a significant role in the evolution of this species. These features include lowering of genetic relatedness owing to polyandry and serial polygyny, nest foundation by unrelated individuals, acceptance of young non-nest-mates, a combination of well-developed nest-mate recognition and lack of intra-colony kin recognition, a combination of meek and docile queens and a decentralized self-organized work force, long reproductive queues with cryptic heir designates and conflict-free queen succession, all resulting in extreme intra-colony cooperation and inter-colony conflict.
Collapse
Affiliation(s)
- Raghavendra Gadagkar
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
25
|
Kapheim KM. Genomic sources of phenotypic novelty in the evolution of eusociality in insects. CURRENT OPINION IN INSECT SCIENCE 2016; 13:24-32. [PMID: 27436550 DOI: 10.1016/j.cois.2015.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/13/2015] [Accepted: 10/28/2015] [Indexed: 06/06/2023]
Abstract
Genomic resources are now available for closely related species that vary in social behavior, providing insight on the genomics of social evolution. Changes in the architecture of gene regulatory networks likely influence the evolutionary trajectory of social traits. Evolutionarily novel genes are likely important in the evolution of social diversity among insects, but it is unclear whether new genes played a driving role in the advent or elaboration of eusociality or if they were instead a result of other genomic features of eusociality. The worker phenotype appears to be the center of genetic novelty, but the mechanisms for this remain unresolved. Future studies are needed to understand how genetic novelty arises, becomes incorporated into existing gene regulatory networks, and the effects this has on the evolution of social traits in closely related social and solitary species.
Collapse
Affiliation(s)
- Karen M Kapheim
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan UT 84322, USA.
| |
Collapse
|
26
|
González-Forero M. Stable eusociality via maternal manipulation when resistance is costless. J Evol Biol 2015; 28:2208-23. [PMID: 26341103 PMCID: PMC4685003 DOI: 10.1111/jeb.12744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/26/2015] [Accepted: 08/25/2015] [Indexed: 11/27/2022]
Abstract
In many eusocial species, queens use pheromones to influence offspring to express worker phenotypes. Although evidence suggests that queen pheromones are honest signals of the queen's reproductive health, here I show that queen's honest signalling can result from ancestral maternal manipulation. I develop a mathematical model to study the coevolution of maternal manipulation, offspring resistance to manipulation and maternal resource allocation. I assume that (i) maternal manipulation causes offspring to be workers against offspring's interests; (ii) offspring can resist at no direct cost, as is thought to be the case with pheromonal manipulation; and (iii) the mother chooses how much resource to allocate to fertility and maternal care. In the coevolution of these traits, I find that maternal care decreases, thereby increasing the benefit that offspring obtain from help, which in the long run eliminates selection for resistance. Consequently, ancestral maternal manipulation yields stable eusociality despite costless resistance. Additionally, ancestral manipulation in the long run becomes honest signalling that induces offspring to help. These results indicate that both eusociality and its commonly associated queen honest signalling can be likely to originate from ancestral manipulation.
Collapse
Affiliation(s)
- M González-Forero
- Department of Ecology and Evolutionary Biology, National Institute for Mathematical and Biological Synthesis (NIMBioS), University of Tennessee, Knoxville, TN, USA
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Elgar MA. Integrating insights across diverse taxa: challenges for understanding social evolution. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
28
|
Quiñones AE, Wcislo WT. Cryptic extended brood care in the facultatively eusocial sweat bee Megalopta genalis. INSECTES SOCIAUX 2015; 62:307-313. [PMID: 26097252 PMCID: PMC4469088 DOI: 10.1007/s00040-015-0409-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
As a result of different brood cell provisioning strategies, nest-making insects may differ in the extent to which adults regularly provide extended parental care to their brood beyond nest defense. Mass-provisioning species cache the entire food supply needed for larval development prior to the oviposition and typically seal the brood cell. It is usually assumed that there is no regular contact between the adult(s) and brood. Here, we show that the bee, Megalopta genalis, expresses a form of cryptic brood care, which would not be observed during normal development. Following experimental injections of different provisioning materials into brood cells, foundresses reopened manipulated cells and the brood were aborted in some cases, implying that the foundresses assessed conditions within the cells. In aborted cells, foundresses sometimes laid a second egg after first removing dead larvae, previously stored pollen and contaminants. Our results show that hygienic brood care can be cryptic and hence may be more widespread than previously believed, lending support to the hypothesis that extended parental care is a preadaptation toward eusociality.
Collapse
Affiliation(s)
- A. E. Quiñones
- />Theoretical biology group, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - W. T. Wcislo
- />Smithsonian Tropical Research Institute, 0843-03092 Balboa, Apartado Republic of Panama
| |
Collapse
|
29
|
Nonacs P, Richards MH. How (not) to review papers on inclusive fitness. Trends Ecol Evol 2015; 30:235-7. [PMID: 25804868 DOI: 10.1016/j.tree.2015.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 11/17/2022]
Affiliation(s)
- Peter Nonacs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Miriam H Richards
- Department of Biological Sciences, Brock University, St Catharines, ON L2S 3A1, Canada
| |
Collapse
|