1
|
Vohsen SA, Gruber-Vodicka HR, Herrera S, Dubilier N, Fisher CR, Baums IB. Discovery of deep-sea coral symbionts from a novel clade of marine bacteria with severely reduced genomes. Nat Commun 2024; 15:9508. [PMID: 39496625 PMCID: PMC11535214 DOI: 10.1038/s41467-024-53855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Microbes perform critical functions in corals, yet most knowledge is derived from the photic zone. Here, we discover two mollicutes that dominate the microbiome of the deep-sea octocoral, Callogorgia delta, and likely reside in the mesoglea. These symbionts are abundant across the host's range, absent in the water, and appear to be rare in sediments. Unlike other mollicutes, they lack all known fermentative capabilities, including glycolysis, and can only generate energy from arginine provided by the coral host. Their genomes feature several mechanisms to interact with foreign DNA, including extensive CRISPR arrays and restriction-modification systems, which may indicate their role in symbiosis. We propose the novel family Oceanoplasmataceae which includes these symbionts and others associated with five marine invertebrate phyla. Its exceptionally broad host range suggests that the diversity of this enigmatic family remains largely undiscovered. Oceanoplasmataceae genomes are the most highly reduced among mollicutes, providing new insight into their reductive evolution and the roles of coral symbionts.
Collapse
Affiliation(s)
- Samuel A Vohsen
- Department of Biology, The Pennsylvania State University, State College, PA, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA
| | - Harald R Gruber-Vodicka
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Bremen, Germany
- Zoological Institute, Christian-Albrecht University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Santiago Herrera
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA
| | - Nicole Dubilier
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Bremen, Germany
| | - Charles R Fisher
- Department of Biology, The Pennsylvania State University, State College, PA, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, State College, PA, USA.
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Carl von Ossietzky University of Oldenburg, Oldenburg, Lower Saxony, Germany.
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Bremen, Germany.
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Lower Saxony, Germany.
| |
Collapse
|
2
|
Vohsen SA, Herrera S. Coral microbiomes are structured by environmental gradients in deep waters. ENVIRONMENTAL MICROBIOME 2024; 19:38. [PMID: 38858739 PMCID: PMC11165896 DOI: 10.1186/s40793-024-00579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/02/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Coral-associated microbiomes vary greatly between colonies and localities with functional consequences on the host. However, the full extent of variability across the ranges of most coral species remains unknown, especially for corals living in deep waters which span greater ranges. Here, we characterized the microbiomes of four octocoral species from mesophotic and bathyal deep-sea habitats in the northern Gulf of Mexico, Muricea pendula, Swiftia exserta, Callogorgia delta, and Paramuricea biscaya, using 16S rRNA gene metabarcoding. We sampled extensively across their ranges to test for microbiome differentiation between and within species, examining the influence of environmental factors that vary with depth (53-2224 m) and geographic location (over 680 m) as well as the host coral's genotype using RAD-sequencing. RESULTS Coral microbiomes were often dominated by amplicon sequence variants whose abundances varied across their hosts' ranges, including symbiotic taxa: corallicolids, Endozoicomonas, members of the Mollicutes, and the BD1-7 clade. Coral species, depth, and geographic location significantly affected diversity, microbial community composition, and the relative abundance of individual microbes. Depth was the strongest environmental factor determining microbiome structure within species, which influenced the abundance of most dominant symbiotic taxa. Differences in host genotype, bottom temperature, and surface primary productivity could explain a significant part of the microbiome variation associated with depth and geographic location. CONCLUSIONS Altogether, this work demonstrates that the microbiomes of corals in deep waters vary substantially across their ranges in accordance with depth and other environmental conditions. It reveals that the influence of depth on the ecology of mesophotic and deep-sea corals extends to its effects on their microbiomes which may have functional consequences. This work also identifies the distributions of microbes including potential parasites which can be used to inform restoration plans in response to the Deepwater Horizon oil spill.
Collapse
Affiliation(s)
- Samuel A Vohsen
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA.
