1
|
Smith FW, Game M, Mapalo MA, Chavarria RA, Harrison TR, Janssen R. Developmental and genomic insight into the origin of the tardigrade body plan. Evol Dev 2024; 26:e12457. [PMID: 37721221 DOI: 10.1111/ede.12457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Tardigrada is an ancient lineage of miniaturized animals. As an outgroup of the well-studied Arthropoda and Onychophora, studies of tardigrades hold the potential to reveal important insights into body plan evolution in Panarthropoda. Previous studies have revealed interesting facets of tardigrade development and genomics that suggest that a highly compact body plan is a derived condition of this lineage, rather than it representing an ancestral state of Panarthropoda. This conclusion was based on studies of several species from Eutardigrada. We review these studies and expand on them by analyzing the publicly available genome and transcriptome assemblies of Echiniscus testudo, a representative of Heterotardigrada. These new analyses allow us to phylogenetically reconstruct important features of genome evolution in Tardigrada. We use available data from tardigrades to interrogate several recent models of body plan evolution in Panarthropoda. Although anterior segments of panarthropods are highly diverse in terms of anatomy and development, both within individuals and between species, we conclude that a simple one-to-one alignment of anterior segments across Panarthropoda is the best available model of segmental homology. In addition to providing important insight into body plan diversification within Panarthropoda, we speculate that studies of tardigrades may reveal generalizable pathways to miniaturization.
Collapse
Affiliation(s)
- Frank W Smith
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Marc A Mapalo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Raul A Chavarria
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Taylor R Harrison
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Sharma PP. The Impact of Whole Genome Duplication on the Evolution of the Arachnids. Integr Comp Biol 2023; 63:825-842. [PMID: 37263789 DOI: 10.1093/icb/icad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The proliferation of genomic resources for Chelicerata in the past 10 years has revealed that the evolution of chelicerate genomes is more dynamic than previously thought, with multiple waves of ancient whole genome duplications affecting separate lineages. Such duplication events are fascinating from the perspective of evolutionary history because the burst of new gene copies associated with genome duplications facilitates the acquisition of new gene functions (neofunctionalization), which may in turn lead to morphological novelties and spur net diversification. While neofunctionalization has been invoked in several contexts with respect to the success and diversity of spiders, the overall impact of whole genome duplications on chelicerate evolution and development remains imperfectly understood. The purpose of this review is to examine critically the role of whole genome duplication on the diversification of the extant arachnid orders, as well as assess functional datasets for evidence of subfunctionalization or neofunctionalization in chelicerates. This examination focuses on functional data from two focal model taxa: the spider Parasteatoda tepidariorum, which exhibits evidence for an ancient duplication, and the harvestman Phalangium opilio, which exhibits an unduplicated genome. I show that there is no evidence that taxa with genome duplications are more successful than taxa with unduplicated genomes. I contend that evidence for sub- or neofunctionalization of duplicated developmental patterning genes in spiders is indirect or fragmentary at present, despite the appeal of this postulate for explaining the success of groups like spiders. Available expression data suggest that the condition of duplicated Hox modules may have played a role in promoting body plan disparity in the posterior tagma of some orders, such as spiders and scorpions, but functional data substantiating this postulate are critically missing. Spatiotemporal dynamics of duplicated transcription factors in spiders may represent cases of developmental system drift, rather than neofunctionalization. Developmental system drift may represent an important, but overlooked, null hypothesis for studies of paralogs in chelicerate developmental biology. To distinguish between subfunctionalization, neofunctionalization, and developmental system drift, concomitant establishment of comparative functional datasets from taxa exhibiting the genome duplication, as well as those that lack the paralogy, is sorely needed.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Napiórkowska T, Templin J, Napiórkowski P, Townley MA. Appendage abnormalities in spiders induced by an alternating temperature protocol in the context of recent advances in molecular spider embryology. PeerJ 2023; 11:e16011. [PMID: 37701827 PMCID: PMC10493090 DOI: 10.7717/peerj.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
In the literature there are numerous reports of developmental deformities in arthropods collected in their natural habitat. Since such teratogenically affected individuals are found purely by chance, the causes of their defects are unknown. Numerous potential physical, mechanical, chemical, and biological teratogens have been considered and tested in the laboratory. Thermal shocks, frequently used in teratological research on the spider Eratigena atrica, have led to deformities on both the prosoma and the opisthosoma. In the 2020/2021 breeding season, by applying alternating temperatures (14 °C and 32 °C, changed every 12 h) for the first 10 days of embryonic development, we obtained 212 postembryos (out of 3,007) with the following anomalies: oligomely, heterosymely, bicephaly, schistomely, symely, polymely, complex anomalies, and others. From these we selected six spiders with defects on the prosoma and two with short appendages on the pedicel for further consideration. The latter cases seem particularly interesting because appendages do not normally develop on this body part, viewed as the first segment of the opisthosoma, and appear to represent examples of atavism. In view of the ongoing development of molecular techniques and recent research on developmental mechanisms in spiders, we believe the observed phenotypes may result, at least in part, from the erroneous suppression or expression of segmentation or appendage patterning genes. We consider "knockdown" experiments described in the literature as a means for generating hypotheses about the sources of temperature-induced body abnormalities in E. atrica.
