1
|
Rolland A, Pasquier E, Malvezin P, Cassandra C, Dumas M, Dussutour A. Behavioural changes in slime moulds over time. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220063. [PMID: 36802777 PMCID: PMC9939273 DOI: 10.1098/rstb.2022.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/21/2022] [Indexed: 02/21/2023] Open
Abstract
Changes in behaviour over the lifetime of single-cell organisms have primarily been investigated in response to environmental stressors. However, growing evidence suggests that unicellular organisms undergo behavioural changes throughout their lifetime independently of the external environment. Here we studied how behavioural performances across different tasks vary with age in the acellular slime mould Physarum polycephalum. We tested slime moulds aged from 1 week to 100 weeks. First, we showed that migration speed decreases with age in favourable and adverse environments. Second, we showed that decision making and learning abilities do not deteriorate with age. Third, we revealed that old slime moulds can recover temporarily their behavioural performances if they go throughout a dormant stage or if they fuse with a young congener. Last, we observed the response of slime mould facing a choice between cues released by clone mates of different age. We found that both old and young slime moulds are attracted preferentially toward cues left by young slime moulds. Although many studies have studied behaviour in unicellular organisms, few have taken the step of looking for changes in behaviour over the lifetime of individuals. This study extends our knowledge of the behavioural plasticity of single-celled organisms and establishes slime moulds as a promising model to investigate the effect of ageing on behaviour at the cellular level. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Angèle Rolland
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Emilie Pasquier
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Paul Malvezin
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Craig Cassandra
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Mathilde Dumas
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - A. Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| |
Collapse
|
2
|
Bales KL, Hang S, Paulus JP, Jahanfard E, Manca C, Jost G, Boyer C, Bern R, Yerumyan D, Rogers S, Mederos SL. Individual differences in social homeostasis. Front Behav Neurosci 2023; 17:1068609. [PMID: 36969803 PMCID: PMC10036751 DOI: 10.3389/fnbeh.2023.1068609] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
The concept of “social homeostasis”, introduced by Matthews and Tye in 2019, has provided a framework with which to consider our changing individual needs for social interaction, and the neurobiology underlying this system. This model was conceived as including detector systems, a control center with a setpoint, and effectors which allow us to seek out or avoid additional social contact. In this article, we review and theorize about the many different factors that might contribute to the setpoint of a person or animal, including individual, social, cultural, and other environmental factors. We conclude with a consideration of the empirical challenges of this exciting new model.
Collapse
Affiliation(s)
- Karen L. Bales
- Department of Psychology, University of California, Davis, >Davis, CA, United States
- *Correspondence: Karen L. Bales
| | - Sally Hang
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - John P. Paulus
- Graduate Group in Neuroscience, University of California, Davis, Davis, CA, United States
| | - Elaina Jahanfard
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Claudia Manca
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Geneva Jost
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Chase Boyer
- Graduate Group in Human Development, University of California, Davis, Davis, CA, United States
| | - Rose Bern
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Daniella Yerumyan
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Sophia Rogers
- Graduate Group in Psychology, University of California, Davis, Davis, CA, United States
| | - Sabrina L. Mederos
- Graduate Group in Animal Behavior, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
A Single-Pheromone Model Accounts for Empirical Patterns of Ant Colony Foraging Previously Modeled Using Two Pheromones. COGN SYST RES 2023. [DOI: 10.1016/j.cogsys.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
4
|
Gartland LA, Firth JA, Laskowski KL, Jeanson R, Ioannou CC. Sociability as a personality trait in animals: methods, causes and consequences. Biol Rev Camb Philos Soc 2021; 97:802-816. [PMID: 34894041 DOI: 10.1111/brv.12823] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Within animal populations there is variation among individuals in their tendency to be social, where more sociable individuals associate more with other individuals. Consistent inter-individual variation in 'sociability' is considered one of the major axes of personality variation in animals along with aggressiveness, activity, exploration and boldness. Not only is variation in sociability important in terms of animal personalities, but it holds particular significance for, and can be informed by, two other topics of major interest: social networks and collective behaviour. Further, knowledge of what generates inter-individual variation in social behaviour also holds applied implications, such as understanding disorders of social behaviour in humans. In turn, research using non-human animals in the genetics, neuroscience and physiology of these disorders can inform our understanding of sociability. For the first time, this review brings together insights across these areas of research, across animal taxa from primates to invertebrates, and across studies from both the laboratory and field. We show there are mixed results in whether and how sociability correlates with other major behavioural traits. Whether and in what direction these correlations are observed may differ with individual traits such