| | - Santiago Herrera
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
- Lehigh Oceans Research Center, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
3
|
Horowitz J, Quattrini AM, Brugler MR, Miller DJ, Pahang K, Bridge TCL, Cowman PF. Bathymetric evolution of black corals through deep time. Proc Biol Sci 2023; 290:20231107. [PMID: 37788705 PMCID: PMC10547549 DOI: 10.1098/rspb.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Deep-sea lineages are generally thought to arise from shallow-water ancestors, but this hypothesis is based on a relatively small number of taxonomic groups. Anthozoans, which include corals and sea anemones, are significant contributors to the faunal diversity of the deep sea, but the timing and mechanisms of their invasion into this biome remain elusive. Here, we reconstruct a fully resolved, time-calibrated phylogeny of 83 species in the order Antipatharia (black coral) to investigate their bathymetric evolutionary history. Our reconstruction indicates that extant black coral lineages first diversified in continental slope depths (∼250-3000 m) during the early Silurian (∼437 millions of years ago (Ma)) and subsequently radiated into, and diversified within, both continental shelf (less than 250 m) and abyssal (greater than 3000 m) habitats. Ancestral state reconstruction analysis suggests that the appearance of morphological features that enhanced the ability of black corals to acquire nutrients coincided with their invasion of novel depths. Our findings have important conservation implications for anthozoan lineages, as the loss of 'source' slope lineages could threaten millions of years of evolutionary history and confound future invasion events, thereby warranting protection.
Collapse
Affiliation(s)
- Jeremy Horowitz
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th street and Constitution avenue North West, Washington, DC 20560, USA
| | - Andrea M. Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th street and Constitution avenue North West, Washington, DC 20560, USA
| | - Mercer R. Brugler
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th street and Constitution avenue North West, Washington, DC 20560, USA
- Department of Natural Sciences, University of South Carolina Beaufort, 1100 Boundary Street, Beaufort, SC 29902, USA
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - David J. Miller
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Molecular and Cell Biology, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| | - Kristina Pahang
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
| | - Tom C. L. Bridge
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
- College of Science and Engineering, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| | - Peter F. Cowman
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Molecular and Cell Biology, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- College of Science and Engineering, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| |
Collapse
|
4
|
Piertney SB, Wenzel M, Jamieson AJ. Large effective population size masks population genetic structure in Hirondellea amphipods within the deepest marine ecosystem, the Mariana Trench. Mol Ecol 2023; 32:2206-2218. [PMID: 36808786 DOI: 10.1111/mec.16887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/20/2023]
Abstract
The examination of genetic structure in the deep-ocean hadal zone has focused on divergence between tectonic trenches to understand how environment and geography may drive species divergence and promote endemism. There has been little attempt to examine localized genetic structure within trenches, partly because of logistical challenges associated with sampling at an appropriate scale, and the large effective population sizes of species that can be sampled adequately may mask underlying genetic structure. Here we examine genetic structure in the superabundant amphipod Hirondellea gigas in the Mariana Trench at depths of 8126-10,545 m. RAD sequencing was used to identify 3182 loci containing 43,408 single nucleotide polymorphisms (SNPs) across individuals after stringent pruning of loci to prevent paralogous multicopy genomic regions being erroneously merged. Principal components analysis of SNP genotypes resolved no genetic structure between sampling locations, consistent with a signature of panmixia. However, discriminant analysis of principal components identified divergence between all sites driven by 301 outlier SNPs in 169 loci and significantly associated with latitude and depth. Functional annotation of loci identified differences between singleton loci used in analysis and paralogous loci pruned from the data set and also between outlier and nonoutlier loci, all consistent with hypotheses explaining the role of transposable elements driving genome dynamics. This study challenges the traditional perspective that highly abundant amphipods within a trench form a single panmictic population. We discuss the findings in relation to eco-evolutionary and ontogenetic processes operating in the deep sea, and highlight key challenges associated with population genetic analysis in nonmodel systems with inherent large effective population sizes and genomes.
Collapse
Affiliation(s)
| | - Marius Wenzel
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Alan J Jamieson
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Population Genetic Differentiation on the Hydrothermal Vent Crabs Xenograpsus testudinatus along Depth and Geographical Gradients in the Western Pacific. DIVERSITY 2022. [DOI: 10.3390/d14030162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Connectivity in deep-sea organisms must be considered across both depth gradient and horizontal geographical scales. The depth-differentiation hypothesis suggests that strong environmental gradients (e.g., light, temperature, pressure) and habitat heterogeneity in the deep-sea can create selection pressure, and this can result in genetic population divergence. The hydrothermal vent crab Xenograpsus testudinatus (Xenograpsidae) is common in vents at Kueishan Island, Taiwan, ranging from 10 to about 300 m depths. Xenograpsus testudinatus has also been found in shallow water vents (3–20 m) at Kagoshima and the Izu archipelago of Japan. We examine the sequence divergences in the mitochondrial COI, 16S rRNA and D-loop genes, to test the hypothesis that there is significant genetic differentiation among populations of X. testudinatus along the depth gradient at Kueishan Island (30, 200, 209–224 and 250–275 m), and among different geographical regions (Kueishan, Kagoshima and the Izu archipelago) in the West Pacific. There is neither significant population differentiation among shallow or deep-sea vents, nor between geographical locations. Vertical migration of zoea, upwelling on the eastern coast of Taiwan and the strong effect of the Kuroshio Currents has probably resulted in a high level of planktonic larval dispersal of X. testudinatus along the depth and geographical gradients in the Western Pacific.