Collapse
Affiliation(s)
- Teresa Napiórkowska
- Department of Invertebrate Zoology and Parasitology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Julita Templin
- Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Paweł Napiórkowski
- Department of Hydrobiology, Faculty of Biological Sciences, Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Mark A. Townley
- University Instrumentation Center, University of New Hampshire, Durham, New Hampshire, United States
| |
Collapse
|
4
|
Gainett G, Klementz BC, Blaszczyk PO, Bruce HS, Patel NH, Sharma PP. Dual Functions of labial Resolve the Hox Logic of Chelicerate Head Segments. Mol Biol Evol 2023; 40:7043718. [PMID: 36798978 PMCID: PMC10015621 DOI: 10.1093/molbev/msad037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Despite an abundance of gene expression surveys, comparatively little is known about Hox gene function in Chelicerata. Previous investigations of paralogs of labial (lab) and Deformed (Dfd) in a spider have shown that these play a role in tissue maintenance of the pedipalp segment (lab-1) and in patterning the first walking leg identity (Dfd-1), respectively. However, extrapolations of these data across chelicerates are hindered by the existence of duplicated Hox genes in arachnopulmonates (e.g., spiders and scorpions), which have resulted from an ancient whole genome duplication (WGD) event. Here, we investigated the function of the single-copy ortholog of lab in the harvestman Phalangium opilio, an exemplar of a lineage that was not subject to this WGD. Embryonic RNA interference against lab resulted in two classes of phenotypes: homeotic transformations of pedipalps to chelicerae, as well as reduction and fusion of the pedipalp and leg 1 segments. To test for combinatorial function, we performed a double knockdown of lab and Dfd, which resulted in a homeotic transformation of both pedipalps and the first walking legs into cheliceral identity, whereas the second walking leg is transformed into a pedipalpal identity. Taken together, these results elucidate a model for the Hox logic of head segments in Chelicerata. To substantiate the validity of this model, we performed expression surveys for lab and Dfd paralogs in scorpions and horseshoe crabs. We show that repetition of morphologically similar appendages is correlated with uniform expression levels of the Hox genes lab and Dfd, irrespective of the number of gene copies.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
| | - Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
| | - Pola O Blaszczyk
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
| | | | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA.,Organismal Biology & Anatomy, University of Chicago, Chicago, IL
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
5
|
Cotoras DD, Castanheira PDS, Sharma PP. Implications of a cheliceral axial duplication in Tetragnatha versicolor (Araneae: Tetragnathidae) for arachnid deuterocerebral appendage development. Dev Genes Evol 2021; 231:131-139. [PMID: 34125284 DOI: 10.1007/s00427-021-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
The homology of the arachnid chelicera with respect to other head appendages in Panarthropoda has long been debated. Gene expression data and the re-interpretation of early transitional fossils have supported the homology of the deutocerebrum and its associated appendages, implying a homology between primary antennae (mandibulates), chelicerae (euchelicerates), and chelifores (sea spiders). Nevertheless, comparatively little is known about the mechanistic basis of proximo-distal (PD) axis induction in chelicerates, much less the basis for cheliceral fate specification. Here, we describe a new cheliceral teratology in the spider Tetragnatha versicolor Walckenaer, 1841, which consists on a duplication of the PD axis of the left chelicera associated with a terminal secondary schistomely on the fang of the lower axis. This duplication offers clues as to potential shared mechanisms of PD axis formation in the chelicera. We review the state of knowledge on PD axis induction mechanisms in arthropods and identify elements of gene regulatory networks that are key for future functional experiments of appendage development in non-insect model systems. Such investigations would allow a better understanding of PD axis induction of modified and poorly studied arthropod limbs (e.g., chelicerae, chelifores, and ovigers).
