1
|
Mennecart B, Duranthon F, Costeur L. Systematic contribution of the auditory region to the knowledge of the oldest European Bovidae (Mammalia, Ruminantia). J Anat 2025; 246:384-401. [PMID: 39412520 PMCID: PMC11828741 DOI: 10.1111/joa.14132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 02/16/2025] Open
Abstract
The ear region has a strong potential for evolutionary studies. While the petrosal bone suffers from ontogeny and allometry, the bony labyrinth provides crucial information for phylogeny. The study of the bony labyrinth itself allowed for argumentation of the early bovid species Eotragus artenensis and Eotragus clavatus being closely related, while a newly described species and genus of early Bovidae from Montréal-du-Gers (France), formerly attributed to Eotragus, clearly belong to another lineage. The morphology of the bony labyrinth of these oldest bovids confirms that Eotragus is a stem Bovidae, while the new Bovidae is more derived. Since the bony labyrinth is a structure that is little affected by ontogeny, allometry, and sexual dimorphism, we propose this structure and its surrounding petrosal bone as the holotype for this new species. This study shows the importance of the ear region in the context of micro- and macro-evolution.
Collapse
Affiliation(s)
| | | | - Loïc Costeur
- Naturhistorisches Museum Basel, Basel, Switzerland
| |
Collapse
|
2
|
Grunstra NDS, Hollinetz F, Bravo Morante G, Zachos FE, Pfaff C, Winkler V, Mitteroecker P, Le Maître A. Convergent evolution in Afrotheria and non-afrotherians demonstrates high evolvability of the mammalian inner ear. Nat Commun 2024; 15:7869. [PMID: 39285191 PMCID: PMC11405882 DOI: 10.1038/s41467-024-52180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Evolutionary convergence in distantly related species is among the most convincing evidence of adaptive evolution. The mammalian ear, responsible for balance and hearing, is not only characterised by its spectacular evolutionary incorporation of several bones of the jaw, it also varies considerably in shape across modern mammals. Using a multivariate approach, we show that in Afrotheria, a monophyletic clade with morphologically and ecologically highly disparate species, inner ear shape has evolved similar adaptations as in non-afrotherian mammals. We identify four eco-morphological trait combinations that underlie this convergence. The high evolvability of the mammalian ear is surprising: Nowhere else in the skeleton are different functional units so close together; it includes the smallest bones of the skeleton, encapsulated within the densest bone. We suggest that this evolvability is a direct consequence of the increased genetic and developmental complexity of the mammalian ear compared to other vertebrates.
Collapse
Affiliation(s)
- Nicole D S Grunstra
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
- Mammal Collection, Natural History Museum Vienna, Vienna, Austria.
| | - Fabian Hollinetz
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | | | - Frank E Zachos
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Mammal Collection, Natural History Museum Vienna, Vienna, Austria
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT, Australia
| | - Cathrin Pfaff
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Viola Winkler
- Central Research Laboratories, Natural History Museum Vienna, Vienna, Austria
| | - Philipp Mitteroecker
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| | - Anne Le Maître
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria.
- Laboratoire Paléontologie Evolution Paléoécosystèmes Paléoprimatologie (PALEVOPRIM) - UMR 7262 CNRS INEE, Université de Poitiers, Poitiers, France.
| |
Collapse
|
3
|
Schwab JA, Figueirido B, Martín-Serra A, van der Hoek J, Flink T, Kort A, Esteban Núñez JM, Jones KE. Evolutionary ecomorphology for the twenty-first century: examples from mammalian carnivores. Proc Biol Sci 2023; 290:20231400. [PMID: 38018109 PMCID: PMC10685142 DOI: 10.1098/rspb.2023.1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Carnivores (cats, dogs and kin) are a diverse group of mammals that inhabit a remarkable range of ecological niches. While the relationship between ecology and morphology has long been of interest in carnivorans, the application of quantitative techniques has resulted in a recent explosion of work in the field. Therefore, they provide a case study of how quantitative techniques, such as geometric morphometrics (GMM), have impacted our ability to tease apart complex ecological signals from skeletal anatomy, and the implications for our understanding of the relationships between form, function and ecological specialization. This review provides a synthesis of current research on carnivoran ecomorphology, with the goal of illustrating the complex interaction between ecology and morphology in the skeleton. We explore the ecomorphological diversity across major carnivoran lineages and anatomical systems. We examine cranial elements (skull, sensory systems) and postcranial elements (limbs, vertebral column) to reveal mosaic patterns of adaptation related to feeding and hunting strategies, locomotion and habitat preference. We highlight the crucial role that new approaches have played in advancing our understanding of carnivoran ecomorphology, while addressing challenges that remain in the field, such as ecological classifications, form-function relationships and multi-element analysis, offering new avenues for future research.
Collapse
Affiliation(s)
- Julia A. Schwab
- Department of Earth and Environmental Sciences, University of Manchester, M13 9PL Manchester, UK
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Julien van der Hoek
- Department of Earth and Environmental Sciences, University of Manchester, M13 9PL Manchester, UK
| | - Therese Flink
- Department of Palaeobiology, Swedish Museum of Natural History, PO Box 50007, 10405 Stockholm, Sweden
| | - Anne Kort
- Department of Earth and Atmospheric Sciences, Indiana University Bloomington, 1001 E 10th St, Bloomington, IN, USA
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N University Ave, Ann Arbor, MI 48109, USA
| | | | - Katrina E. Jones
- Department of Earth and Environmental Sciences, University of Manchester, M13 9PL Manchester, UK
| |
Collapse
|
4
|
Button DJ, Zanno LE. Neuroanatomy of the late Cretaceous Thescelosaurus neglectus (Neornithischia: Thescelosauridae) reveals novel ecological specialisations within Dinosauria. Sci Rep 2023; 13:19224. [PMID: 37932280 PMCID: PMC10628235 DOI: 10.1038/s41598-023-45658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023] Open
Abstract
Ornithischian dinosaurs exhibited a diversity of ecologies, locomotory modes, and social structures, making them an ideal clade in which to study the evolution of neuroanatomy and behaviour. Here, we present a 3D digital reconstruction of the endocranial spaces of the latest Cretaceous neornithischian Thescelosaurus neglectus, in order to interpret the neuroanatomy and paleobiology of one of the last surviving non-avian dinosaurs. Results demonstrate that the brain of Thescelosaurus was relatively small compared to most other neornithischians, instead suggesting cognitive capabilities within the range of extant reptiles. Other traits include a narrow hearing range, with limited ability to distinguish high frequencies, paired with unusually well-developed olfactory lobes and anterior semicircular canals, indicating acute olfaction and vestibular sensitivity. This character combination, in conjunction with features of the postcranial anatomy, is consistent with specializations for burrowing behaviours in the clade, as evidenced by trace and skeletal fossil evidence in earlier-diverging thescelosaurids, although whether they reflect ecological adaptations or phylogenetic inheritance in T. neglectus itself is unclear. Nonetheless, our results provide the first evidence of neurological specializations to burrowing identified within Ornithischia, and non-avian dinosaurs more generally, expanding the range of ecological adaptations recognized within this major clade.
Collapse
Affiliation(s)
- David J Button
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| | - Lindsay E Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
López‐Torres S, Bhagat R, Bertrand OC, Silcox MT, Fostowicz‐Frelik Ł. Locomotor behavior and hearing sensitivity in an early lagomorph reconstructed from the bony labyrinth. Ecol Evol 2023; 13:e9890. [PMID: 36942029 PMCID: PMC10024310 DOI: 10.1002/ece3.9890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/31/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The structure of the bony labyrinth is highly informative with respect to locomotor agility (semicircular canals [SCC]) and hearing sensitivity (cochlear and oval windows). Here, we reconstructed the agility and hearing sensitivity of the stem lagomorph Megalagus turgidus from the early Oligocene of the Brule Formation of Nebraska (USA). Megalagus has proportionally smaller SCCs with respect to its body mass compared with most extant leporids but within the modern range of variability, suggesting that it was less agile than most of its modern relatives. A level of agility for Megalagus within the range of modern rabbits is consistent with the evidence from postcranial elements. The hearing sensitivity for Megalagus is in the range of extant lagomorphs for both low- and high-frequency sounds. Our data show that by the early Oligocene stem lagomorphs had already attained fundamentally rabbit-like hearing sensitivity and locomotor behavior, even though Megalagus was not a particularly agile lagomorph. This is likely because Megalagus was more of a woodland dweller than an open-habitat runner. The study of sensory evolution in Lagomorpha is practically unknown, and these results provide first advances in understanding the primitive stages for the order and how the earliest members of this clade perceived their environment.
Collapse
Affiliation(s)
- Sergi López‐Torres
- Biological and Chemical Research Centre, Institute of Evolutionary Biology, Faculty of BiologyUniversity of WarsawWarsawPoland
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
- New York Consortium in Evolutionary PrimatologyNew YorkNew YorkUSA
| | - Raj Bhagat
- Department of AnthropologyUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Ornella C. Bertrand
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de Barcelona, Edifici ICTA‐ICPCerdanyola del VallèsSpain
| | - Mary T. Silcox
- Department of AnthropologyUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Łucja Fostowicz‐Frelik
- Department of Organismal Biology and AnatomyThe University of ChicagoChicagoIllinoisUSA
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- Department of Evolutionary Paleobiology, Institute of PaleobiologyPolish Academy of SciencesWarsawPoland
| |
Collapse
|
6
|
Bazzana KD, Evans DC, Bevitt JJ, Reisz RR. Endocasts of the basal sauropsid Captorhinus reveal unexpected neurological diversity in early reptiles. Anat Rec (Hoboken) 2023; 306:552-563. [PMID: 36240106 DOI: 10.1002/ar.25100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/11/2022]
Abstract
Captorhinids are a group of Paleozoic amniotes that represents one of the earliest-diverging clades of eureptiles. Although captorhinids are one of the best-known and most well-studied clades of early amniotes, their palaeoneuroanatomy has gone largely unexamined. We utilized neutron computed tomography to study the virtual cranial and otic endocasts of two captorhinid specimens. The neurosensory anatomy of captorhinids shows a mixture of traits considered plesiomorphic for sauropsids (no expansions of the cerebrum or olfactory bulbs, low degree of encephalization, low ossification of the otic capsule) and those considered more derived, including moderate cephalic and pontine flexures and a dorsoventrally tall bony labyrinth. The inner ear clearly preserves the elliptical, sub-orthogonal canals and the short, rounded vestibule, along with an unusually enlarged lateral canal and a unique curvature of the posterior canal. The reconstructed neurosensory anatomy indicates that captorhinids were sensitive to slightly higher frequencies than many of their contemporaries, likely reflecting differences in body size across taxa, while the morphology of the maxillary canal suggests a simple, tubular condition as the plesiomorphic state for Sauropsida and contributes to the ongoing discussions regarding the phylogenetic placement of varanopids. This study represents the first detailed tomographic study of the brain and inner ear of any basal eureptile. The new data described here reveal that the neuroanatomy of early sauropsids is far more complex and diverse than previously anticipated, and provide impetus for further exploration of the palaeoneuroanatomy of early amniotes.
Collapse
Affiliation(s)
- Kayla D Bazzana
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - David C Evans
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Joseph J Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia
| | - Robert R Reisz
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
7
|
Goyens J, Baeckens S, Smith ESJ, Pozzi J, Mason MJ. Parallel evolution of semicircular canal form and sensitivity in subterranean mammals. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:627-640. [PMID: 36251041 DOI: 10.1007/s00359-022-01578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
The vertebrate vestibular system is crucial for balance and navigation, and the evolution of its form and function in relation to species' lifestyle and mode of locomotion has been the focus of considerable recent study. Most research, however, has concentrated on aboveground mammals, with much less published on subterranean fauna. Here, we explored variation in anatomy and sensitivity of the semicircular canals among 91 mammal species, including both subterranean and non-subterranean representatives. Quantitative phylogenetically informed analyses showed significant widening of the canals relative to radius of curvature in subterranean species. A relative canal width above 0.166 indicates with 95% certainty that a species is subterranean. Fluid-structure interaction modelling predicted that canal widening leads to a substantial increase in canal sensitivity; a reasonably good estimation of the absolute sensitivity is possible based on the absolute internal canal width alone. In addition, phylogenetic comparative modelling and functional landscape exploration revealed repeated independent evolution of increased relative canal width and anterior canal sensitivity associated with the transition to a subterranean lifestyle, providing evidence of parallel adaptation. Our results suggest that living in dark, subterranean tunnels requires good balance and/or navigation skills which may be facilitated by more sensitive semicircular canals.