Collapse
|
6
|
Mesophotic Gorgonian Corals Evolved Multiple Times and Faster Than Deep and Shallow Lineages. DIVERSITY 2021. [DOI: 10.3390/d13120650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mesophotic Coral Ecosystems (MCEs) develop on a unique environment, where abrupt environmental changes take place. Using a time-calibrated molecular phylogeny (mtDNA: mtMutS), we examined the lineage membership of mesophotic gorgonian corals (Octocorallia: Cnidaria) in comparison to shallow and deep-sea lineages of the wider Caribbean-Gulf of Mexico and the Tropical Eastern Pacific. Our results show mesophotic gorgonians originating multiple times from old deep-sea octocoral lineages, whereas shallow-water species comprise younger lineages. The mesophotic gorgonian fauna in the studied areas is related to their zooxanthellate shallow-water counterparts in only two clades (Gorgoniidae and Plexauridae), where the bathymetrical gradient could serve as a driver of diversification. Interestingly, mesophotic clades have diversified faster than either shallow or deep clades. One of this groups with fast diversification is the family Ellisellidae, a major component of the mesophotic gorgonian coral assemblage worldwide.
Collapse
|
7
|
Erickson KL, Pentico A, Quattrini AM, McFadden CS. New approaches to species delimitation and population structure of anthozoans: Two case studies of octocorals using ultraconserved elements and exons. Mol Ecol Resour 2020; 21:78-92. [PMID: 32786110 DOI: 10.1111/1755-0998.13241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023]
Abstract
As coral populations decline worldwide in the face of ongoing environmental change, documenting their distribution, diversity and conservation status is now more imperative than ever. Accurate delimitation and identification of species is a critical first step. This task, however, is not trivial as morphological variation and slowly evolving molecular markers confound species identification. New approaches to species delimitation in corals are needed to overcome these challenges. Here, we test whether target enrichment of ultraconserved elements (UCEs) and exons can be used for delimiting species boundaries and population structure within species of corals by focusing on two octocoral genera, Alcyonium and Sinularia, as exemplary case studies. We designed an updated bait set (29,181 baits) to target-capture 3,023 UCE and exon loci, recovering a mean of 1,910 ± 168 SD per sample with a mean length of 1,055 ± 208 bp. Similar numbers of loci were recovered from Sinularia (1,946 ± 227 SD) and Alcyonium (1,863 ± 177 SD). Species-level phylogenies were highly supported for both genera. Clustering methods based on filtered single nucleotide polymorphisms delimited species and populations that are congruent with previous allozyme, DNA barcoding, reproductive and ecological data for Alcyonium, and offered further evidence of hybridization among species. For Sinularia, results were congruent with those obtained from a previous study using restriction site associated DNA sequencing. Both case studies demonstrate the utility of target-enrichment of UCEs and exons to address a wide range of evolutionary and taxonomic questions across deep to shallow timescales in corals.
Collapse
Affiliation(s)
| | - Alicia Pentico
- Department of Biology, Harvey Mudd College, Claremont, CA, USA
| | - Andrea M Quattrini
- Department of Biology, Harvey Mudd College, Claremont, CA, USA.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | |
Collapse
|
8
|
Chan J, Pan B, Geng D, Zhang Q, Zhang S, Guo J, Xu Q. Genetic Diversity and Population Structure Analysis of Three Deep-Sea Amphipod Species from Geographically Isolated Hadal Trenches in the Pacific Ocean. Biochem Genet 2019; 58:157-170. [PMID: 31410625 DOI: 10.1007/s10528-019-09935-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/28/2019] [Indexed: 11/26/2022]
Abstract
Amphipods of the superfamily Lysianassoidea that inhabit the hadal zone ( > 6000 m) have large bathymetric ranges and play a key role in deep ocean ecosystems. The endemism of these amphipod species makes them a good model for investigating potent natural selection and restricted dispersal in deep ocean trenches. Here, we describe genetic diversity and intraspecific population differentiation among three amphipod species from four Pacific trenches based on a mtDNA concatenated dataset (CO Ι and 16S rRNA genes) from 150 amphipod individuals. All amphipod populations had low genetic diversity, as indicated by haplotype and nucleotide diversity values. Population geographic relationship analysis of two Alicella gigantea populations revealed no genetic differentiation between these two localities (pairwise genetic differentiation coefficient = 0.00032, gene flow = 784.58), and the major variation (99.97%) was derived from variation within the populations. Historical demographic events were investigated using Tajima's D and Fu's F neutrality tests and analysis of mismatch distribution. Consistent results provided strong evidence to support the premise that demographic expansion occurred only for the Mariana population of Hirondellea gigas, possibly within the last 2.1-3.4 million years. These findings suggest that the formation of amphipod population structure might be the result of multiple factors including high hydrostatic pressure, food distribution, trench topographic forcing and potential ecological interactions.