as sex and body condition, as well as ecological conditions. A large body of evidence provides the proximate mechanisms for why individuals vary in their social tendency. Evidence exists for the importance of genes and their expression, chemical messengers, social interactions and the environment in determining an individual's social tendency, although the specifics vary with species and other variables such as age, and interactions amongst these proximate factors. Less well understood is how evolution can maintain consistent variation in social tendencies within populations. Shifts in the benefits and costs of social tendencies over time, as well as the social niche hypothesis, are currently the best supported theories for how variation in sociability can evolve and be maintained in populations. Increased exposure to infectious diseases is the best documented cost of a greater social tendency, and benefits include greater access to socially transmitted information. We also highlight that direct evidence for more sociable individuals being safer from predators is lacking. Variation in sociability is likely to have broad ecological consequences, but beyond its importance in the spread of infectious diseases, direct evidence is limited to a few examples related to dispersal and invasive species biology. Overall, our knowledge of inter-individual variation in sociability is highly skewed towards the proximate mechanisms. Our review also demonstrates, however, that considering research from social networks and collective behaviour greatly enriches our understanding of sociability, highlighting the need for greater integration of these approaches into future animal personality research to address the imbalance in our understanding of sociability as a personality trait.
Collapse
Affiliation(s)
- Lizzy A Gartland
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, U.K
| | - Josh A Firth
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
| | - Kate L Laskowski
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, U.S.A
| | - Raphael Jeanson
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, 31062, Toulouse, France
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, U.K
| |
Collapse
|
5
|
Boussard A, Fessel A, Oettmeier C, Briard L, Döbereiner HG, Dussutour A. Adaptive behaviour and learning in slime moulds: the role of oscillations. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190757. [PMID: 33487112 PMCID: PMC7935053 DOI: 10.1098/rstb.2019.0757] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
The slime mould Physarum polycephalum, an aneural organism, uses information from previous experiences to adjust its behaviour, but the mechanisms by which this is accomplished remain unknown. This article examines the possible role of oscillations in learning and memory in slime moulds. Slime moulds share surprising similarities with the network of synaptic connections in animal brains. First, their topology derives from a network of interconnected, vein-like tubes in which signalling molecules are transported. Second, network motility, which generates slime mould behaviour, is driven by distinct oscillations that organize into spatio-temporal wave patterns. Likewise, neural activity in the brain is organized in a variety of oscillations characterized by different frequencies. Interestingly, the oscillating networks of slime moulds are not precursors of nervous systems but, rather, an alternative architecture. Here, we argue that comparable information-processing operations can be realized on different architectures sharing similar oscillatory properties. After describing learning abilities and oscillatory activities of P. polycephalum, we explore the relation between network oscillations and learning, and evaluate the organism's global architecture with respect to information-processing potential. We hypothesize that, as in the brain, modulation of spontaneous oscillations may sustain learning in slime mould. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Aurèle Boussard
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Adrian Fessel
- Institut für Biophysik, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Christina Oettmeier
- Institut für Biophysik, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Léa Briard
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | | | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| |
Collapse
|
6
|
Dussutour A. Learning in single cell organisms. Biochem Biophys Res Commun 2021; 564:92-102. [PMID: 33632547 DOI: 10.1016/j.bbrc.2021.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
The survival of all species requires appropriate behavioral responses to environmental challenges. Learning is one of the key processes to acquire information about the environment and adapt to changing and uncertain conditions. Learning has long been acknowledged in animals from invertebrates to vertebrates but remains a subject of debate in non-animal systems such a plants and single cell organisms. In this review I will attempt to answer the following question: are single cell organisms capable of learning? I will first briefly discuss the concept of learning and argue that the ability to acquire and store information through learning is pervasive and may be found in single cell organisms. Second, by focusing on habituation, the simplest form of learning, I will review a series of experiments showing that single cell organisms such as slime molds and ciliates display habituation and follow most of the criteria adopted by neuroscientists to define habituation. Then I will discuss disputed evidence suggesting that single cell organisms might also undergo more sophisticated forms of learning such as associative learning. Finally, I will stress out that the challenge for the future is less about whether or not to single cell organisms fulfill the definition of learning established from extensive studies in animal systems and more about acknowledging and understanding the range of behavioral plasticity exhibited by such fascinating organisms.