Collapse
Affiliation(s)
- Jana Goyens
- Laboratory of Functional Morphology, University of Antwerp, Antwerp, Belgium.
| | - Simon Baeckens
- Laboratory of Functional Morphology, University of Antwerp, Antwerp, Belgium.,Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Jasmine Pozzi
- Laboratory of Functional Morphology, University of Antwerp, Antwerp, Belgium
| | - Matthew J Mason
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Evers SW, Joyce WG, Choiniere JN, Ferreira GS, Foth C, Hermanson G, Yi H, Johnson CM, Werneburg I, Benson RBJ. Independent origin of large labyrinth size in turtles. Nat Commun 2022; 13:5807. [PMID: 36220806 PMCID: PMC9553989 DOI: 10.1038/s41467-022-33091-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
The labyrinth of the vertebrate inner ear is a sensory system that governs the perception of head rotations. Central hypotheses predict that labyrinth shape and size are related to ecological adaptations, but this is under debate and has rarely been tested outside of mammals. We analyze the evolution of labyrinth morphology and its ecological drivers in living and fossil turtles, an understudied group that underwent multiple locomotory transitions during 230 million years of evolution. We show that turtles have unexpectedly large labyrinths that evolved during the origin of aquatic habits. Turtle labyrinths are relatively larger than those of mammals, and comparable to many birds, undermining the hypothesis that labyrinth size correlates directly with agility across vertebrates. We also find that labyrinth shape variation does not correlate with ecology in turtles, undermining the widespread expectation that reptilian labyrinth shapes convey behavioral signal, and demonstrating the importance of understudied groups, like turtles.
Collapse
Affiliation(s)
- Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland.
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom.
| | - Walter G Joyce
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland
| | - Jonah N Choiniere
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2000, South Africa
| | - Gabriel S Ferreira
- Senckenberg Centre for Human Evolution and Paleoenvironment an der Universität Tübingen, Sigwartstraße 10, 72076, Tübingen, Germany
- Fachbereich Geowissenschaften, Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany
| | - Christian Foth
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland
| | - Guilherme Hermanson
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland
- Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Hongyu Yi
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing, 100049, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment Beijing, 100044, Beijing, China
| | - Catherine M Johnson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Paleoenvironment an der Universität Tübingen, Sigwartstraße 10, 72076, Tübingen, Germany
- Fachbereich Geowissenschaften, Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2000, South Africa
| |
Collapse
|
9
|
Le Maître A, Guy F, Merceron G, Kostopoulos DS. Morphology of the Bony Labyrinth Supports the Affinities of Paradolichopithecus with the Papionina. INT J PRIMATOL 2022; 44:209-236. [PMID: 36817734 PMCID: PMC9931825 DOI: 10.1007/s10764-022-00329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Discoveries in recent decades indicate that the large papionin monkeys Paradolipopithecus and Procynocephalus are key members of the Late Pliocene - Early Pleistocene mammalian faunas of Eurasia. However, their taxonomical status, phylogenetic relationships, and ecological profile remain unclear. Here we investigate the two latter aspects through the study of the inner ear anatomy, as revealed by applying micro-CT scan imaging techniques on the cranium LGPUT DFN3-150 of Paradolichopithecus from the lower Pleistocene (2.3 Ma) fossil site Dafnero-3 in Northwestern Greece. Using geometric morphometric methods, we quantified shape variation and the allometric and phylogenetic signals in extant cercopithecines (n = 80), and explored the morphological affinities of the fossil specimen with extant taxa. LGPUT DFN3-150 has a large centroid size similar to that of baboons and their relatives. It shares several shape features with Macacina and Cercopithecini, which we interpret as probable retention of a primitive morphology. Overall, its inner ear morphology is more consistent with a stem Papionini more closely related to Papionina than Macacina, or to a basal crown Papionina. Our results, along with morphometrical and ecological features from previous studies, call into question the traditional hypothesis of a Paradolichopithecus-Macacina clade, and provide alternative perspectives in the study of Eurasian primate evolution during the late Neogene-Quaternary. Supplementary Information The online version contains supplementary material available at 10.1007/s10764-022-00329-4.
Collapse
Affiliation(s)
- Anne Le Maître
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- PALEVOPRIM - UMR 7262 CNRS INEE, Université de Poitiers, Poitiers, France
| | - Franck Guy
- PALEVOPRIM - UMR 7262 CNRS INEE, Université de Poitiers, Poitiers, France
| | - Gildas Merceron
- PALEVOPRIM - UMR 7262 CNRS INEE, Université de Poitiers, Poitiers, France
| | - Dimitris S Kostopoulos
- Laboratory of Geology and Palaeontology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Hanson M, Hoffman EA, Norell MA, Bhullar BAS. Response to Comment on "The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization". Science 2022; 376:eabl8181. [PMID: 35737783 DOI: 10.1126/science.abl8181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
David et al. claim that vestibular shape does not reflect function and that we did not use phylogenetic inference methods in our primary analyses. We show that their claims are countered by comparative and direct experimental evidence from across Vertebrata and that their models are empirically unverified. We did use phylogenetic methods to test our hypotheses. Moreover, their phylogenetic correction attempts are methodologically inappropriate.
Collapse
Affiliation(s)
- Michael Hanson
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.,Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Eva A Hoffman
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.,Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Scarpitti EA, Calede JJM. Ecological correlates of the morphology of the auditory bulla in rodents: Application to the fossil record. J Anat 2022; 240:647-668. [PMID: 34747041 PMCID: PMC8930836 DOI: 10.1111/joa.13579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022] Open
Abstract
For rodents, hearing is essential to survival. It enables predator evasion, prey detection, and conspecific recognition; it is also likely to be constrained by the physical environment. The resulting hypothetical link between tympanic bulla morphology and ecology has never been investigated across a broad array of rodent species before. Such link may enable the determination of the ecological affinities of many fossil species only known from partial skulls. In this study, we used geometric morphometrics to quantify the shape of the auditory bulla of 197 specimens representing 91 species from 17 families of extant rodents across four different locomotory modes. We used landmarks and semi-landmarks on the ventral and lateral views of the skull to capture morphological characteristics of the bulla and external auditory meatus (EAM). Our results demonstrate an association between bullar morphology and locomotion in rodents. Bullar shape enables the correct classification of 76% of the species in our training set. Fossorial taxa, in particular, show a characteristic morphology including an asymmetric bulla with a dorsally located and laterally expanded EAM that has a small opening diameter. A phylogenetically informed flexible discriminant analysis shows a weak phylogenetic effect on tympanic morphology. There is no evidence for differences in bullar hypertrophy across locomotory categories. The application of this approach to select fossil rodents from the Oligo-Miocene shows broad agreements with prior studies and yields new locomotory inferences for 14 fossil species, including the first proposed locomotion for members of the family Florentiamyidae. Such results call for the timing of burrowing diversification in rodents to be reevaluated.
Collapse
Affiliation(s)
| | - Jonathan J. M. Calede
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
- Department of Evolution, Ecology, and Organismal BiologyThe Ohio State UniversityMarionOhioUSA
| |
Collapse
|
12
|
Zedda M, Brunetti A, Palombo MR. First Attempt to Infer Sound Hearing and Its Paleoenvironmental Implications in the Extinct Insular Canid Cynotherium sardous Studiati, 1857 (Sardinia, Italy). Animals (Basel) 2022; 12:ani12070833. [PMID: 35405823 PMCID: PMC8996844 DOI: 10.3390/ani12070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The microtomographic approach allows nondestructive acquisition of anatomical details of the bone labyrinth that houses the inner ear. The petrosal bone can be a gold mine of information for a variety of questions in different research fields, including taxonomic, behavioral, and genetic studies. The semicircular canals provide information on head posture and locomotor ability, whereas the cochlea provides data on hearing ability. The petrosal bone is the hardest structure in the skeleton and could be well preserved in fossil specimens. As a result, it is becoming more and more popular in current archaeological and paleontological studies. In this study, petrosal microtomographic analysis was applied for the first time to Cynotherium sardous, a highly modified endemic canid that inhabited Sardinia during the Middle to Late Pleistocene. Indications about its hearing ability may provide interesting insights to better understand the new lifestyle and behavior this canid acquired during the long evolutionary process it underwent in the peculiar insular ecosystem with a depleted fauna. The poor hearing and echolocalization capabilities of Cynotherium sardous would have been the outcome of reduced competition pressure due to the absence of predators and the abundance of prey, such as the large ochotonid Prolagus sardus, while the high-frequency hearing could be interpreted as an adaptation to detect sounds emitted by its preferred prey. Abstract This is the first study on the bony labyrinth of Cynotherium sardous, an intriguing extinct canid that inhabited Sardinia in the late Middle and Late Pleistocene. The morphological features of the cochlea indicate that C. sardous had a lower number of cochlear turns (2.25) than all extant canids. This feature, as well as the reduced length of the spiral canal, the cochlear curvature rate, and the narrow basal membrane, indicates that C. sardous had poor hearing abilities limited to high-frequency sounds with a low limit of 250 Hz and poor echolocalization skills. From the data available, it is not possible to infer whether C. sardous was unable to echolocalize its prey and relied on other senses (e.g., smell and sight) to locate them or whether the acoustic range of C. sardous was specialized for identifying the sounds produced by its most common prey to transmit signals for predator warnings or group communication. All things considered, the results obtained confirm the utility of cochlea morphological studies in reconstructing the hearing abilities of this species and in providing some suggestions about its ethology, but they fall short of providing any new sound evidence regarding the ecological role of C. sardous in the Late Pleistocene Sardinian ecosystem.