Collapse
Affiliation(s)
- Jiulin Chan
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
| | - Binbin Pan
- Shanghai Engineering Research Center of Hadal Science & Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Daoqiang Geng
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
| | - Qiming Zhang
- Shanghai Rainbowfish Ocean Technology Co., Ltd, Lingang New City, Shanghai, 201306, China
| | - Shun Zhang
- Shanghai Engineering Research Center of Hadal Science & Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Jian Guo
- Shanghai Engineering Research Center of Hadal Science & Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Qianghua Xu
- Shanghai Engineering Research Center of Hadal Science & Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China.
- National Distant-Water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
9
|
Molecular characterization of Bathymodiolus mussels and gill symbionts associated with chemosynthetic habitats from the U.S. Atlantic margin. PLoS One 2019; 14:e0211616. [PMID: 30870419 PMCID: PMC6417655 DOI: 10.1371/journal.pone.0211616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/17/2019] [Indexed: 01/22/2023] Open
Abstract
Mussels of the genus Bathymodiolus are among the most widespread colonizers of hydrothermal vent and cold seep environments, sustained by endosymbiosis with chemosynthetic bacteria. Presumed species of Bathymodiolus are abundant at newly discovered cold seeps on the Mid-Atlantic continental slope, however morphological taxonomy is challenging, and their phylogenetic affinities remain unestablished. Here we used mitochondrial sequence to classify species found at three seep sites (Baltimore Canyon seep (BCS; ~400m); Norfolk Canyon seep (NCS; ~1520m); and Chincoteague Island seep (CTS; ~1000m)). Mitochondrial COI (N = 162) and ND4 (N = 39) data suggest that Bathymodiolus childressi predominates at these sites, although single B. mauritanicus and B. heckerae individuals were detected. As previous work had suggested that methanotrophic and thiotrophic interactions can both occur at a site, and within an individual mussel, we investigated the symbiont communities in gill tissues of a subset of mussels from BCS and NCS. We constructed metabarcode libraries with four different primer sets spanning the 16S gene. A methanotrophic phylotype dominated all gill microbial samples from BCS, but sulfur-oxidizing Campylobacterota were represented by a notable minority of sequences from NCS. The methanotroph phylotype shared a clade with globally distributed Bathymodiolus spp. symbionts from methane seeps and hydrothermal vents. Two distinct Campylobacterota phylotypes were prevalent in NCS samples, one of which shares a clade with Campylobacterota associated with B. childressi from the Gulf of Mexico and the other with Campylobacterota associated with other deep-sea fauna. Variation in chemosynthetic symbiont communities among sites and individuals has important ecological and geochemical implications and suggests shifting reliance on methanotrophy. Continued characterization of symbionts from cold seeps will provide a greater understanding of the ecology of these unique environments as well and their geochemical footprint in elemental cycling and energy flux.
Collapse
|
10
|
Vohsen SA, Fisher CR, Baums IB. Metabolomic richness and fingerprints of deep-sea coral species and populations. Metabolomics 2019; 15:34. [PMID: 30830472 PMCID: PMC6469635 DOI: 10.1007/s11306-019-1500-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION From shallow water to the deep sea, corals form the basis of diverse communities with significant ecological and economic value. These communities face many anthropogenic stressors including energy and mineral extraction activities, ocean acidification and rising sea temperatures. Corals and their symbionts produce a diverse assemblage of compounds that may help provide resilience to some of these stressors. OBJECTIVES We aim to characterize the metabolomic diversity of deep-sea corals in an ecological context by investigating patterns across space and phylogeny. METHODS We applied untargeted Liquid Chromatography-Mass Spectrometry to examine the metabolomic diversity of the deep-sea coral, Callogorgia delta, across three sites in the Northern Gulf of Mexico as well as three other deep-sea corals, Stichopathes sp., Leiopathes glaberrima, and Lophelia pertusa, and a shallow-water species, Acropora palmata. RESULTS Different coral species exhibited distinct metabolomic fingerprints and differences in metabolomic richness including core ions unique to each species. C. delta was generally least diverse while Lophelia pertusa was most diverse. C. delta from different sites had different metabolomic fingerprints and metabolomic richness at individual and population levels, although no sites exhibited unique core ions. Two core ions unique to C. delta were putatively identified as diterpenes and thus may possess a biologically important function. CONCLUSION Deep-sea coral species have distinct metabolomic fingerprints and exhibit high metabolomic diversity at multiple scales which may contribute to their capabilities to respond to both natural and anthropogenic stressors, including climate change.