Collapse
Affiliation(s)
- Darko D Cotoras
- Entomology Department, California Academy of Sciences, 55 Music Concourse Dr., Golden Gate Park, San Francisco, CA, 94118, USA.
| | - Pedro de S Castanheira
- Laboratório de Diversidade de Aracnídeos, Universidade do Brasil/Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Ilha do Fundão, Rio de Janeiro, Brazil.,Harry Butler Institute, Murdoch University, 90 South St, Murdoch, Western Australia, 6150, Australia
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 441 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA
| |
Collapse
|
6
|
Ontano AZ, Gainett G, Aharon S, Ballesteros JA, Benavides LR, Corbett KF, Gavish-Regev E, Harvey MS, Monsma S, Santibáñez-López CE, Setton EVW, Zehms JT, Zeh JA, Zeh DW, Sharma PP. Taxonomic Sampling and Rare Genomic Changes Overcome Long-Branch Attraction in the Phylogenetic Placement of Pseudoscorpions. Mol Biol Evol 2021; 38:2446-2467. [PMID: 33565584 PMCID: PMC8136511 DOI: 10.1093/molbev/msab038] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Long-branch attraction is a systematic artifact that results in erroneous groupings of fast-evolving taxa. The combination of short, deep internodes in tandem with long-branch attraction artifacts has produced empirically intractable parts of the Tree of Life. One such group is the arthropod subphylum Chelicerata, whose backbone phylogeny has remained unstable despite improvements in phylogenetic methods and genome-scale data sets. Pseudoscorpion placement is particularly variable across data sets and analytical frameworks, with this group either clustering with other long-branch orders or with Arachnopulmonata (scorpions and tetrapulmonates). To surmount long-branch attraction, we investigated the effect of taxonomic sampling via sequential deletion of basally branching pseudoscorpion superfamilies, as well as varying gene occupancy thresholds in supermatrices. We show that concatenated supermatrices and coalescent-based summary species tree approaches support a sister group relationship of pseudoscorpions and scorpions, when more of the basally branching taxa are sampled. Matrix completeness had demonstrably less influence on tree topology. As an external arbiter of phylogenetic placement, we leveraged the recent discovery of an ancient genome duplication in the common ancestor of Arachnopulmonata as a litmus test for competing hypotheses of pseudoscorpion relationships. We generated a high-quality developmental transcriptome and the first genome for pseudoscorpions to assess the incidence of arachnopulmonate-specific duplications (e.g., homeobox genes and miRNAs). Our results support the inclusion of pseudoscorpions in Arachnopulmonata (new definition), as the sister group of scorpions. Panscorpiones (new name) is proposed for the clade uniting Scorpiones and Pseudoscorpiones.
Collapse
Affiliation(s)
- Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shlomi Aharon
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ligia R Benavides
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kevin F Corbett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, WA, Australia
| | | | | | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jakob T Zehms
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeanne A Zeh
- Department of Biology and Program in Ecology, Evolution & Conservation Biology, University of Nevada, Reno, NV, USA
| | - David W Zeh
- Department of Biology and Program in Ecology, Evolution & Conservation Biology, University of Nevada, Reno, NV, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Gainett G, Ballesteros JA, Kanzler CR, Zehms JT, Zern JM, Aharon S, Gavish-Regev E, Sharma PP. Systemic paralogy and function of retinal determination network homologs in arachnids. BMC Genomics 2020; 21:811. [PMID: 33225889 PMCID: PMC7681978 DOI: 10.1186/s12864-020-07149-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/13/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Arachnids are important components of cave ecosystems and display many examples of troglomorphisms, such as blindness, depigmentation, and elongate appendages. Little is known about how the eyes of arachnids are specified genetically, let alone the mechanisms for eye reduction and loss in troglomorphic arachnids. Additionally, duplication of Retinal Determination Gene Network (RDGN) homologs in spiders has convoluted functional inferences extrapolated from single-copy homologs in pancrustacean models. RESULTS We investigated a sister species pair of Israeli cave whip spiders, Charinus ioanniticus and C. israelensis (Arachnopulmonata, Amblypygi), of which one species has reduced eyes. We generated embryonic transcriptomes for both Amblypygi species, and discovered that several RDGN homologs exhibit duplications. We show that duplication of RDGN homologs is systemic across arachnopulmonates (arachnid orders that bear book lungs), rather than being a spider-specific phenomenon. A differential gene expression (DGE) analysis comparing the expression of RDGN genes in field-collected embryos of both species identified candidate RDGN genes involved in the formation and reduction of eyes in whip spiders. To ground bioinformatic inference of expression patterns with functional experiments, we interrogated the function of three candidate RDGN genes identified from DGE using RNAi in the spider Parasteatoda tepidariorum. We provide functional evidence that one of these paralogs, sine oculis/Six1 A (soA), is necessary for the development of all arachnid eye types. CONCLUSIONS Our work establishes a foundation to investigate the genetics of troglomorphic adaptations in cave arachnids, and links differential gene expression to an arthropod eye phenotype for the first time outside of Pancrustacea. Our results support the conservation of at least one RDGN component across Arthropoda and provide a framework for identifying the role of gene duplications in generating arachnid eye diversity.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Charlotte R Kanzler