Collapse
Affiliation(s)
- Marco Zedda
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079-229-583
| | - Antonio Brunetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Maria Rita Palombo
- CNR-IGAG c/o Department of Earth Sciences, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
13
|
Ward DL, Schroeder L, Tinius A, Niccoli S, Voth R, Lees SJ, Silcox M, Viola B, Sanzo P. Ovariectomized Rat Model and Shape Variation in the Bony Labyrinth. Anat Rec (Hoboken) 2022; 305:3283-3296. [PMID: 35103405 DOI: 10.1002/ar.24878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Postmenopausal osteoporosis is a serious concern in aging individuals, but has not been explored for its potential to alter the shape of the inner ear by way of increased remodelling in the otic capsule. The otic capsule, or bony labyrinth, is thought to experience uniquely limited remodelling after development due to high levels of osteoprotegerin. On this basis, despite the widespread remodelling that accompanies osteoporosis, we hypothesize that both the shape and volume of the semicircular canals will resist such changes. To test this hypothesis, we conducted three-dimensional geometric morphometric shape analysis on microcomputed tomographic data collected on the semicircular canals of an ovariectomized (OVX) rat model. A Procrustes ANOVA found no statistically significant differences in shape between surgery and sham groups, and morphological disparity testing likewise found no differences in shape variation. Univariate testing found no differences in semicircular volume between OVX and control groups. The range of variation in the OVX group, however, is greater than in the sham group but this difference does not reach statistical significance, perhaps because of a combination of small effect size and low sample size. This finding suggests that labyrinthine shape remains a tool for assessing phylogeny and function in the fossil record, but that it is possible that osteoporosis may be contributing to intraspecific shape variation in the bony labyrinth. This effect warrants further exploration at a microstructural level with continued focus on variables related to remodelling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Devin L Ward
- University of Toronto, Department of Anthropology, Toronto, Ontario
| | - Lauren Schroeder
- University of Toronto Mississauga, Department of Anthropology, Mississauga, Ontario
| | - Alexander Tinius
- University of Toronto, Department of Ecology & Evolutionary Biology, Toronto, Ontario
| | - Sarah Niccoli
- Northern Ontario School of Medicine, Thunder Bay, Ontario
| | - Riley Voth
- Northern Ontario School of Medicine, Thunder Bay, Ontario
| | - Simon J Lees
- Northern Ontario School of Medicine, Thunder Bay, Ontario
| | - Mary Silcox
- University of Toronto Scarborough, Department of Anthropology, Scarborough, Ontario
| | - Bence Viola
- University of Toronto, Department of Anthropology, Toronto, Ontario
| | - Paolo Sanzo
- Lakehead University, Northern Ontario School of Medicine and School of Kinesiology, Thunder Bay, Ontario
| |
Collapse
|
14
|
Mammalian Petrosals from the Upper Jurassic Morrison Formation (Utah, USA) Reveal Non-canonical Evolution of Middle and Inner Ear Characters. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Lower Levels of Vestibular Developmental Stability in Slow-Moving than Fast-Moving Primates. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vestibular system of the mammalian inner ear senses angular and linear velocity of the head and enables animals to maintain their balance. Vestibular anatomy has been studied extensively in order to link its structure to particular kinds of locomotion. Available evidence indicates that, in primates, slow-moving species show higher levels of vestibular variation than fast-moving taxa. We analysed intraspecific morphological variation and fluctuating asymmetry (FA) levels in the semicircular canal systems of six species of lorisiform primates: three slow-moving lorisids and three fast-moving galagids. Our results showed clear differences in levels of intraspecific variation between slow-moving and fast-moving taxa. Higher levels of variation were responsible for deviations from coplanarity for synergistic pairs of canals in slower taxa. Lorisids also presented higher levels of FA than galagids. FA is a better indicator of agility than intraspecific variation. These results suggest that in order to function efficiently in fast taxa, semicircular canal systems must develop as symmetrically as possible, and should minimise the deviation from coplanarity for synergistic pairs. Higher levels of variation and asymmetry in slow-moving taxa may be related to lower levels of stabilising selection on the vestibular system, linked to a lower demand for rapid postural changes.
Collapse
|
16
|
Hofmann R, Lehmann T, Warren DL, Ruf I. The squirrel is in the detail: Anatomy and morphometry of the tail in Sciuromorpha (Rodentia, Mammalia). J Morphol 2021; 282:1659-1682. [PMID: 34549832 DOI: 10.1002/jmor.21412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/07/2022]
Abstract
In mammals, the caudal vertebrae are certainly among the least studied elements of their skeleton. However, the tail plays an important role in locomotion (e.g., balance, prehensility) and behavior (e.g., signaling). Previous studies largely focused on prehensile tails in Primates and Carnivora, in which certain osteological features were selected and used to define tail regions (proximal, transitional, distal). Interestingly, the distribution pattern of these anatomical characters and the relative proportions of the tail regions were similar in both orders. In order to test if such tail regionalization can be applied to Rodentia, we investigated the caudal vertebrae of 20 Sciuridae and six Gliridae species. Furthermore, we examined relationships between tail anatomy/morphometry and locomotion. The position of selected characters along the tail was recorded and their distribution was compared statistically using Spearman rank correlation. Vertebral body length (VBL) was measured to calculate the proportions of each tail region and to perform procrustes analysis on the shape of relative vertebral body length (rVBL) progressions. Our results show that tail regionalization, as defined for Primates and Carnivora, can be applied to almost all investigated squirrels, regardless of their locomotor category. Moreover, major locomotor categories can be distinguished by rVBL progression and tail region proportions. In particular, the small flying squirrels Glaucomys volans and Hylopetes sagitta show an extremely short transitional region. Likewise, several semifossorial taxa can be distinguished by their short distal region. Moreover, among flying squirrels, Petaurista petaurista shows differences with the small flying squirrels, mirroring previous observations on locomotory adaptations based on their inner ear morphometry. Our results show furthermore that the tail region proportions of P. petaurista, phylogenetically more basal than the small flying squirrels, are similar to those of bauplan-conservative arboreal squirrels.
Collapse
Affiliation(s)
- Rebecca Hofmann
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany.,Institut für Geowissenschaften, Goethe-Universität, Frankfurt am Main, Germany
| | - Thomas Lehmann
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany
| | - Dan L Warren
- Senckenberg Biodiversität und Klima Forschungszentrum, Frankfurt am Main, Germany.,Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Irina Ruf
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany.,Institut für Geowissenschaften, Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Ruf I, Meng J, Fostowicz-Frelik Ł. Anatomy of the Nasal and Auditory Regions of the Fossil Lagomorph Palaeolagus haydeni: Systematic and Evolutionary Implications. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.636110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Palaeolagus, a late Eocene to early Miocene North American lagomorph genus, represented by numerous and well-preserved specimens, has been long considered a basal leporid, although it is currently understood as a stem lagomorph. Based on micro-computed tomography (μCT) data and 3D reconstructions, here we present the first description of intracranial structures of the nasal and auditory regions of a complete skull of Palaeolagus haydeni from the early Oligocene of Nebraska. Although Palaeolagus haydeni shows a puzzling mixture of extant leporid and ochotonid characters, it helps to polarize and re-evaluate already known lagomorph intracranial characters based on outgroup comparison with Rodentia and Scandentia. Common derived features of Palaeolagus haydeni and extant Lagomorpha are the dendritic maxilloturbinal and the excavated nasoturbinal that contacts the lamina semicircularis. Generally, Palaeolagus haydeni and Leporidae have several characters in common, some of which are certainly plesiomorphic (e.g., thin wall of bulla tympani and flat conic cochlea). Palaeolagus haydeni resembles Leporidae in having an interturbinal between the two frontoturbinals, and three ethmoturbinals plus one interturbinal between ethmoturbinal I and II. Now, this should also be regarded as a plesiomorphic grundplan pattern for Leporidae whereas ochotonids are derived from the lagomorph grundplan as concerns the number of frontoturbinals. Concerning the middle ear, Palaeolagus haydeni significantly contributes to the polarization of the anterior anchoring of the malleus in extant lagomorphs. Palaeolagus haydeni resembles the pattern observed in early ontogenetic stages of Ochotonidae, i.e., the attachment of the malleus to the ectotympanic via a short processus anterior. The patterns in adult ochotonids and leporids now can be regarded as two different and apomorphic character states. Autapomorphic characters of Palaeolagus haydeni are the reduced frontoturbinal 2 and the additional anterolaterally oriented process of the lamina semicircularis. Interestingly, among the investigated intracranial structures the loss of the secondary crus commune is the only apomorphic grundplan character of crown Lagomorpha.
Collapse
|
18
|
Ward DL, Schroeder L, Pomeroy E, Roy JE, Buck LT, Stock JT, Martin-Gronert M, Ozanne SE, Silcox MT, Viola TB. Early life malnutrition and fluctuating asymmetry in the rat bony labyrinth. Anat Rec (Hoboken) 2021; 304:2645-2660. [PMID: 33586866 DOI: 10.1002/ar.24601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/26/2022]
Abstract
Maternal malnutrition during gestation and lactation is known to have adverse effects on offspring. We evaluate the impact of maternal diet on offspring bony labyrinth morphology. The bony labyrinth develops early and is thought to be stable to protect vital sensory organs within. For these reasons, bony labyrinth morphology has been used extensively to assess locomotion, hearing function, and phylogeny in primates and numerous other taxa. While variation related to these parameters has been documented, there is still a component of intraspecific variation that is unexplained. Although the labyrinthine developmental window is small, it may provide the opportunity for developmental instability to produce corresponding shape differences, as measured by fluctuating asymmetry (FA). We hypothesized that (a) offspring with poor maternal diet would exhibit increased FA, but (b) no unilateral shape difference. To test these hypotheses, we used two groups of rats (Rattus norvegicus; Crl:WI[Han] strain), one control group and one group exposed to a isocaloric, protein-restricted maternal diet during gestation and suckling. Individuals were sampled at weaning, sexual maturity, and old age. A Procrustes analysis of variance identified statistically significant FA in all diet-age subgroups. No differences in level of FA were identified among the subgroups, rejecting our first hypothesis. A principal components analysis identified no unilateral shape differences, supporting our second hypothesis. These results indicate that bony labyrinth morphology is remarkably stable and likely protected from a poor maternal diet during development. In light of this result, other factors must be explored to explain intraspecific variation in labyrinthine shape.
Collapse
Affiliation(s)
- Devin L Ward
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Emma Pomeroy
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Jocelyn E Roy
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Laura T Buck
- Department of Archaeology, University of Cambridge, Cambridge, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jay T Stock
- Department of Anthropology, Western University, London, Ontario, Canada
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Malgorzata Martin-Gronert
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - T Bence Viola
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
- Institute for Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation
| |
Collapse
|
19
|
Bhagat R, Bertrand OC, Silcox MT. Evolution of arboreality and fossoriality in squirrels and aplodontid rodents: Insights from the semicircular canals of fossil rodents. J Anat 2021; 238:96-112. [PMID: 32812227 PMCID: PMC7754939 DOI: 10.1111/joa.13296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 01/03/2023] Open
Abstract
Reconstructing locomotor behaviour for fossil animals is typically done with postcranial elements. However, for species only known from cranial material, locomotor behaviour is difficult to reconstruct. The semicircular canals (SCCs) in the inner ear provide insight into an animal's locomotor agility. A relationship exists between the size of the SCCs relative to body mass and the jerkiness of an animal's locomotion. Additionally, studies have also demonstrated a relationship between SCC orthogonality and angular head velocity. Here, we employ two metrics for reconstructing locomotor agility, radius of curvature dimensions and SCC orthogonality, in a sample of twelve fossil rodents from the families Ischyromyidae, Sciuridae and Aplodontidae. The method utilizing radius of curvature dimensions provided a reconstruction of fossil rodent locomotor behaviour that is more consistent with previous studies assessing fossil rodent locomotor behaviour compared to the method based on SCC orthogonality. Previous work on ischyromyids suggests that this group displayed a variety of locomotor modes. Members of Paramyinae and Ischyromyinae have relatively smaller SCCs and are reconstructed to be relatively slower compared to members of Reithroparamyinae. Early members of the Sciuroidea clade including the sciurid Cedromus wilsoni and the aplodontid Prosciurus relictus are reconstructed to be more agile than ischyromyids, in the range of extant arboreal squirrels. This reconstruction supports previous inferences that arboreality was likely an ancestral trait for this group. Derived members of Sciuridae and Aplodontidae vary in agility scores. The fossil squirrel Protosciurus cf. rachelae is inferred from postcranial material as arboreal, which is in agreement with its high agility, in the range of extant arboreal squirrels. In contrast, the fossil aplodontid Mesogaulus paniensis has a relatively low agility score, similar to the fossorial Aplodontia rufa, the only living aplodontid rodent. This result is in agreement with its postcranial reconstruction as fossorial and with previous indications that early aplodontids were more arboreal than their burrowing descendants.