Collapse
Affiliation(s)
- Samuel A Vohsen
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
| | - Charles R Fisher
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| |
Collapse
|
11
|
González AM, Prada CA, Ávila V, Medina M. Ecological Speciation in Corals. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_35] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Strugnell JM, Allcock AL, Watts PC. Closely related octopus species show different spatial genetic structures in response to the Antarctic seascape. Ecol Evol 2017; 7:8087-8099. [PMID: 29043058 PMCID: PMC5632630 DOI: 10.1002/ece3.3327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/18/2017] [Accepted: 07/23/2017] [Indexed: 01/28/2023] Open
Abstract
Determining whether comparable processes drive genetic divergence among marine species is relevant to molecular ecologists and managers alike. Sympatric species with similar life histories might be expected to show comparable patterns of genetic differentiation and a consistent influence of environmental factors in shaping divergence. We used microsatellite loci to quantify genetic differentiation across the Scotia Arc in three species of closely related benthic octopods, Pareledone turqueti, P. charcoti, and Adelieledone polymorpha. The relative importance of environmental factors (latitude, longitude, depth, and temperature) in shaping genetic structure was investigated when significant spatial genetic structure was uncovered. Isolated populations of P. turqueti and A. polymorpha at these species' range margins were genetically different to samples close to mainland Antarctica; however, these species showed different genetic structures at a regional scale. Samples of P. turqueti from the Antarctic Peninsula, Elephant Island, and Signy Island were genetically different, and this divergence was associated primarily with sample collection depth. By contrast, weak or nonsignificant spatial genetic structure was evident across the Antarctic Peninsula, Elephant Island, and Signy Island region for A. polymorpha, and slight associations between population divergence and temperature or depth (and/or longitude) were detected. Pareledone charcoti has a limited geographic range, but exhibited no genetic differentiation between samples from a small region of the Scotia Arc (Elephant Island and the Antarctic Peninsula). Thus, closely related species with similar life history strategies can display contrasting patterns of genetic differentiation depending on spatial scale; moreover, depth may drive genetic divergence in Southern Ocean benthos.
Collapse
Affiliation(s)
- Jan M. Strugnell
- Centre for Sustainable Tropical Fisheries and AquacultureMarine Biology and Aquaculture James Cook UniversityTownsvilleQldAustralia
- Department of Ecology, Environment and EvolutionSchool of Life SciencesLa Trobe UniversityMelbourneVic.Australia
| | - A. Louise Allcock
- Ryan Institute and School of Natural SciencesNational University of Ireland GalwayGalwayIreland
| | | |
Collapse
|
13
|
Taylor ML, Roterman CN. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor. Mol Ecol 2017; 26:4872-4896. [PMID: 28833857 DOI: 10.1111/mec.14237] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/04/2023]
Abstract
Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non-chemosynthetic ecosystems on the deep-sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow-water species. Generally, populations at similar depths were well connected over 100s-1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s-1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectivity with depth. Few studies were ocean-wide (under 4%), and 48% were Atlantic-focused. There is strong emphasis on megafauna and commercial species with research into meiofauna, "ecosystem engineers" and other ecologically important species lacking. Only nine papers account for ~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor. Most studies used single-locus mitochondrial genes revealing a common pattern of non-neutrality, consistent with demographic instability or selective sweeps; similar to deep-sea hydrothermal vent fauna. The absence of a clear difference between vent and non-vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single-locus mitochondrial studies demographically uninformative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta-analyses where broad inferences about deep-sea ecology could be made.