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jakob T Zehms
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John M Zern
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shlomi Aharon
- National Natural History Collections, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem , Jerusalem, 9190401, Israel
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
8
|
Gainett G, Sharma PP. Genomic resources and toolkits for developmental study of whip spiders (Amblypygi) provide insights into arachnid genome evolution and antenniform leg patterning. EvoDevo 2020; 11:18. [PMID: 32874529 PMCID: PMC7455915 DOI: 10.1186/s13227-020-00163-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The resurgence of interest in the comparative developmental study of chelicerates has led to important insights, such as the discovery of a genome duplication shared by spiders and scorpions, inferred to have occurred in the most recent common ancestor of Arachnopulmonata (a clade comprising the five arachnid orders that bear book lungs). Nonetheless, several arachnid groups remain understudied in the context of development and genomics, such as the order Amblypygi (whip spiders). The phylogenetic position of Amblypygi in Arachnopulmonata posits them as an interesting group to test the incidence of the proposed genome duplication in the common ancestor of Arachnopulmonata, as well as the degree of retention of duplicates over 450 Myr. Moreover, whip spiders have their first pair of walking legs elongated and modified into sensory appendages (a convergence with the antennae of mandibulates), but the genetic patterning of these antenniform legs has never been investigated. RESULTS We established genomic resources and protocols for cultivation of embryos and gene expression assays by in situ hybridization to study the development of the whip spider Phrynus marginemaculatus. Using embryonic transcriptomes from three species of Amblypygi, we show that the ancestral whip spider exhibited duplications of all ten Hox genes. We deploy these resources to show that paralogs of the leg gap genes dachshund and homothorax retain arachnopulmonate-specific expression patterns in P. marginemaculatus. We characterize the expression of leg gap genes Distal-less, dachshund-1/2 and homothorax-1/2 in the embryonic antenniform leg and other appendages, and provide evidence that allometry, and by extension the antenniform leg fate, is specified early in embryogenesis. CONCLUSION This study is the first step in establishing P. marginemaculatus as a chelicerate model for modern evolutionary developmental study, and provides the first resources sampling whip spiders for comparative genomics. Our results suggest that Amblypygi share a genome duplication with spiders and scorpions, and set up a framework to study the genetic specification of antenniform legs. Future efforts to study whip spider development must emphasize the development of tools for functional experiments in P. marginemaculatus.
Collapse
Affiliation(s)
- Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
9
|
Game M, Smith FW. Loss of intermediate regions of perpendicular body axes contributed to miniaturization of tardigrades. Proc Biol Sci 2020; 287:20201135. [PMID: 33043863 DOI: 10.1098/rspb.2020.1135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tardigrades have a miniaturized body plan. Miniaturization in tardigrades is associated with the loss of several organ systems and an intermediate region of their anteroposterior (AP) axis. However, how miniaturization has affected tardigrade legs is unclear. In arthropods and in onychophorans, the leg gap genes are expressed in regionalized proximodistal (PD) patterns in the legs. Functional studies indicate that these genes regulate growth in their respective expression domains and establish PD identities, partly through mutually antagonistic regulatory interactions. Here, we investigated the expression patterns of tardigrade orthologs of the leg gap genes. Rather than being restricted to a proximal leg region, as in arthropods and onychophorans, we detected coexpression of orthologues of homothorax and extradenticle broadly across the legs of the first three trunk segments in the tardigrade Hypsibius exemplaris. We could not identify a dachshund orthologue in tardigrade genomes, a gene that is expressed in an intermediate region of developing legs in arthropods and onychophorans, suggesting that this gene was lost in the tardigrade lineage. We detected Distal-less expression broadly across all developing leg buds in H. exemplaris embryos, unlike in arthropods and onychophorans, in which it exhibits a distally restricted expression domain. The broad expression patterns of the remaining leg gap genes in H. exemplaris legs may reflect the loss of dachshund and the accompanying loss of an intermediate region of the legs in the tardigrade lineage. We propose that the loss of intermediate regions of both the AP and PD body axes contributed to miniaturization of Tardigrada.