Collapse
Affiliation(s)
- Raj Bhagat
- Department of AnthropologyUniversity of Toronto ScarboroughTorontoONCanada
| | | | - Mary T. Silcox
- Department of AnthropologyUniversity of Toronto ScarboroughTorontoONCanada
| |
Collapse
|
20
|
Geng WH, Wang XP, Che LF, Wang X, Liu R, Zhou T, Roos C, Irwin DM, Yu L. Convergent Evolution of Locomotory Modes in Euarchontoglires. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.615862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The research of phenotypic convergence is of increasing importance in adaptive evolution. Locomotory modes play important roles in the adaptive evolution of species in the Euarchontoglires, however, the investigation of convergent evolution of the locomotory modes across diverse Euarchontoglire orders is incomplete. We collected measurements of three phalangeal indices of manual digit III, including metacarpal of digit III (MC3), manus proximal phalanx of digit III (MPP3), and manus intermediate phalanx of digit III (MIP3), from 203 individuals of 122 Euarchontoglires species representing arboreal (orders Scandentia, Rodentia, and Primates), terrestrial (orders Scandentia and Rodentia), and gliding (orders Dermoptera and Rodentia) locomotory modes. This data can be separated into seven groups defined by order and locomotory mode. Based on combination of the three phalangeal indices, the Principle component analyses (PCA), phylomorphospace plot, and C-metrics analyses clustered the arboreal species of Scandentia, Rodentia, and Primates together and the terrestrial species of Scandentia and Rodentia together, showing the convergent signal in evolution of the arboreal (C1 = 0.424, P < 0.05) and terrestrial (C1 = 0.560, P < 0.05) locomotory modes in Euarchontoglires. Although the gliding species from Dermoptera and Rodentia did not cluster together, they also showed the convergent signal (C1 = 0.563, P < 0.05). Our work provides insight into the convergent evolution of locomotory modes in Euarchontoglires, and reveals that these three indices contribute valuable information to identify convergent evolution in Euarchontoglires.
Collapse
|
21
|
Schade M, Rauhut OWM, Evers SW. Neuroanatomy of the spinosaurid Irritator challengeri (Dinosauria: Theropoda) indicates potential adaptations for piscivory. Sci Rep 2020; 10:9259. [PMID: 32518236 PMCID: PMC7283278 DOI: 10.1038/s41598-020-66261-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 11/18/2022] Open
Abstract
Spinosauridae, a theropod group characterized by elongated snouts, conical teeth, enlarged forelimbs, and often elongated neural spines, show evidence for semiaquatic adaptations and piscivory. It is currently debated if these animals represent terrestrial carnivores with adaptations for a piscivorous diet, or if they largely lived and foraged in aquatic habitats. The holotype of Irritator challengeri, a nearly complete skull from the late Early Cretaceous Santana Formation of northeastern Brazil, includes one of the few preserved spinosaurid braincases and can provide insights into neuroanatomical structures that might be expected to reflect ecological affinities. We generated digital models of the neuroanatomical cavities within the braincase, using computer tomography (CT) data. The cranial endocast of Irritator is generally similar to that of other non-maniraptoriform theropods, with weakly developed distinctions of hindbrain and midbrain features, relatively pronounced cranial flexures and relatively long olfactory tracts. The endosseous labyrinth has a long anterior semicircular canal, a posteriorly inclined common crus and a very large floccular recess fills the area between the semicircular canals. These features indicate that Irritator had the ability for fast and well-controlled pitch-down head movements. The skull table and lateral semicircular canal plane are strongly angled to one another, suggesting a downward angling of approximately 45° of the snout, which reduces interference of the snout with the field of vision of Irritator. These neuroanatomical features are consistent with fast, downward snatching movements in the act of predation, such as are needed for piscivory.
Collapse
Affiliation(s)
- Marco Schade
- Institute of Geography and Geology, Palaeontology and Historical Geology, University of Greifswald, 17489, Greifswald, Germany. .,Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität, 80333, München, Germany.
| | - Oliver W M Rauhut
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität, 80333, München, Germany.,Bayerische Staatssammlung für Paläntologie und Geologie, Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB), 80333, München, Germany.,GeoBioCenter, Ludwig-Maximilians-Universität, 80333, München, Germany
| | - Serjoscha W Evers
- Department of Geosciences, University of Fribourg, 17000, Fribourg, Switzerland
| |
Collapse
|
22
|
Le Maître A, Grunstra NDS, Pfaff C, Mitteroecker P. Evolution of the Mammalian Ear: An Evolvability Hypothesis. Evol Biol 2020; 47:187-192. [PMID: 32801400 PMCID: PMC7399675 DOI: 10.1007/s11692-020-09502-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 11/29/2022]
Abstract
Encapsulated within the temporal bone and comprising the smallest elements of the vertebrate skeleton, the ear is key to multiple senses: balance, posture control, gaze stabilization, and hearing. The transformation of the primary jaw joint into the mammalian ear ossicles is one of the most iconic transitions in vertebrate evolution, but the drivers of this complex evolutionary trajectory are not fully understood. We propose a novel hypothesis: The incorporation of the bones of the primary jaw joint into the middle ear has considerably increased the genetic, regulatory, and developmental complexity of the mammalian ear. This increase in the number of genetic and developmental factors may, in turn, have increased the evolutionary degrees of freedom for independent adaptations of the different functional ear units. The simpler ear anatomy in birds and reptiles may be less susceptible to developmental instabilities and disorders than in mammals but also more constrained in its evolution. Despite the tight spatial entanglement of functional ear components, the increased "evolvability" of the mammalian ear may have contributed to the evolutionary success and adaptive diversification of mammals in the vast diversity of ecological and behavioral niches observable today. A brief literature review revealed supporting evidence for this hypothesis.
Collapse
Affiliation(s)
- Anne Le Maître
- Department of Evolutionary Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Department of Palaeontology, University of Vienna, Vienna, Austria
- PALEVOPRIM - UMR 7262CNRS INEE, Université de Poitiers, Poitiers, France
| | - Nicole D. S. Grunstra
- Department of Evolutionary Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- KLI Institute for Evolution and Cognition Research, Klosterneuburg, Austria
- Mammal Collection, Natural History Museum Vienna, Vienna, Austria
| | - Cathrin Pfaff
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Philipp Mitteroecker
- Department of Evolutionary Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- KLI Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| |
Collapse
|
23
|
Schwab JA, Young MT, Neenan JM, Walsh SA, Witmer LM, Herrera Y, Allain R, Brochu CA, Choiniere JN, Clark JM, Dollman KN, Etches S, Fritsch G, Gignac PM, Ruebenstahl A, Sachs S, Turner AH, Vignaud P, Wilberg EW, Xu X, Zanno LE, Brusatte SL. Inner ear sensory system changes as extinct crocodylomorphs transitioned from land to water. Proc Natl Acad Sci U S A 2020; 117:10422-10428. [PMID: 32312812 PMCID: PMC7229756 DOI: 10.1073/pnas.2002146117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Major evolutionary transitions, in which animals develop new body plans and adapt to dramatically new habitats and lifestyles, have punctuated the history of life. The origin of cetaceans from land-living mammals is among the most famous of these events. Much earlier, during the Mesozoic Era, many reptile groups also moved from land to water, but these transitions are more poorly understood. We use computed tomography to study changes in the inner ear vestibular system, involved in sensing balance and equilibrium, as one of these groups, extinct crocodile relatives called thalattosuchians, transitioned from terrestrial ancestors into pelagic (open ocean) swimmers. We find that the morphology of the vestibular system corresponds to habitat, with pelagic thalattosuchians exhibiting a more compact labyrinth with wider semicircular canal diameters and an enlarged vestibule, reminiscent of modified and miniaturized labyrinths of other marine reptiles and cetaceans. Pelagic thalattosuchians with modified inner ears were the culmination of an evolutionary trend with a long semiaquatic phase, and their pelagic vestibular systems appeared after the first changes to the postcranial skeleton that enhanced their ability to swim. This is strikingly different from cetaceans, which miniaturized their labyrinths soon after entering the water, without a prolonged semiaquatic stage. Thus, thalattosuchians and cetaceans became secondarily aquatic in different ways and at different paces, showing that there are different routes for the same type of transition.
Collapse
Affiliation(s)
- Julia A Schwab
- School of GeoSciences, Grant Institute, University of Edinburgh, EH9 3FE Edinburgh, United Kingdom;
| | - Mark T Young
- School of GeoSciences, Grant Institute, University of Edinburgh, EH9 3FE Edinburgh, United Kingdom
| | - James M Neenan
- Oxford University Museum of Natural History, OX1 3PW Oxford, United Kingdom
| | - Stig A Walsh
- School of GeoSciences, Grant Institute, University of Edinburgh, EH9 3FE Edinburgh, United Kingdom
- Department of Natural Sciences, National Museum of Scotland, EH1 1JF Edinburgh, United Kingdom
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| | - Yanina Herrera
- Consejo Nacional de Investigaciones Científicas y Técnicas, División Paleontología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, National University of La Plata, B1900 La Plata, Buenos Aires, Argentina
| | - Ronan Allain
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Christopher A Brochu
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242
| | - Jonah N Choiniere
- Evolutionary Studies Institute, University of the Witwatersrand, 2000 Johannesburg, South Africa
| | - James M Clark
- Department of Biological Sciences, George Washington University, Washington, DC 20052
| | - Kathleen N Dollman
- Evolutionary Studies Institute, University of the Witwatersrand, 2000 Johannesburg, South Africa
- School of Geosciences, University of the Witwatersrand, 2000 Johannesburg, South Africa
| | - Steve Etches
- Museum of Jurassic Marine Life, BH20 5PE Kimmeridge, United Kingdom
| | - Guido Fritsch
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Paul M Gignac
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107
| | | | - Sven Sachs
- Abteilung Geowissenschaften, Naturkunde-Museum Bielefeld, Abteilung Geowissenschaften, 33602 Bielefeld, Germany
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Patrick Vignaud
- Laboratoire de Paléontologie, Evolution, Paléoécosystèmes et Paléoprimatologie, CNRS UMR 7262, Department of Geosciences, University of Poitiers, 86073 Poitiers Cedex 9, France
| | - Eric W Wilberg
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 100044 Beijing, China
| | - Lindsay E Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Stephen L Brusatte
- School of GeoSciences, Grant Institute, University of Edinburgh, EH9 3FE Edinburgh, United Kingdom
- Department of Natural Sciences, National Museum of Scotland, EH1 1JF Edinburgh, United Kingdom
| |
Collapse
|
24
|
Schwab JA, Young MT, Neenan JM, Walsh SA, Witmer LM, Herrera Y, Allain R, Brochu CA, Choiniere JN, Clark JM, Dollman KN, Etches S, Fritsch G, Gignac PM, Ruebenstahl A, Sachs S, Turner AH, Vignaud P, Wilberg EW, Xu X, Zanno LE, Brusatte SL. Inner ear sensory system changes as extinct crocodylomorphs transitioned from land to water. Proc Natl Acad Sci U S A 2020. [PMID: 32312812 DOI: 10.11073/pnas.2002146117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Major evolutionary transitions, in which animals develop new body plans and adapt to dramatically new habitats and lifestyles, have punctuated the history of life. The origin of cetaceans from land-living mammals is among the most famous of these events. Much earlier, during the Mesozoic Era, many reptile groups also moved from land to water, but these transitions are more poorly understood. We use computed tomography to study changes in the inner ear vestibular system, involved in sensing balance and equilibrium, as one of these groups, extinct crocodile relatives called thalattosuchians, transitioned from terrestrial ancestors into pelagic (open ocean) swimmers. We find that the morphology of the vestibular system corresponds to habitat, with pelagic thalattosuchians exhibiting a more compact labyrinth with wider semicircular canal diameters and an enlarged vestibule, reminiscent of modified and miniaturized labyrinths of other marine reptiles and cetaceans. Pelagic thalattosuchians with modified inner ears were the culmination of an evolutionary trend with a long semiaquatic phase, and their pelagic vestibular systems appeared after the first changes to the postcranial skeleton that enhanced their ability to swim. This is strikingly different from cetaceans, which miniaturized their labyrinths soon after entering the water, without a prolonged semiaquatic stage. Thus, thalattosuchians and cetaceans became secondarily aquatic in different ways and at different paces, showing that there are different routes for the same type of transition.