Collapse
Affiliation(s)
- M L Taylor
- Department of Zoology, University of Oxford, Oxford, UK
| | - C N Roterman
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Zeng C, Rowden AA, Clark MR, Gardner JPA. Population genetic structure and connectivity of deep-sea stony corals (Order Scleractinia) in the New Zealand region: Implications for the conservation and management of vulnerable marine ecosystems. Evol Appl 2017; 10:1040-1054. [PMID: 29151859 PMCID: PMC5680633 DOI: 10.1111/eva.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/16/2017] [Indexed: 01/17/2023] Open
Abstract
Deep-sea stony corals, which can be fragile, long-lived, late to mature and habitat-forming, are defined as vulnerable marine ecosystem indicator taxa. Under United Nations resolutions, these corals require protection from human disturbance such as fishing. To better understand the vulnerability of stony corals (Goniocorella dumosa, Madrepora oculata, Solenosmilia variabilis) to disturbance within the New Zealand region and to guide marine protected area design, genetic structure and connectivity were determined using microsatellite loci and DNA sequencing. Analyses compared population genetic differentiation between two biogeographic provinces, amongst three subregions (north-central-south) and amongst geomorphic features. Extensive population genetic differentiation was revealed by microsatellite variation, whilst DNA sequencing revealed very little differentiation. For G. dumosa, genetic differentiation existed amongst regions and geomorphic features, but not between provinces. For M. oculata, only a north-central-south regional structure was observed. For S. variabilis, genetic differentiation was observed between provinces, amongst regions and amongst geomorphic features. Populations on the Kermadec Ridge were genetically different from Chatham Rise populations for all three species. A significant isolation-by-depth pattern was observed for both marker types in G. dumosa and also in ITS of M. oculata. An isolation-by-distance pattern was revealed for microsatellite variation in S. variabilis. Medium to high levels of self-recruitment were detected in all geomorphic populations, and rates and routes of genetic connectivity were species-specific. These patterns of population genetic structure and connectivity at a range of spatial scales indicate that flexible spatial management approaches are required for the conservation of deep-sea corals around New Zealand.
Collapse
Affiliation(s)
- Cong Zeng
- College of Animal Science and Technology Hunan Agricultural University Changsha China.,School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,National Institute for Water and Atmospheric Research Kilbirnie Wellington New Zealand
| | - Ashley A Rowden
- National Institute for Water and Atmospheric Research Kilbirnie Wellington New Zealand
| | - Malcolm R Clark
- National Institute for Water and Atmospheric Research Kilbirnie Wellington New Zealand
| | - Jonathan P A Gardner
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand
| |
Collapse
|
15
|
Gaither MR, Violi B, Gray HW, Neat F, Drazen JC, Grubbs RD, Roa-Varón A, Sutton T, Hoelzel AR. Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides. Mol Phylogenet Evol 2016; 104:73-82. [DOI: 10.1016/j.ympev.2016.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/12/2016] [Accepted: 07/25/2016] [Indexed: 11/26/2022]
|
16
|
Everett MV, Park LK, Berntson EA, Elz AE, Whitmire CE, Keller AA, Clarke ME. Large-Scale Genotyping-by-Sequencing Indicates High Levels of Gene Flow in the Deep-Sea Octocoral Swiftia simplex (Nutting 1909) on the West Coast of the United States. PLoS One 2016; 11:e0165279. [PMID: 27798660 PMCID: PMC5087884 DOI: 10.1371/journal.pone.0165279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/10/2016] [Indexed: 11/26/2022] Open
Abstract
Deep-sea corals are a critical component of habitat in the deep-sea, existing as regional hotspots for biodiversity, and are associated with increased assemblages of fish, including commercially important species. Because sampling these species is so difficult, little is known about the connectivity and life history of deep-sea octocoral populations. This study evaluates the genetic connectivity among 23 individuals of the deep-sea octocoral Swiftia simplex collected from Eastern Pacific waters along the west coast of the United States. We utilized high-throughput restriction-site associated DNA (RAD)-tag sequencing to develop the first molecular genetic resource for the deep-sea octocoral, Swiftia simplex. Using this technique we discovered thousands of putative genome-wide SNPs in this species, and after quality control, successfully genotyped 1,145 SNPs across individuals sampled from California to Washington. These SNPs were used to assess putative population structure across the region. A STRUCTURE analysis as well as a principal coordinates analysis both failed to detect any population differentiation across all geographic areas in these collections. Additionally, after assigning individuals to putative population groups geographically, no significant FST values could be detected (FST for the full data set 0.0056), and no significant isolation by distance could be detected (p = 0.999). Taken together, these results indicate a high degree of connectivity and potential panmixia in S. simplex along this portion of the continental shelf.