Collapse
Affiliation(s)
- Mandy Game
- Biology Department, University of North Florida, USA
| | - Frank W Smith
- Biology Department, University of North Florida, USA
| |
Collapse
|
10
|
Nolan ED, Santibáñez-López CE, Sharma PP. Developmental gene expression as a phylogenetic data class: support for the monophyly of Arachnopulmonata. Dev Genes Evol 2020; 230:137-153. [PMID: 31927629 DOI: 10.1007/s00427-019-00644-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 01/01/2023]
Abstract
Despite application of genome-scale datasets, the phylogenetic placement of scorpions within arachnids remains contentious between two different phylogenetic data classes. Paleontologists continue to recover scorpions in a basally branching position, partly owing to their morphological similarity to extinct marine orders like Eurypterida (sea scorpions). Phylogenomic datasets consistently recover scorpions in a derived position, as the sister group of Tetrapulmonata (a clade of arachnids that includes spiders). To adjudicate between these hypotheses using a rare genomic change (RGC), we leveraged the recent discovery of ancient paralogy in spiders and scorpions to assess phylogenetic placement. We identified homologs of four transcription factors required for appendage patterning (dachshund, homothorax, extradenticle, and optomotor blind) in arthropods that are known to be duplicated in spiders. Using genomic resources for a spider, a scorpion, and a harvestman, we conducted gene tree analyses and assayed expression patterns of scorpion gene duplicates. Here we show that scorpions, like spiders, retain two copies of all four transcription factors, whereas arachnid orders like mites and harvestmen bear a single copy. A survey of embryonic expression patterns of the scorpion paralogs closely matches those of their spider counterparts, with one paralog consistently retaining the putatively ancestral pattern found in the harvestman, as well as the mite, and/or other outgroups. These data comprise a rare genomic change in chelicerate phylogeny supporting the inference of a distal placement of scorpions. Beyond demonstrating the diagnostic power of developmental genetic data as a phylogenetic data class, a derived placement of scorpions within the arachnids, together with an array of stem-group Paleozoic scorpions that occupied marine habitats, effectively rules out a scenario of a single colonization of terrestrial habitat within Chelicerata, even in tree topologies contrived to recover the monophyly of Arachnida.
Collapse
Affiliation(s)
- Erik D Nolan
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Developmental Biology, Washington University of St. Louis, St. Louis, MO, 63110, USA
| | - Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Biology, Eastern Connecticut State University, 83 Windham Street, Willimantic, CT, 06266, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
11
|
Li X, Liu FZ, Cai WL, Zhao J, Hua HX, Zou YL. The function of spineless in antenna and wing development of the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2019; 28:196-207. [PMID: 30230080 DOI: 10.1111/imb.12538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A wide array of sensilla are distributed on insect antennae, and they play a variety of important roles. Rice planthoppers, destructive pests on rice, have a unique antenna sensilla structure called the 'sensory plaque organ'. The spineless (ss) gene encodes a bHLH-PAS transcription factor and plays a key role in antenna development. In the current study, a 3029 bp full-length cDNA of the Nilaparvata lugens ss gene (Nlss) was cloned, and it encodes 654 amino acid residues. The highest level of Nlss expression was detected in the thorax of fourth-instar nymphs. Knockdown of Nlss in nymphs led to a decrease in the number and size of plaque organs. Moreover, the flagella of the treated insects were poorly developed, wilted, and even dropped off from the pedicel. Nlss-knockdown also resulted in twisted wings in both long-winged and short-winged brown planthoppers. Y-type olfactometer analyses indicated that antenna defects originating from Nlss depletion resulted in less sensitivity to host volatiles. This study represents the first report of the characteristics and functions of Nlss in N. lugens antenna and wing development and illuminates the function of the plaque organ of N. lugens in host volatile perception.