Collapse
Affiliation(s)
- Julia A Schwab
- School of GeoSciences, Grant Institute, University of Edinburgh, EH9 3FE Edinburgh, United Kingdom;
| | - Mark T Young
- School of GeoSciences, Grant Institute, University of Edinburgh, EH9 3FE Edinburgh, United Kingdom
| | - James M Neenan
- Oxford University Museum of Natural History, OX1 3PW Oxford, United Kingdom
| | - Stig A Walsh
- School of GeoSciences, Grant Institute, University of Edinburgh, EH9 3FE Edinburgh, United Kingdom
- Department of Natural Sciences, National Museum of Scotland, EH1 1JF Edinburgh, United Kingdom
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701
| | - Yanina Herrera
- Consejo Nacional de Investigaciones Científicas y Técnicas, División Paleontología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, National University of La Plata, B1900 La Plata, Buenos Aires, Argentina
| | - Ronan Allain
- Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Christopher A Brochu
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242
| | - Jonah N Choiniere
- Evolutionary Studies Institute, University of the Witwatersrand, 2000 Johannesburg, South Africa
| | - James M Clark
- Department of Biological Sciences, George Washington University, Washington, DC 20052
| | - Kathleen N Dollman
- Evolutionary Studies Institute, University of the Witwatersrand, 2000 Johannesburg, South Africa
- School of Geosciences, University of the Witwatersrand, 2000 Johannesburg, South Africa
| | - Steve Etches
- Museum of Jurassic Marine Life, BH20 5PE Kimmeridge, United Kingdom
| | - Guido Fritsch
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Paul M Gignac
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107
| | | | - Sven Sachs
- Abteilung Geowissenschaften, Naturkunde-Museum Bielefeld, Abteilung Geowissenschaften, 33602 Bielefeld, Germany
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Patrick Vignaud
- Laboratoire de Paléontologie, Evolution, Paléoécosystèmes et Paléoprimatologie, CNRS UMR 7262, Department of Geosciences, University of Poitiers, 86073 Poitiers Cedex 9, France
| | - Eric W Wilberg
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 100044 Beijing, China
| | - Lindsay E Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Stephen L Brusatte
- School of GeoSciences, Grant Institute, University of Edinburgh, EH9 3FE Edinburgh, United Kingdom
- Department of Natural Sciences, National Museum of Scotland, EH1 1JF Edinburgh, United Kingdom
| |
Collapse
|
25
|
Dudgeon TW, Maddin HC, Evans DC, Mallon JC. The internal cranial anatomy of Champsosaurus (Choristodera: Champsosauridae): Implications for neurosensory function. Sci Rep 2020; 10:7122. [PMID: 32346021 PMCID: PMC7188685 DOI: 10.1038/s41598-020-63956-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/06/2020] [Indexed: 11/09/2022] Open
Abstract
Although isolated Champsosaurus remains are common in Upper Cretaceous sediments of North America, the braincase of these animals is enigmatic due to the fragility of their skulls. Here, two well-preserved specimens of Champsosaurus (CMN 8920 and CMN 8919) are CT scanned to describe their neurosensory structures and infer sensory capability. The anterior portion of the braincase was poorly ossified and thus does not permit visualization of a complete endocast; however, impressions of the olfactory stalks indicate that they were elongate and likely facilitated good olfaction. The posterior portion of the braincase is ossified and morphologically similar to that of other extinct diapsids. The absence of an otic notch and an expansion of the pars inferior of the inner ear suggests Champsosaurus was limited to detecting low frequency sounds. Comparison of the shapes of semicircular canals with lepidosaurs and archosauromorphs demonstrates that the semicircular canals of Champsosaurus are most similar to those of aquatic reptiles, suggesting that Champsosaurus was well adapted for sensing movement in an aquatic environment. This analysis also demonstrates that birds, non-avian archosauromorphs, and lepidosaurs possess significantly different canal morphologies, and represents the first morphometric analysis of semicircular canals across Diapsida.
Collapse
Affiliation(s)
- Thomas W Dudgeon
- Department of Earth Sciences, Carleton University, Ottawa, Canada.
| | - Hillary C Maddin
- Department of Earth Sciences, Carleton University, Ottawa, Canada
| | - David C Evans
- Vertebrate Palaeontology, Royal Ontario Museum, Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Jordan C Mallon
- Department of Earth Sciences, Carleton University, Ottawa, Canada.,Beaty Centre for Species Discovery and Palaeobiology Section, Canadian Museum of Nature, Ottawa, Canada
| |
Collapse
|
26
|
Potapova EG. Morphological Specificity of the Auditory Capsule of Sciurid (Sciuridae, Rodentia). BIOL BULL+ 2020. [DOI: 10.1134/s1062359019070094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Zherebtsova OV, Potapova EG. Pathways and Level of Morphological Adaptations in Modern Diatomyidae and Ctenodactylidae (Rodentia). BIOL BULL+ 2020. [DOI: 10.1134/s1062359019070124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Goyens J. High ellipticity reduces semi-circular canal sensitivity in squamates compared to mammals. Sci Rep 2019; 9:16428. [PMID: 31712592 PMCID: PMC6848070 DOI: 10.1038/s41598-019-52828-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/22/2019] [Indexed: 11/15/2022] Open
Abstract
The semi-circular canals in the inner ear sense head rotations. It is widely recognised that the anatomy of the semi-circular canals is often adapted to the species-specific agility, in order to provide the necessary sensitivity. Based on research on mammals, the ellipticity of the semi-circular canal was so far considered as a non-important factor herein. A dataset of 125 squamate species and 156 mammalian species, now shows that the posterior semi-circular canal of squamates is much more elliptical (eccentricities ranging between 0.76 and 0.94) than that of mammals (eccentricities ranging between 0 and 0.71). Fluid-Structure Interaction computer models show that the effect of the ellipticity on sensitivity is strongest in small semi-circular canals. This new insight indicates that the high ellipticity in squamates leads to a severe reduction in sensitivity of up to 45%. In mammals, on the other hand, the reduction in sensitivity is limited to 13%, which is consistent with previous literature that found a limited effect of semi-circular canal ellipticity in mammals. Further, there is a strongly negative correlation between semi-circular canal size and eccentricity in squamates, which is absent in mammals. Hence, the smallest squamates have the most elliptical semi-circular canals. In general, the smaller the semi-circular canal, the less sensitive it is. Therefore, the highly elliptical squamate canals are probably the result of fitting the largest possible canal in small and flat head. Miniaturising the canals while maintaining a circular shape would reduce the sensitivity by another 73% compared to the highly elliptical canals.
Collapse
Affiliation(s)
- Jana Goyens
- Laboratory of Functional Morphology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
29
|
Capshaw G, Soares D, Carr CE. Bony labyrinth morphometry reveals hidden diversity in lungless salamanders (Family Plethodontidae): Structural correlates of ecology, development, and vision in the inner ear. Evolution 2019; 73:2135-2150. [PMID: 31436320 DOI: 10.1111/evo.13837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/29/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Lungless salamanders (Family Plethodontidae) form a highly speciose group that has undergone spectacular adaptive radiation to colonize a multitude of habitats. Substantial morphological variation in the otic region coupled with great ecological diversity within this clade make plethodontids an excellent model for exploring the ecomorphology of the amphibian ear. We examined the influence of habitat, development, and vision on inner ear morphology in 52 plethodontid species. We collected traditional and 3D geometric morphometric measurements to characterize variation in size and shape of the otic endocast and peripheral structures of the salamander ear. Phylogenetic comparative analyses demonstrate structural convergence in the inner ear across ecologically similar species. Species that dwell in spatially complex microhabitats exhibit robust, highly curved semicircular canals suggesting enhanced vestibular sense, whereas species with reduced visual systems demonstrate reduced canal curvature indicative of relaxed selection on the vestibulo-ocular reflex. Cave specialists show parallel enlargement of auditory-associated structures. The morphological correlates of ecology among diverse species reveal underlying evidence of habitat specialization in the inner ear and suggest that there exists physiological variation in the function of the salamander ear even in the apparent absence of selective pressures on the auditory system to support acoustic behavior.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Biology, University of Maryland, College Park, MD, 20742
| | - Daphne Soares
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD, 20742
| |
Collapse
|
30
|
Evers SW, Neenan JM, Ferreira GS, Werneburg I, Barrett PM, Benson RBJ. Neurovascular anatomy of the protostegid turtle Rhinochelys pulchriceps and comparisons of membranous and endosseous labyrinth shape in an extant turtle. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractChelonioid turtles are the only surviving group of reptiles that secondarily evolved marine lifestyles during the Mesozoic Early chelonioid evolution is documented by fossils of their stem group, such as protostegids, which yield insights into the evolution of marine adaptation. Neuroanatomical features are commonly used to infer palaeoecology owing to the functional adaptation of the senses of an organism to its environment. We investigated the neuroanatomy and carotid circulation of the early Late Cretaceous protostegid Rhinochelys pulchriceps based on micro-computed tomography data. We show that the trigeminal foramen of turtles is not homologous to that of other reptiles. The endosseous labyrinth of R. pulchriceps has thick semicircular canals and a high aspect ratio. Comparisons among turtles and other reptiles show that the endosseous labyrinth aspect ratio is not a reliable predictor of the degree of aquatic adaptation, contradicting previous hypotheses. We provide the first models of neuroanatomical soft tissues of an extant turtle. Turtle brain morphology is not reflected by the brain cavity, and the endosseous labyrinth provides an incomplete reflection of membranous semicircular duct morphology. Membranous labyrinth geometry is conserved across gnathostomes, which allows approximate reconstruction of the total membranous labyrinth morphology from the endosseous labyrinth despite their poor reflection of duct morphology.
Collapse
Affiliation(s)
- Serjoscha W Evers
- Department of Earth Sciences, University of Oxford, Oxford, UK
- Department of Earth Sciences, Natural History Museum, London, UK
| | | | - Gabriel S Ferreira
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße, Tübingen, Germany
| | - Ingmar Werneburg
- Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße, Tübingen, Germany
- Senckenberg Center for Human Evolution and Palaeoenvironment (HEP) an der Eberhard Karls Universität, Sigwartstraße, Tübingen, Germany
| | - Paul M Barrett
- Department of Earth Sciences, Natural History Museum, London, UK
| | | |
Collapse
|
31
|
Pfaff C, Schultz JA, Schellhorn R. The vertebrate middle and inner ear: A short overview. J Morphol 2019; 280:1098-1105. [PMID: 30117612 PMCID: PMC6766920 DOI: 10.1002/jmor.20880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 01/11/2023]
Abstract
The evolution of the various hearing adaptations is connected to major structural changes in nearly all groups of vertebrates. Besides hearing, the detection of acceleration and orientation in space are key functions of this mechanosensory system. The symposium "show me your ear - the inner and middle ear in vertebrates" held at the 11th International Congress of Vertebrate Morphology (ICVM) 2016 in Washington, DC (USA) intended to present current research addressing adaptation and evolution of the vertebrate otic region, auditory ossicles, vestibular system, and hearing physiology. The symposium aimed at an audience with interest in hearing research focusing on morphological, functional, and comparative studies. The presented talks and posters lead to the contributions of this virtual issue highlighting recent advances in the vertebrate balance and hearing system. This article serves as an introduction to the virtual issue contributions and intends to give a short overview of research papers focusing on vertebrate labyrinth and middle ear related structures in past and recent years.