Collapse
Affiliation(s)
- Meredith V Everett
- National Research Council, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, Washington, United States of America
| | - Linda K Park
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, Washington, United States of America
| | - Ewann A Berntson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, Washington, United States of America
| | - Anna E Elz
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, Washington, United States of America
| | - Curt E Whitmire
- Fishery Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, Washington, United States of America
| | - Aimee A Keller
- Fishery Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, Washington, United States of America
| | - M Elizabeth Clarke
- Office of the Science Director, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, Washington, United States of America
| |
Collapse
|
17
|
Costantini F, Gori A, Lopez-González P, Bramanti L, Rossi S, Gili JM, Abbiati M. Limited Genetic Connectivity between Gorgonian Morphotypes along a Depth Gradient. PLoS One 2016; 11:e0160678. [PMID: 27490900 PMCID: PMC4973999 DOI: 10.1371/journal.pone.0160678] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/24/2016] [Indexed: 11/28/2022] Open
Abstract
Gorgonian species show a high morphological variability in relation to the environment in which they live. In coastal areas, parameters such as temperature, light, currents, and food availability vary significantly with depth, potentially affecting morphology of the colonies and the structure of the populations, as well as their connectivity patterns. In tropical seas, the existence of connectivity between shallow and deep populations supported the hypothesis that the deep coral reefs could potentially act as (reproductive) refugia fostering re-colonization of shallow areas after mortality events. Moreover, this hypothesis is not so clear accepted in temperate seas. Eunicella singularis is one of the most common gorgonian species in Northwestern Mediterranean Sea, playing an important role as ecosystem engineer by providing biomass and complexity to the coralligenous habitats. It has a wide bathymetric distribution ranging from about 10 m to 100 m. Two depth-related morphotypes have been identified, differing in colony morphology, sclerite size and shape, and occurrence of symbiotic algae, but not in mitochondrial DNA haplotypes. In the present study the genetic structure of E. singularis populations along a horizontal and bathymetric gradient was assessed using microsatellites and ITS1 sequences. Restricted gene flow was found at 30-40 m depth between the two Eunicella morphotypes. Conversely, no genetic structuring has been found among shallow water populations within a spatial scale of ten kilometers. The break in gene flow between shallow and deep populations contributes to explain the morphological variability observed at different depths. Moreover, the limited vertical connectivity hinted that the refugia hypothesis does not apply to E. singularis. Re-colonization of shallow water populations, occasionally affected by mass mortality events, should then be mainly fueled by larvae from other shallow water populations.
Collapse
Affiliation(s)
- Federica Costantini
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA) & Centro Interdipartimentale di Ricerca per le Scienze Ambientali (CIRSA), University of Bologna, CoNISMa, Via S. Alberto 163, I-48123, Ravenna, Italy
| | - Andrea Gori
- Departament d’Ecología, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Institut de Ciències del Mar–CSIC, Pg. Maritim de la Barceloneta 37–49, 08003, Barcelona, Spain
| | - Pablo Lopez-González
- Biodiversidad y Ecología de Invertebrados Marinos, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6, 41012, Sevilla, Spain
| | - Lorenzo Bramanti
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, 66650, Banyuls sur Mer, France
| | - Sergio Rossi
- Institut de Ciència i Tecnologia Ambientals, Universitat Auntònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - Josep-Maria Gili
- Institut de Ciències del Mar–CSIC, Pg. Maritim de la Barceloneta 37–49, 08003, Barcelona, Spain
| | - Marco Abbiati
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA) & Centro Interdipartimentale di Ricerca per le Scienze Ambientali (CIRSA), University of Bologna, CoNISMa, Via S. Alberto 163, I-48123, Ravenna, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, ISMAR, Bologna, Italy
| |
Collapse
|
18
|
Roterman CN, Copley JT, Linse KT, Tyler PA, Rogers AD. Connectivity in the cold: the comparative population genetics of vent-endemic fauna in the Scotia Sea, Southern Ocean. Mol Ecol 2016; 25:1073-88. [PMID: 26919308 DOI: 10.1111/mec.13541] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/19/2015] [Accepted: 12/24/2015] [Indexed: 01/18/2023]
Abstract
We report the first comparative population genetics study for vent fauna in the Southern Ocean using cytochrome C oxidase I and microsatellite markers. Three species are examined: the kiwaid squat lobster, Kiwa tyleri, the peltospirid gastropod, Gigantopelta chessoia, and a lepetodrilid limpet, Lepetodrilus sp., collected from vent fields 440 km apart on the East Scotia Ridge (ESR) and from the Kemp Caldera on the South Sandwich Island Arc, ~95 km eastwards. We report no differentiation for all species across the ESR, consistent with panmixia or recent range expansions. A lack of differentiation is notable for Kiwa tyleri, which exhibits extremely abbreviated lecithotrophic larval development, suggestive of a very limited dispersal range. Larval lifespans may, however, be extended by low temperature-induced metabolic rate reduction in the Southern Ocean, muting the impact of dispersal strategy on patterns of population structure. COI diversity patterns suggest all species experienced demographic bottlenecks or selective sweeps in the past million years and possibly at different times. ESR and Kemp limpets are divergent, although with evidence of very recent ESR-Kemp immigration. Their divergence, possibility indicative of incipient speciation, along with the absence of the other two species at Kemp, may be the consequence of differing dispersal capabilities across a ~1000 m depth range and/or different selective regimes between the two areas. Estimates of historic and recent limpet gene flow between the ESR and Kemp are consistent with predominantly easterly currents and potentially therefore, cross-axis currents on the ESR, with biogeographic implications for the region.