Collapse
Affiliation(s)
- X Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - F-Z Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - W-L Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - J Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - H-X Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Y-L Zou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
March LE, Smaby RM, Setton EVW, Sharma PP. The evolution of selector gene function: Expression dynamics and regulatory interactions of tiptop/teashirt across Arthropoda. Evol Dev 2018; 20:219-232. [PMID: 30221814 DOI: 10.1111/ede.12270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The transcription factors spineless (ss) and tiptop/teashirt (tio/tsh) have been shown to be selectors of distal appendage identity in an insect, but it is unknown how they regulate one another. Here, we examined the regulatory relationships between these two determinants in the milkweed bug Oncopeltus faciatus, using maternal RNA interference (RNAi). We show that Ofas-ss RNAi embryos bear distally transformed antennal buds with heterogeneous Ofas-tio/tsh expression domains comparable to wild type legs. In the reciprocal experiment, Ofas-tio/tsh RNAi embryos bear distally transformed walking limb buds with ectopic expression of Ofas-ss in the distal leg primordia. These data suggest that Ofas-ss is required for the maintenance of Ofas-tio/tsh expression in the distal antenna, whereas Ofas-tio/tsh represses Ofas-ss in the leg primordia. To assess whether expression boundaries of tio/tsh are associated with the trunk region more generally, we surveyed the expression of one myriapod and two chelicerate tio/tsh homologs. Our expression survey suggests that tio/tsh could play a role in specifying distal appendage identity across Arthropoda, but Hox regulation of tio/tsh homologs has been evolutionarily labile.
Collapse
Affiliation(s)
- Logan E March
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rachel M Smaby
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
13
|
Cooption of an appendage-patterning gene cassette in the head segmentation of arachnids. Proc Natl Acad Sci U S A 2018; 115:E3491-E3500. [PMID: 29581309 DOI: 10.1073/pnas.1720193115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The jointed appendages of arthropods have facilitated the spectacular diversity and success of this phylum. Key to the regulation of appendage outgrowth is the Krüppel-like factor (KLF)/specificity protein (Sp) family of zinc finger transcription factors. In the fruit fly, Drosophila melanogaster, the Sp6-9 homolog is activated by Wnt-1/wingless (wg) and establishes ventral appendage (leg) fate. Subsequently, Sp6-9 maintains expression of the axial patterning gene Distal-less (Dll), which promotes limb outgrowth. Intriguingly, in spiders, Dll has been reported to have a derived role as a segmentation gap gene, but the evolutionary origin and regulation of this function are not understood because functional investigations of the appendage-patterning regulatory network are restricted to insects. We tested the evolutionary conservation of the ancestral appendage-patterning network of arthropods with a functional approach in the spider. RNAi-mediated knockdown of the spider Sp6-9 ortholog resulted in diminution or loss of Dll expression and truncation of appendages, as well as loss of the two body segments specified by the early Dll function. In reciprocal experiments, Dll is shown not to be required for Sp6-9 expression. Knockdown of arrow (Wnt-1 coreceptor) disrupted segmentation and appendage development but did not affect the early Sp6-9 expression domain. Ectopic appendages generated in the spider "abdomen" by knockdown of the Hox gene Antennapedia-1 (Antp-1) expressed Sp6-9 comparably to wild-type walking legs. Our results support (i) the evolutionary conservation of an appendage-patterning regulatory network that includes canonical Wnt signaling, Sp6-9, and Dll and (ii) the cooption of the Sp6-9/Dll regulatory cassette in arachnid head segmentation.
Collapse
|
14
|
Garb JE, Sharma PP, Ayoub NA. Recent progress and prospects for advancing arachnid genomics. CURRENT OPINION IN INSECT SCIENCE 2018; 25:51-57. [PMID: 29602362 PMCID: PMC6658092 DOI: 10.1016/j.cois.2017.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/10/2017] [Indexed: 06/08/2023]
Abstract
Arachnids exhibit tremendous species richness and adaptations of biomedical, industrial, and agricultural importance. Yet genomic resources for arachnids are limited, with the first few spider and scorpion genomes becoming accessible in the last four years. We review key insights from these genome projects, and recommend additional genomes for sequencing, emphasizing taxa of greatest value to the scientific community. We suggest greater sampling of spiders whose genomes are understudied but hold important protein recipes for silk and venom production. We further recommend arachnid genomes to address significant evolutionary topics, including the phenotypic impact of genome duplications. A barrier to high-quality arachnid genomes are assemblies based solely on short-read data, which may be overcome by long-range sequencing and other emerging methods.