Collapse
Affiliation(s)
- Cathrin Pfaff
- University of Vienna, Department of PalaeontologyViennaAustria
| | - Julia A. Schultz
- University of Chicago, Department of Organismal Biology and AnatomyChicagoIllinoisUSA
- Rheinische Friedrich‐Wilhelms‐Universität Bonn, Steinmann Institut für Geologie, Mineralogie und PaläontologieBonnGermany
| | - Rico Schellhorn
- Rheinische Friedrich‐Wilhelms‐Universität Bonn, Steinmann Institut für Geologie, Mineralogie und PaläontologieBonnGermany
| |
Collapse
|
32
|
Vasilopoulou‐Kampitsi M, Goyens J, Baeckens S, Van Damme R, Aerts P. Habitat use and vestibular system's dimensions in lacertid lizards. J Anat 2019; 235:1-14. [PMID: 30993713 PMCID: PMC6579939 DOI: 10.1111/joa.12993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2019] [Indexed: 11/28/2022] Open
Abstract
The vestibular system is crucial for movement control during locomotion. As the dimensions of the vestibular system determine the fluid dynamics of the endolymph and, as such, the system's function, we investigate the interaction between vestibular system size, head size and microhabitat use in lizards. We grouped 24 lacertid species in three microhabitat types, we acquired three-dimensional models of the bony vestibular systems using micro-computer tomography scanning, and we performed linear and surface measurements. All vestibular measurements scale with a negative allometry with head size, suggesting that smaller heads house disproportionally large ears. As the sensitivity of the vestibular system is positively related to size, a sufficiently large vestibular system in small-headed animals may meet the sensitivity demands during challenged locomotion. We also found that the microhabitat affects the locomotor dynamics: lizards inhabiting open microhabitats run at higher dimensionless speeds. On the other hand, no statistical relationship exists between dimensionless speed and the vestibular system dimensions. Hence, if the vestibular size would differ between microhabitats, this would be a direct effect (i.e. imposed, for instance, by requirements for manoeuvring, balance control, etc.), rather than depending on the lizards' intrinsic running speed. However, we found no effect of the microhabitat on the allometric relationship between head and vestibular system size. The finding that microhabitat is not reflected in the vestibular system size (hence sensitivity) of the lacertids in this study is possibly due to spatial constraints of the skull.
Collapse
Affiliation(s)
| | - Jana Goyens
- Department of BiologyLaboratory of Functional MorphologyUniversity of AntwerpAntwerpBelgium
| | - Simon Baeckens
- Department of BiologyLaboratory of Functional MorphologyUniversity of AntwerpAntwerpBelgium
| | - Raoul Van Damme
- Department of BiologyLaboratory of Functional MorphologyUniversity of AntwerpAntwerpBelgium
| | - Peter Aerts
- Department of BiologyLaboratory of Functional MorphologyUniversity of AntwerpAntwerpBelgium
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| |
Collapse
|
33
|
D’Elía G, Fabre PH, Lessa EP. Rodent systematics in an age of discovery: recent advances and prospects. J Mammal 2019. [DOI: 10.1093/jmammal/gyy179] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pierre-Henri Fabre
- Institut des Sciences de l’Evolution (ISEM, UMR 5554 CNRS-UM2-IRD), Université Montpellier, Montpellier Cedex 5, France
| | - Enrique P Lessa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
34
|
Vasilopoulou-Kampitsi M, Goyens J, Van Damme R, Aerts P. The ecological signal on the shape of the lacertid vestibular system: simple versus complex microhabitats. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- M Vasilopoulou-Kampitsi
- Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - J Goyens
- Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - R Van Damme
- Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - P Aerts
- Laboratory of Functional Morphology, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Nengovhela A, Braga J, Denys C, de Beer F, Tenailleau C, Taylor PJ. Associated tympanic bullar and cochlear hypertrophy define adaptations to true deserts in African gerbils and laminate-toothed rats (Muridae: Gerbillinae and Murinae). J Anat 2019; 234:179-192. [PMID: 30474264 PMCID: PMC6326829 DOI: 10.1111/joa.12906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 10/27/2022] Open
Abstract
Hearing capabilities in desert rodents such as gerbils and heteromyids have been inferred from both anatomical and ecological aspects and tested with experiments and theoretical models. However, very few studies have focused on other desert-adapted species. In this study, a refined three-dimensional morphometric approach was used on three African rodent tribes (Otomyini, Taterillini and Gerbillini) to describe the cochlear and tympanic bullar morphology, and to explore the role of phylogeny, allometry and ecology to better understand the underlying mechanism of any observed trends of hypertrophy in the bulla and associated changes in the cochlea. As a result, desert-adapted species could be distinguished from mesic and semi-arid taxa by the gross cochlear dimensions, particularly the oval window, which is larger in desert species. Bullar and cochlear modifications between species could be explained by environment (bulla and oval window), phylogeny (cochlear curvature gradient) and/or allometry (cochlear relative length, oval window and bulla) with some exceptions. Based on their ear anatomy, we predict that Desmodillus auricularis and Parotomys brantsii should be sensitive to low-frequency sounds, with D. auricularis sensitive to high-frequency sounds, too. This study concludes that in both arid and semi-arid adapted laminate-toothed rats and gerbils there is bulla and associated cochlea hypertrophy, particularly in true desert species. Gerbils also show tightly coiled cochlea but the significance of this is debatable and may have nothing to do with adaptations to any specific acoustics in the desert environment.
Collapse
Affiliation(s)
- Aluwani Nengovhela
- Laboratoire d'Anthropologie Moléculaire et Imagerie de SynthèseUMR 5288CNRSUniversité de Toulouse (Paul Sabatier)ToulouseFrance
- South African Research Chair in Biodiversity and Change and Centre for Invasion BiologySchool of Mathematical and Natural SciencesUniversity of VendaThohoyandouSouth Africa
| | - José Braga
- Laboratoire d'Anthropologie Moléculaire et Imagerie de SynthèseUMR 5288CNRSUniversité de Toulouse (Paul Sabatier)ToulouseFrance
- Evolutionary Studies InstituteUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Christiane Denys
- Institut de Systématique, Evolution, BiodiversitéUMR 7205, CNRS, MNHN, UPMC, EPHESorbonne UniversitésParisFrance
| | - Frikkie de Beer
- South African Nuclear Energy CorporationPelindabaNorth West ProvinceSouth Africa
| | - Christophe Tenailleau
- Centre Inter‐Universitaire de Recherche et d'Ingénierie des MatériauxUMR 5085CNRSUniversité de Toulouse (Paul Sabatier)ToulouseFrance
| | - Peter J. Taylor
- South African Research Chair in Biodiversity and Change and Centre for Invasion BiologySchool of Mathematical and Natural SciencesUniversity of VendaThohoyandouSouth Africa
- Core Team Member of the Centre of Invasion BiologyStellenbosch UniversityStellenboschSouth Africa
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
36
|
Schwab JA, Kriwet J, Weber GW, Pfaff C. Carnivoran hunting style and phylogeny reflected in bony labyrinth morphometry. Sci Rep 2019; 9:70. [PMID: 30635617 PMCID: PMC6329752 DOI: 10.1038/s41598-018-37106-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/30/2018] [Indexed: 11/09/2022] Open
Abstract
Carnivorans are a highly diverse and successful group of mammals, found on the top of the food chain. They originated in the Palaeocene (ca. 60 Ma) and have developed numerous lifestyles, locomotion modes and hunting strategies during their evolutionary history. Mechanosensory organs, such as the inner ear (which houses senses of equilibrium and hearing), represent informative anatomical systems to obtain insights into function, ecology and phylogeny of extant and extinct vertebrates. Using µCT scans, we examined bony labyrinths of a broad sample of various carnivoran species, to obtain new information about hunting behaviours of ancient carnivorans. Bony labyrinths were digitally reconstructed and measurements were taken directly from these 3D models. Principal component analyses generally separated various hunting strategies (pursuit, pounce, ambush and occasional), but also support their phylogenetic relationships (Canoidea vs. Feloidea). The height, width and length of all three semicircular canals show functional morphological adaptations, whereas the diameter of the canals, the height of the cochlea and particularly the angle between the lateral semicircular canal and the cochlea indicate a phylogenetic signal. The results demonstrate that the bony labyrinth provides a powerful ecological proxy reflecting both predatory habits as well as phylogenetic relationships in extinct and extant carnivorans.
Collapse
Affiliation(s)
- Julia A Schwab
- Department of Palaeontology, Faculty of Earth Science, Geography and Astronomy, University of Vienna, Geozentrum, Althanstraße 14, 1090, Vienna, Austria. .,School of GeoSciences, Grant Institute, University of Edinburgh, The King's Buildings, James Hutton Road, Edinburgh, EH9 3JW, UK.
| | - Jürgen Kriwet
- Department of Palaeontology, Faculty of Earth Science, Geography and Astronomy, University of Vienna, Geozentrum, Althanstraße 14, 1090, Vienna, Austria
| | - Gerhard W Weber
- Department of Anthropology & Core Facility for Micro-Computed Tomography, Faculty of Life Science, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Cathrin Pfaff
- Department of Palaeontology, Faculty of Earth Science, Geography and Astronomy, University of Vienna, Geozentrum, Althanstraße 14, 1090, Vienna, Austria
| |
Collapse
|
37
|
Martinez Q, Lebrun R, Achmadi AS, Esselstyn JA, Evans AR, Heaney LR, Miguez RP, Rowe KC, Fabre PH. Convergent evolution of an extreme dietary specialisation, the olfactory system of worm-eating rodents. Sci Rep 2018; 8:17806. [PMID: 30546026 PMCID: PMC6293001 DOI: 10.1038/s41598-018-35827-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/09/2018] [Indexed: 11/18/2022] Open
Abstract
Turbinal bones are key components of the mammalian rostrum that contribute to three critical functions: (1) homeothermy, (2) water conservation and (3) olfaction. With over 700 extant species, murine rodents (Murinae) are the most species-rich mammalian subfamily, with most of that diversity residing in the Indo-Australian Archipelago. Their evolutionary history includes several cases of putative, but untested ecomorphological convergence, especially with traits related to diet. Among the most spectacular rodent ecomorphs are the vermivores which independently evolved in several island systems. We used 3D CT-scans (N = 87) of murine turbinal bones to quantify olfactory capacities as well as heat or water conservation adaptations. We obtained similar results from an existing 2D complexity method and two new 3D methodologies that quantify bone complexity. Using comparative phylogenetic methods, we identified a significant convergent signal in the rostral morphology within the highly specialised vermivores. Vermivorous species have significantly larger and more complex olfactory turbinals than do carnivores and omnivores. Increased olfactory capacities may be a major adaptive feature facilitating rats' capacity to prey on elusive earthworms. The narrow snout that characterises vermivores exhibits significantly reduced respiratory turbinals, which may reduce their heat and water conservation capacities.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France.
| | - Renaud Lebrun
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
| | - Anang S Achmadi
- Museum Zoologicum Bogoriense, Research Center For Biology, Indonesian Institute of Sciences (LIPI), Jl.Raya Jakarta-Bogor Km.46, Cibinong, 16911, Indonesia
| | - Jacob A Esselstyn
- Museum of Natural Science, 119 Foster Hall, Louisiana State University, Baton Rouge, Louisiana, 70803, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, United States
| | - Alistair R Evans
- School of Biological Sciences, 18 Innovation Walk, Monash University, Victoria, 3800, Australia
- Sciences Department, Museums Victoria, Melbourne, Victoria, 3001, Australia
| | - Lawrence R Heaney
- Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, 60605, United States
| | - Roberto Portela Miguez
- Natural History Museum of London, Department of Life Sciences, Mammal Section, London, United Kingdom
| | - Kevin C Rowe
- Sciences Department, Museums Victoria, Melbourne, Victoria, 3001, Australia
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon - CC 064 - 34095, Montpellier Cedex 5, France
| |
Collapse
|
38
|
Benson RBJ, Starmer-Jones E, Close RA, Walsh SA. Comparative analysis of vestibular ecomorphology in birds. J Anat 2018; 231:990-1018. [PMID: 29156494 DOI: 10.1111/joa.12726] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 02/06/2023] Open
Abstract
The bony labyrinth of vertebrates houses the semicircular canals. These sense rotational accelerations of the head and play an essential role in gaze stabilisation during locomotion. The sizes and shapes of the semicircular canals have hypothesised relationships to agility and locomotory modes in many groups, including birds, and a burgeoning palaeontological literature seeks to make ecological interpretations from the morphology of the labyrinth in extinct species. Rigorous tests of form-function relationships for the vestibular system are required to support these interpretations. We test the hypothesis that the lengths, streamlines and angles between the semicircular canals are related to body size, wing kinematics and flying style in birds. To do this, we applied geometric morphometrics and multivariate phylogenetic comparative methods to a dataset of 64 three-dimensional reconstructions of the endosseous labyrinth obtained using micro-computed tomography scanning of bird crania. A strong relationship between centroid size of the semicircular canals and body size indicates that larger birds have longer semicircular canals compared with their evolutionary relatives. Wing kinematics related to manoeuvrability (and quantified using the brachial index) explain a small additional portion of the variance in labyrinth size. We also find strong evidence for allometric shape change in the semicircular canals of birds, indicating that major aspects of the shape of the avian labyrinth are determined by spatial constraints. The avian braincase accommodates a large brain, a large eye and large semicircular canals compared with other tetrapods. Negative allometry of these structures means that the restriction of space within the braincase is intense in small birds. This may explain our observation that the angles between planes of the semicircular canals of birds deviate more strongly from orthogonality than those of mammals, and especially from agile, gliding and flying mammals. Furthermore, we find little support for relationships between labyrinth shape and flying style or wing kinematics. Overall, our results suggest that the topological problem of fitting long semicircular canals into a spatially constrained braincase is more important in determining the shape of the avian labyrinth than the specifics of locomotory style or agility. Our results tentatively indicate a link between visual acuity and proportional size of the labyrinth among birds. This suggests that the large labyrinths of birds compared with other tetrapods may result from their generally high visual acuities, and not directly from their ability to fly. The endosseous labyrinths of extinct birds and their close dinosaurian relatives may allow broad inferences about flight or vision, but so far provide few specific insights into detailed aspects of locomotion.