Collapse
Affiliation(s)
- C N Roterman
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - J T Copley
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, SO14 3ZH, UK
| | - K T Linse
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - P A Tyler
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, SO14 3ZH, UK
| | - A D Rogers
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
19
|
Potential Connectivity of Coldwater Black Coral Communities in the Northern Gulf of Mexico. PLoS One 2016; 11:e0156257. [PMID: 27218260 PMCID: PMC4878809 DOI: 10.1371/journal.pone.0156257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/11/2016] [Indexed: 11/19/2022] Open
Abstract
The black coral Leiopathes glaberrima is a foundation species of deep-sea benthic communities but little is known of the longevity of its larvae and the timing of spawning because it inhabits environments deeper than 50 m that are logistically challenging to observe. Here, the potential connectivity of L. glaberrima in the northern Gulf of Mexico was investigated using a genetic and a physical dispersal model. The genetic analysis focused on data collected at four sites distributed to the east and west of Mississippi Canyon, provided information integrated over many (~10,000) generations and revealed low but detectable realized connectivity. The physical dispersal model simulated the circulation in the northern Gulf at a 1km horizontal resolution with transport-tracking capabilities; virtual larvae were deployed 12 times over the course of 3 years and followed over intervals of 40 days. Connectivity between sites to the east and west of the canyon was hampered by the complex bathymetry, by differences in mean circulation to the east and west of the Mississippi Canyon, and by flow instabilities at scales of a few kilometers. Further, the interannual variability of the flow field surpassed seasonal changes. Together, these results suggest that a) dispersal among sites is limited, b) any recovery in the event of a large perturbation will depend on local larvae produced by surviving individuals, and c) a competency period longer than a month is required for the simulated potential connectivity to match the connectivity from multi-locus genetic data under the hypothesis that connectivity has not changed significantly over the past 10,000 generations.
Collapse
|
20
|
Exploration of the Canyon-Incised Continental Margin of the Northeastern United States Reveals Dynamic Habitats and Diverse Communities. PLoS One 2015; 10:e0139904. [PMID: 26509818 PMCID: PMC4624883 DOI: 10.1371/journal.pone.0139904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022] Open
Abstract
The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed.
Collapse
|
21
|
Ruiz-Ramos DV, Saunders M, Fisher CR, Baums IB. Home Bodies and Wanderers: Sympatric Lineages of the Deep-Sea Black Coral Leiopathes glaberrima. PLoS One 2015; 10:e0138989. [PMID: 26488161 PMCID: PMC4619277 DOI: 10.1371/journal.pone.0138989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/07/2015] [Indexed: 11/18/2022] Open
Abstract
Colonial corals occur in a wide range of marine benthic habitats from the shallows to the deep ocean, often defining the structure of their local community. The black coral Leiopathes glaberrima is a long-lived foundation species occurring on carbonate outcrops in the Northern Gulf of Mexico (GoM). Multiple color morphs of L. glaberrima grow sympatrically in the region. Morphological, mitochondrial and nuclear ribosomal markers supported the hypothesis that color morphs constituted a single biological species and that colonies, regardless of color, were somewhat genetically differentiated east and west of the Mississippi Canyon. Ten microsatellite loci were used to determine finer-scale population genetic structure and reproductive characteristics. Gene flow was disrupted between and within two nearby (distance = 36.4 km) hardground sites and two sympatric microsatellite lineages, which might constitute cryptic species, were recovered. Lineage one was outbred and found in all sampled locations (N = 5) across 765.6 km in the Northern Gulf of Mexico. Lineage two was inbred, reproducing predominantly by fragmentation, and restricted to sites around Viosca Knoll. In these sites the lineages and the color phenotypes occurred in different microhabitats, and models of maximum entropy suggested that depth and slope influence the distribution of the color phenotypes within the Vioska Knolls. We conclude that L. glaberrima is phenotypically plastic with a mixed reproductive strategy in the Northern GoM. Such strategy might enable this long-lived species to balance local recruitment with occasional long-distance dispersal to colonize new sites in an environment where habitat is limited.
Collapse
Affiliation(s)
- Dannise V. Ruiz-Ramos
- Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| | - Miles Saunders
- Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Charles R. Fisher
- Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Iliana B. Baums
- Biology Department, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|