Collapse
Affiliation(s)
- Jessica E Garb
- Department of Biological Sciences, 198 Riverside Street, Olsen Hall 414, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Prashant P Sharma
- Department of Integrative Biology, 352 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, WI 53706, USA
| | - Nadia A Ayoub
- Department of Biology, 204 West Washington Street, Howe Hall, Washington and Lee University, Lexington, VA 24450, USA
| |
Collapse
|
15
|
Abstract
The discovery of fossilized brains and ventral nerve cords in lower and mid-Cambrian arthropods has led to crucial insights about the evolution of their central nervous system, the segmental identity of head appendages and the early evolution of eyes and their underlying visual systems. Fundamental ground patterns of lower Cambrian arthropod brains and nervous systems correspond to the ground patterns of brains and nervous systems belonging to three of four major extant panarthropod lineages. These findings demonstrate the evolutionary stability of early neural arrangements over an immense time span. Here, we put these fossil discoveries in the context of evidence from cladistics, as well as developmental and comparative neuroanatomy, which together suggest that despite many evolved modifications of neuropil centers within arthropod brains and ganglia, highly conserved arrangements have been retained. Recent phylogenies of the arthropods, based on fossil and molecular evidence, and estimates of divergence dates, suggest that neural ground patterns characterizing onychophorans, chelicerates and mandibulates are likely to have diverged between the terminal Ediacaran and earliest Cambrian, heralding the exuberant diversification of body forms that account for the Cambrian Explosion.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Department of Neuroscience and Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA.
| | - Xiaoya Ma
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
16
|
Stahi R, Chipman AD. Blastoderm segmentation in Oncopeltus fasciatus and the evolution of insect segmentation mechanisms. Proc Biol Sci 2017; 283:rspb.2016.1745. [PMID: 27708151 PMCID: PMC5069518 DOI: 10.1098/rspb.2016.1745] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/07/2016] [Indexed: 01/21/2023] Open
Abstract
Segments are formed simultaneously in the blastoderm of the fly Drosophila melanogaster through a hierarchical cascade of interacting transcription factors. Conversely, in many insects and in all non-insect arthropods most segments are formed sequentially from the posterior. We have looked at segmentation in the milkweed bug Oncopeltus fasciatus. Posterior segments are formed sequentially, through what is probably the ancestral arthropod mechanism. Formation of anterior segments bears many similarities to the Drosophila segmentation mode. These segments appear nearly simultaneously in the blastoderm, via a segmentation cascade that involves orthologues of Drosophila gap genes working through a functionally similar mechanism. We suggest that simultaneous blastoderm segmentation evolved at or close to the origin of holometabolous insects, and formed the basis for the evolution of the segmentation mode seen in Drosophila. We discuss the changes in segmentation mechanisms throughout insect evolution, and suggest that the appearance of simultaneous segmentation as a novel feature of holometabolous insects may have contributed to the phenomenal success of this group.
Collapse
Affiliation(s)
- Reut Stahi
- The Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Ariel D Chipman
- The Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| |
Collapse
|
17
|
Jockusch EL. Developmental and Evolutionary Perspectives on the Origin and Diversification of Arthropod Appendages. Integr Comp Biol 2017; 57:533-545. [DOI: 10.1093/icb/icx063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
18
|
Sharma PP, Oberski JT, Santiago MA, Kriebel R, Lipps SM, Buenavente PAC, Diesmos AC, Janda M, Boyer SL, Clouse RM, Wheeler WC. There is no evidence that Podoctidae carry eggs of their own species: Reply to Machado and Wolff (2017). Mol Phylogenet Evol 2017; 129:349-353. [PMID: 28433248 DOI: 10.1016/j.ympev.2017.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/28/2017] [Indexed: 11/25/2022]
Abstract
In our recent publication (Sharma et al., 2017), we tested the hypothesis that eggs attached to the legs of male Podoctidae (Opiliones, Laniatores) constituted a case of paternal care, using molecular sequence data in tandem with multiple sequence alignments to test the prediction that sequences of the eggs and the adults that carried them would indicate conspecific identity. We discovered that the sequences of the eggs belonged to spiders, and thus rejected the paternal care hypothesis for these species. Machado and Wolff (2017) recently critiqued our work, which they regarded as a non-critical interpretation and over-reliance on molecular sequence data, and defended the traditional argument that the eggs attached to podoctids are in fact harvestman eggs. Here we show that additional molecular sequence data also refute the identity of the eggs as conspecific harvestman eggs, using molecular cloning techniques to rule out contamination. We show that individual gene trees consistently and reliably place the egg and adult sequences in disparate parts of the tree topology. Phylogenetic methods consistently place all egg sequences within the order Araneae (spiders). We submit that evidence for the paternal care hypothesis based on behavioral, morphological, and natural history approaches is either absent or insufficient for concluding that the eggs of podoctids are conspecific.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| | - Jill T Oberski