Collapse
Affiliation(s)
| | | | - Roger A Close
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Stig A Walsh
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK.,School of GeoSciences, The King's Buildings, Edinburgh, UK
| |
Collapse
|
39
|
Belli HM, Bresee CS, Graff MM, Hartmann MJZ. Quantifying the three-dimensional facial morphology of the laboratory rat with a focus on the vibrissae. PLoS One 2018; 13:e0194981. [PMID: 29621356 PMCID: PMC5886528 DOI: 10.1371/journal.pone.0194981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/14/2018] [Indexed: 11/24/2022] Open
Abstract
The morphology of an animal's face will have large effects on the sensory information it can acquire. Here we quantify the arrangement of cranial sensory structures of the rat, with special emphasis on the mystacial vibrissae (whiskers). Nearly all mammals have vibrissae, which are generally arranged in rows and columns across the face. The vibrissae serve a wide variety of important behavioral functions, including navigation, climbing, wake following, anemotaxis, and social interactions. To date, however, there are few studies that compare the morphology of vibrissal arrays across species, or that describe the arrangement of the vibrissae relative to other facial sensory structures. The few studies that do exist have exploited the whiskers' grid-like arrangement to quantify array morphology in terms of row and column identity. However, relying on whisker identity poses a challenge for comparative research because different species have different numbers and arrangements of whiskers. The present work introduces an approach to quantify vibrissal array morphology regardless of the number of rows and columns, and to quantify the array's location relative to other sensory structures. We use the three-dimensional locations of the whisker basepoints as fundamental parameters to generate equations describing the length, curvature, and orientation of each whisker. Results show that in the rat, whisker length varies exponentially across the array, and that a hard limit on intrinsic curvature constrains the whisker height-to-length ratio. Whiskers are oriented to "fan out" approximately equally in dorsal-ventral and rostral-caudal directions. Quantifying positions of the other sensory structures relative to the whisker basepoints shows remarkable alignment to the somatosensory cortical homunculus, an alignment that would not occur for other choices of coordinate systems (e.g., centered on the midpoint of the eyes). We anticipate that the quantification of facial sensory structures, including the vibrissae, will ultimately enable cross-species comparisons of multi-modal sensing volumes.
Collapse
Affiliation(s)
- Hayley M. Belli
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Chris S. Bresee
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
| | - Matthew M. Graff
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Mitra J. Z. Hartmann
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
40
|
Abstract
The semicircular canal (SC) system of the inner ear detects head angular accelerations and is essential for navigation and spatial awareness in vertebrates. Because the bony labyrinth encloses the membranous labyrinth SCs, it can be used as a proxy for animal behavior. The bony labyrinth of dicynodonts, a clade of herbivorous non-mammalian synapsids, has only been described in a handful of individuals and remains particularly obscure. Here we describe the bony labyrinth anatomy of three Endothiodon cf. bathystoma specimens from Mozambique based on digital reconstructions from propagation phase-contrast synchrotron micro-computed tomography. We compare these findings with the bony labyrinth anatomy of their close relative Niassodon. The bony labyrinths of Endothiodon and Niassodon are relatively similar and show only differences in the shape of the horizontal SCs and the orientation of the vertical SCs. When compared to extant mammals, Endothiodon and Niassodon have highly eccentric SCs. In addition, the Endothiodon SCs are nearly orthogonal. An eccentric and orthogonal SC morphology is consistent with a specialization in rapid head movements, which are typical of foraging or feeding behaviors. Furthermore, we estimate the body mass of these Endothiodon specimens at ~116 to 182 kg, based on the average SC radii calculated using a linear regression model optimized by the Amemiya Prediction Criterion. Our findings provide novel insights into the paleobiology of Endothiodon which are consistent with the peculiar feeding mechanism among dicynodonts presumed from their multiple postcanine toothrows.
Collapse
|
41
|
Schellhorn R. Intraspecific variation in the domestic cat bony labyrinth revealed by different measurement techniques. J Morphol 2017; 279:409-417. [PMID: 29194713 DOI: 10.1002/jmor.20781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 11/10/2022]
Abstract
The knowledge of intraspecific variation is important to make assumptions on an interspecific level. To study intraspecific variation in the bony labyrinth morphology of the domestic cat, eleven specimens of Felis silvestris catus and two additional subspecies (F. s. lybica, F. s. ornata) were investigated. The sample comprises skulls of adult males and females, as well as juvenile cats. Each bony labyrinth endocast was virtually reconstructed based on µCT scans. To estimate the radius of curvature of each inner ear semicircular canal, three different approaches were tested. The comparison of the different methods resulted in different absolute values for the measured radii. The assumed best structure to precisely characterize the size of a semicircular canal is the inner perimeter. Within the tested sample, the anterior semicircular canal is always the largest, while the posterior semicircular canal is the second largest and the lateral semicircular canal the smallest in most cases. The coefficient of variation lies below 10% for all bony labyrinth measurements within the sample. The inner perimeter values of each semicircular canal are similar within all investigated specimens, even though the skull length of adult cats is twice as long as that of juvenile cats. Thus, inner ear biometry of the domestic cat seems stable throughout growth series and can therefore be used for systematic and ecological studies and the inclusion of juvenile individuals is reasonable. It is noteworthy that the inner perimeter values of the semicircular canals do not vary as much as the values of the angles spanned between the three canals within the sample. The inner ear within the cat skull is oriented about 25° to 31° to the palate (angle between the plane anchored to the lateral semicircular canals (SC) and the plane anchored to the palate). The cochlea coils between 3.00 and 3.25 turns in the investigated sample.
Collapse
Affiliation(s)
- Rico Schellhorn
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, Bonn, 53115, Germany
| |
Collapse
|
42
|
Amson E, Arnold P, van Heteren AH, Canoville A, Nyakatura JA. Trabecular architecture in the forelimb epiphyses of extant xenarthrans (Mammalia). Front Zool 2017; 14:52. [PMID: 29213295 PMCID: PMC5707916 DOI: 10.1186/s12983-017-0241-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Background Bone structure has a crucial role in the functional adaptations that allow vertebrates to conduct their diverse lifestyles. Much has been documented regarding the diaphyseal structure of long bones of tetrapods. However, the architecture of trabecular bone, which is for instance found within the epiphyses of long bones, and which has been shown experimentally to be extremely plastic, has received little attention in the context of lifestyle adaptations (virtually only in primates). We therefore investigated the forelimb epiphyses of extant xenarthrans, the placental mammals including the sloths, anteaters, and armadillos. They are characterised by several lifestyles and degrees of fossoriality involving distinct uses of their forelimb. We used micro computed tomography data to acquire 3D trabecular parameters at regions of interest (ROIs) for all extant genera of xenarthrans (with replicates). Traditional, spherical, and phylogenetically informed statistics (including the consideration of size effects) were used to characterise the functional signal of these parameters. Results Several trabecular parameters yielded functional distinctions. The main direction of the trabeculae distinguished lifestyle categories for one ROI (the radial trochlea). Among the other trabecular parameters, it is the degree of anisotropy (i.e., a preferential alignment of the trabeculae) that yielded the clearest functional signal. For all ROIs, the armadillos, which represent the fully terrestrial and fossorial category, were found as characterised by a greater degree of anisotropy (i.e., more aligned trabeculae). Furthermore, the trabeculae of the humeral head of the most fossorial armadillos were also found to be more anisotropic than in the less fossorial species. Conclusions Most parameters were marked by an important intraspecific variability and by a size effect, which could, at least partly, be masking the functional signal. But for some parameters, the degree of anisotropy in particular, a clear functional distinction was recovered. Along with data on primates, our findings suggest that a trabecular architecture characterised by a greater degree of anisotropy is to be expected in species in which the relevant epiphyses withstand a restricted range of load directions. Trabecular architecture therefore is a promising research avenue for the reconstruction of lifestyles in extinct or cryptic species. Electronic supplementary material The online version of this article (10.1186/s12983-017-0241-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eli Amson
- AG Morphologie und Formengeschichte, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany.,Bild Wissen Gestaltung. Ein Interdisziplinäres Labor, Humboldt Universität zu Berlin, Sophienstraße 22a, 10178 Berlin, Germany
| | - Patrick Arnold
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743 Jena, Germany
| | - Anneke H van Heteren
- Sektion Mammalogie, Zoologische Staatssammlung München, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Münchhausenstraße 21, 81247 Munich, Germany
| | - Aurore Canoville
- Steinmann Institute for Geology, Mineralogy, and Paleontology, University of Bonn, Nußallee 8, D-53113 Bonn, Germany
| | - John A Nyakatura
- AG Morphologie und Formengeschichte, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany.,Bild Wissen Gestaltung. Ein Interdisziplinäres Labor, Humboldt Universität zu Berlin, Sophienstraße 22a, 10178 Berlin, Germany
| |
Collapse
|
43
|
Size Variation under Domestication: Conservatism in the inner ear shape of wolves, dogs and dingoes. Sci Rep 2017; 7:13330. [PMID: 29042574 PMCID: PMC5645459 DOI: 10.1038/s41598-017-13523-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/25/2017] [Indexed: 11/08/2022] Open
Abstract
A broad sample of wolves, dingoes, and domesticated dogs of different kinds and time periods was used to identify changes in size and shape of the organs of balance and hearing related to domestication and to evaluate the potential utility of uncovered patterns as markers of domestication. Using geometric morphometrics coupled with non-invasive imaging and three-dimensional reconstructions, we exposed and compared complex structures that remain largely conserved. There is no statistically significant difference in the levels of shape variation between prehistoric and modern dogs. Shape variance is slightly higher for the different components of the inner ear in modern dogs than in wolves, but these differences are not significant. Wolves express a significantly greater level of variance in the angle between the lateral and the posterior canal than domestic dog breeds. Wolves have smaller levels of size variation than dogs. In terms of the shape of the semicircular canals, dingoes reflect the mean shape in the context of variation in the sample. This mirrors the condition of feral forms in other organs, in which there is an incomplete return to the characteristics of the ancestor. In general, morphological diversity or disparity in the inner ear is generated by scaling.
Collapse
|
44
|
Koyabu D, Hosojima M, Endo H. Into the dark: patterns of middle ear adaptations in subterranean eulipotyphlan mammals. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170608. [PMID: 28989763 PMCID: PMC5627103 DOI: 10.1098/rsos.170608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/21/2017] [Indexed: 05/06/2023]
Abstract
Evolution of the middle ear ossicles was a key innovation for mammals, enhancing the transmission of airborne sound. Radiation into various habitats from a terrestrial environment resulted in diversification of the auditory mechanisms among mammals. However, due to the paucity of phylogenetically controlled investigations, how middle ear traits have diversified with functional specialization remains unclear. In order to identify the respective patterns for various lifestyles and to gain insights into fossil forms, we employed a high-resolution tomography technique and compared the middle ear morphology of eulipotyphlan species (moles, shrews and hedgehogs), a group that has radiated into various environments, such as terrestrial, aquatic and subterranean habitats. Three-dimensional geometric morphometric analysis was conducted within a phylogenetically controlled framework. Quantitative shapes were found to strongly reflect the degree of subterranean lifestyle and weakly involve phylogeny. Our analyses demonstrate that subterranean adaptation should include a relatively shorter anterior process of the malleus, an enlarged incus, an enlarged stapes footplate and a reduction of the orbicular apophysis. These traits arguably allow improving low-frequency sound transmission at low frequencies and inhibiting the low-frequency noise which disturbs the subterranean animals in hearing airborne sounds.
Collapse
Affiliation(s)
- Daisuke Koyabu
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033 Tokyo, Japan
| | | | | |
Collapse
|
45
|
Le Maître A, Schuetz P, Vignaud P, Brunet M. New data about semicircular canal morphology and locomotion in modern hominoids. J Anat 2017; 231:95-109. [PMID: 28523740 PMCID: PMC5472533 DOI: 10.1111/joa.12619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2017] [Indexed: 11/28/2022] Open
Abstract
The labyrinth has two functional parts: the cochlea for audition and the vestibular system for equilibrioception. In the latter, the semicircular ducts and the otolithic organs are sensitive to rotational and linear accelerations of the head, respectively. The labyrinthine morphology influences perception accuracy, hence the adaptation to a specific locomotor pattern. The aim of this study is to determine the relationship between locomotion and semicircular canal morphology using geometric morphometrics, and to explain these links with existing functional models. The influence of factors other than functional constraints on labyrinthine morphology is discussed. The left bony labyrinth of 65 specimens was extracted virtually. Five extant hominoid species with various locomotion modes were sampled. A set of 13 landmarks was placed on the semicircular canals. After a Procrustes fit, their coordinates were analyzed using a principal component analysis. It was found that labyrinthine morphology is significantly distinct between species. More specifically, the differences involve a posterolateral projection of the lateral semicircular canal and the rotation of this canal relative to the vertical canals. This rotation occurs in the sagittal plane, which is consistent with previous studies based on traditional morphometrics. Among extant hominoids, the shape of the canals potentially discriminates species based on posture. This result could be used to reconstruct the locomotor pattern of fossil hominoids.
Collapse
Affiliation(s)
- Anne Le Maître
- Institut de Paléoprimatologie et Paléontologie Humaine: Evolution et Paléoenvironnements (IPHEP)UMR 7262 INEECNRSUniversité de PoitiersPoitiersFrance
- Present address: Department of Theoretical BiologyUniversity of ViennaA‐1090ViennaAustria
| | - Philipp Schuetz
- Centre for X‐ray AnalyticsSwiss Federal Laboratories for Materials Science and Technology (EMPA)DübendorfSwitzerland
- Present address: Lucerne University of Applied Sciences and ArtsCH‐6048HorwSwitzerland
| | - Patrick Vignaud
- Institut de Paléoprimatologie et Paléontologie Humaine: Evolution et Paléoenvironnements (IPHEP)UMR 7262 INEECNRSUniversité de PoitiersPoitiersFrance
| | - Michel Brunet
- Institut de Paléoprimatologie et Paléontologie Humaine: Evolution et Paléoenvironnements (IPHEP)UMR 7262 INEECNRSUniversité de PoitiersPoitiersFrance
- Chaire de Paléontologie humaineCollège de FranceParisFrance
| |
Collapse
|
46
|
Pfaff C, Czerny S, Nagel D, Kriwet J. Functional morphological adaptations of the bony labyrinth in marsupials (Mammalia, Theria). J Morphol 2017; 278:742-749. [PMID: 28345247 DOI: 10.1002/jmor.20669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/23/2017] [Accepted: 02/19/2017] [Indexed: 11/06/2022]
Abstract
Diprotodontia represents the largest and ecologically most distinct order of marsupials occurring in Australasian being highly divers in size, locomotion, habitat preferences, feeding, and activity pattern. The spatial orientation in the habitat and therefore the three-dimensional space is detected by the vestibular system of the inner ear, more precisely by the three semicircular canals. In this study, we investigated the bony labyrinth of diprotodontian and selected non-diprotodontian marsupial mammals of almost all genera with noninvasive micro-CT scanning and 3D-reconstructions. In principal component analyses, the subterranean taxon can be separated from gliding and saltatorial taxa, whereas arboreal species can be separated from saltatorial specimens. The highest PCA loadings of this functional distinction are clearly found in the diameter of the semicircular canals, whereas the overall shape (height, width, length) of the semicircular canals is less important. Additionally, the investigated arboreal and fossorial species of South America are nested in the morphospace of the Australasian taxa. Even if a phylogenetic signal in the anatomy of the bony labyrinth cannot be excluded entirely, the main functional morphological signal of the vestibular system is found in the diameter of the semicircular canals. With the large dataset of extant marsupial mammals analysed here, the locomotion mode of extinct taxa can be inferred in future studies independent of any evidence of postcranial material.
Collapse
Affiliation(s)
- Cathrin Pfaff
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Stefan Czerny
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Doris Nagel
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Jürgen Kriwet
- Department of Palaeontology, University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Schnetz L, Kriwet J, Pfaff C. Virtual reconstruction of the skeletal labyrinth of two lamnid sharks (Elasmobranchii, Lamniformes). JOURNAL OF FISH BIOLOGY 2017; 90:1083-1089. [PMID: 27878818 DOI: 10.1111/jfb.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
The first virtual reconstruction of the skeletal labyrinth of the porbeagle shark Lamna nasus and the shortfin mako shark Isurus oxyrinchus is presented here using high-resolution micro-computed tomography. The results, in comparison with previously published information, suggest relationships between skeletal labyrinth morphology and locomotion mode in chondrichthyans, but also show that further studies are required to establish such connections. Nevertheless, this study adds to the knowledge of the skeletal labyrinth morphology in two apex elasmobranch species.
Collapse
Affiliation(s)
- L Schnetz
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Institute of Palaeontology, Geozentrum, Althanstrasse 14, 1090, Wien, Austria
| | - J Kriwet
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Institute of Palaeontology, Geozentrum, Althanstrasse 14, 1090, Wien, Austria
| | - C Pfaff
- University of Vienna, Faculty of Earth Sciences, Geography and Astronomy, Institute of Palaeontology, Geozentrum, Althanstrasse 14, 1090, Wien, Austria
| |
Collapse
|
48
|
Pfaff C, Nagel D, Gunnell G, Weber GW, Kriwet J, Morlo M, Bastl K. Palaeobiology of Hyaenodon exiguus (Hyaenodonta, Mammalia) based on morphometric analysis of the bony labyrinth. J Anat 2017; 230:282-289. [PMID: 27666133 PMCID: PMC5244453 DOI: 10.1111/joa.12545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2016] [Indexed: 12/01/2022] Open
Abstract
Species of the extinct genus Hyaenodon were among the largest carnivorous mammals from the Late Eocene through Early Miocene in North America, Europe and Asia. The origin, phylogeny and palaeobiology of Hyaenodonta are still ambiguous. Most previous studies focused on teeth and dental function in these highly adapted species, which might be influenced by convergent morphologies. The anatomy of the bony labyrinth in vertebrates is generally quite conservative and, additionally, was used in functional-morphological studies. This study provides the first anatomical description of the bony labyrinth of the extinct European species Hyaenodon exiguus in comparison to selected extant carnivoran taxa discussed from a functional-morphological perspective. Hyaenodon exiguus may have occupied a hyaena-like dietary niche with a semi-arboreal lifestyle, based on the relative height, width and length of the semicircular canals of the inner ear. However, this contradicts previous functional-morphological studies focusing on the diameter of the canals, which presumably represent the signal of locomotion mode.
Collapse
Affiliation(s)
- Cathrin Pfaff
- Department of PalaeontologyFaculty of Earth SciencesUniversity of ViennaViennaAustria
| | - Doris Nagel
- Department of PalaeontologyFaculty of Earth SciencesUniversity of ViennaViennaAustria
| | - Gregg Gunnell
- Division of Fossil PrimatesDuke Lemur CenterDurhamNCUSA
| | - Gerhard W. Weber
- Department of AnthropologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Jürgen Kriwet
- Department of PalaeontologyFaculty of Earth SciencesUniversity of ViennaViennaAustria
| | - Michael Morlo
- Abt. für Paläoanthropologie und MesselforschungForschungsinstitut SenckenbergFrankfurt am MainGermany
| | - Katharina Bastl
- Department of PalaeontologyFaculty of Earth SciencesUniversity of ViennaViennaAustria
- Department of Oto‐Rhino‐LaryngologyResearch Group, Aerobiology and Pollen InformationMedical University of ViennaViennaAustria
| |
Collapse
|
49
|
Schultz JA, Zeller U, Luo ZX. Inner ear labyrinth anatomy of monotremes and implications for mammalian inner ear evolution. J Morphol 2016; 278:236-263. [DOI: 10.1002/jmor.20632] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/24/2016] [Accepted: 10/22/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Julia A. Schultz
- Department of Organismal Biology and Anatomy; University of Chicago; 1027 East 57th Street Chicago Illinois 60637
| | - Ulrich Zeller
- FG Spezielle Zoologie, Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Lebenswissenschaftliche Fakultät, Humboldt-Universität zu Berlin; Ziegelstraße 5-9 Berlin 10117 Germany
| | - Zhe-Xi Luo
- Department of Organismal Biology and Anatomy; University of Chicago; 1027 East 57th Street Chicago Illinois 60637
| |
Collapse
|
50
|
David R, Stoessel A, Berthoz A, Spoor F, Bennequin D. Assessing morphology and function of the semicircular duct system: introducing new in-situ visualization and software toolbox. Sci Rep 2016; 6:32772. [PMID: 27604473 PMCID: PMC5015051 DOI: 10.1038/srep32772] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/15/2016] [Indexed: 11/12/2022] Open
Abstract
The semicircular duct system is part of the sensory organ of balance and essential for navigation and spatial awareness in vertebrates. Its function in detecting head rotations has been modelled with increasing sophistication, but the biomechanics of actual semicircular duct systems has rarely been analyzed, foremost because the fragile membranous structures in the inner ear are hard to visualize undistorted and in full. Here we present a new, easy-to-apply and non-invasive method for three-dimensional in-situ visualization and quantification of the semicircular duct system, using X-ray micro tomography and tissue staining with phosphotungstic acid. Moreover, we introduce Ariadne, a software toolbox which provides comprehensive and improved morphological and functional analysis of any visualized duct system. We demonstrate the potential of these methods by presenting results for the duct system of humans, the squirrel monkey and the rhesus macaque, making comparisons with past results from neurophysiological, oculometric and biomechanical studies. Ariadne is freely available at http://www.earbank.org.
Collapse
Affiliation(s)
- R. David
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités-MNHN, CNRS, UPMC-Paris6, Muséum national d’Histoire naturelle, CP38, 57 rue Cuvier, F-75005, Paris, France
| | - A. Stoessel
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - A. Berthoz
- Collège de France, 11 place Marcelin Berthelot, 75231 Paris, France
| | - F. Spoor
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - D. Bennequin
- Université Paris Diderot-Paris 7, UFR de Mathématiques, Equipe Géométrie et Dynamique, Bâtiment Sophie Germain, 8 place Aurélie Nemours, 75013 Paris Cedex 13, France
| |
Collapse
|