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Marc A Santiago
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, USA
| | - Ricardo Kriebel
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Savana M Lipps
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA; Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Perry A C Buenavente
- Zoology Division, National Museum of the Philippines, Padre Burgos Avenue, Ermita 1000, Manila, Philippines
| | - Arvin C Diesmos
- Zoology Division, National Museum of the Philippines, Padre Burgos Avenue, Ermita 1000, Manila, Philippines
| | - Milan Janda
- Laboratorio Nacional de Análisis y Síntesis Ecológica, ENES, UNAM, Antigua Carretera a Pátzcuaro, 8701 Morelia, Mexico; Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Sarah L Boyer
- Biology Department, Macalester College, 1600 Grand Avenue, St. Paul, MN 55105, USA
| | - Ronald M Clouse
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, USA
| |
Collapse
|
19
|
Christie AE, Roncalli V, Lenz PH. Diversity of insulin-like peptide signaling system proteins in Calanus finmarchicus (Crustacea; Copepoda) - Possible contributors to seasonal pre-adult diapause. Gen Comp Endocrinol 2016; 236:157-173. [PMID: 27432815 DOI: 10.1016/j.ygcen.2016.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
Abstract
Calanus finmarchicus, an abundant calanoid copepod in the North Atlantic Ocean, is both a major grazer on phytoplankton and an important forage species for invertebrate and vertebrate predators. One component of the life history of C. finmarchicus is the overwintering dormancy of sub-adults, a feature key for the annual recruitment of this species in early spring. While little is known about the control of dormancy in C. finmarchicus, one hypothesis is that it is an insect-like diapause, where the endocrine system is a key regulator. One group of hormones implicated in the control of insect diapause is the insulin-like peptides (ILPs). Here, C. finmarchicus transcriptomic data were used to predict ILP signaling pathway proteins. Four ILP precursors were identified, each possessing a distinct A- and B-chain peptide; these peptides are predicted to form bioactive heterodimers via inter-chain disulfide bridging. Two ILP receptors, which likely represent splice variants of a common gene, were identified. Three insulin-degrading enzymes were also discovered, as were proteins encoding the transcription factor FOXO, a downstream target of ILP that has been implicated in the regulation of insect diapause, and insulin receptor substrate, a protein putatively linking the ILP receptor and FOXO. RNA-Seq data suggest that some C. finmarchicus insulin pathway transcripts are differentially expressed across development. As in insects, the ILP signaling system may be involved in controlling C. finmarchicus' organism-environment interactions (e.g., regulation of seasonal sub-adult diapause), a hypothesis that can now be investigated using these data.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Petra H Lenz
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
20
|
Scholtz G, Brenneis G. The pattern of a specimen of Pycnogonum litorale (Arthropoda, Pycnogonida) with a supernumerary leg can be explained with the "boundary model" of appendage formation. Naturwissenschaften 2016; 103:13. [PMID: 26830781 PMCID: PMC4735254 DOI: 10.1007/s00114-016-1333-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/28/2022]
Abstract
A malformed adult female specimen of Pycnogonum litorale (Pycnogonida) with a supernumerary leg in the right body half is described concerning external and internal structures. The specimen was maintained in our laboratory culture after an injury in the right trunk region during a late postembryonic stage. The supernumerary leg is located between the second and third walking legs. The lateral processes connecting to these walking legs are fused to one large structure. Likewise, the coxae 1 of the second and third walking legs and of the supernumerary leg are fused to different degrees. The supernumerary leg is a complete walking leg with mirror image symmetry as evidenced by the position of joints and muscles. It is slightly smaller than the normal legs, but internally, it contains a branch of the ovary and a gut diverticulum as the other legs. The causes for this malformation pattern found in the Pycnogonum individual are reconstructed in the light of extirpation experiments in insects, which led to supernumerary mirror image legs, and the “boundary model” for appendage differentiation.
Collapse
Affiliation(s)
- Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstr. 13, 10115, Berlin, Germany.
| | - Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstr. 13, 10115, Berlin, Germany.,Neuroscience Program, Wellesley College, 106 Central Street, Wellesley, MA, 02481, USA
| |
Collapse
|
21
|
|