Collapse
Affiliation(s)
- Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, 31062, AD, France.
| |
Collapse
|
7
|
Briard L, Goujarde C, Bousquet C, Dussutour A. Stress signalling in acellular slime moulds and its detection by conspecifics. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190470. [PMID: 32420856 PMCID: PMC7331006 DOI: 10.1098/rstb.2019.0470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Unicellular organisms live in unpredictable environments. Therefore, they need to continuously assess environmental conditions and respond appropriately to survive and thrive. When subjected to rapid changes in their environment or to cellular damages, unicellular organisms such as bacteria exhibit strong physiological reactions called stress responses that can be sensed by conspecifics. The ability to detect and use stress-related cues released by conspecifics to acquire information about the environment constitutes an adaptive survival response by prompting the organism to avoid potential dangers. Here, we investigate stress signalling and its detection by conspecifics in a unicellular organism, Physarum polycephalum. Slime moulds were subjected to either biotic (i.e. nutritional) or abiotic (i.e. chemical and light) stressors or left undisturbed while they were exploring a homogeneous environment. Then, we observed the responses of slime moulds facing a choice between cues released by stressed clone mates and cues released by undisturbed ones. We found that slime moulds actively avoided environments previously explored by stressed clone mates. These results suggest that slime moulds, like bacteria or social amoeba, exhibit physiological responses to biotic and abiotic stresses that can be sensed by conspecifics. Our results establish slime moulds as a promising new model to investigate the use of social information in unicellular organisms. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
- L. Briard
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | | | | | | |
Collapse
|
8
|
Boussard A, Delescluse J, Pérez-Escudero A, Dussutour A. Memory inception and preservation in slime moulds: the quest for a common mechanism. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180368. [PMID: 31006372 DOI: 10.1098/rstb.2018.0368] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Learning and memory are indisputably key features of animal success. Using information about past experiences is critical for optimal decision-making in a fluctuating environment. Those abilities are usually believed to be limited to organisms with a nervous system, precluding their existence in non-neural organisms. However, recent studies showed that the slime mould Physarum polycephalum, despite being unicellular, displays habituation, a simple form of learning. In this paper, we studied the possible substrate of both short- and long-term habituation in slime moulds. We habituated slime moulds to sodium, a known repellent, using a 6 day training and turned them into a dormant state named sclerotia. Those slime moulds were then revived and tested for habituation. We showed that information acquired during the training was preserved through the dormant stage as slime moulds still showed habituation after a one-month dormancy period. Chemical analyses indicated a continuous uptake of sodium during the process of habituation and showed that sodium was retained throughout the dormant stage. Lastly, we showed that memory inception via constrained absorption of sodium for 2 h elicited habituation. Our results suggest that slime moulds absorbed the repellent and used it as a 'circulating memory'. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- A Boussard
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS , Toulouse 31062 , France
| | - J Delescluse
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS , Toulouse 31062 , France
| | - A Pérez-Escudero
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS , Toulouse 31062 , France
| | - A Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS , Toulouse 31062 , France
| |
Collapse
|
9
|
Patino-Ramirez F, Boussard A, Arson C, Dussutour A. Substrate composition directs slime molds behavior. Sci Rep 2019; 9:15444. [PMID: 31659267 PMCID: PMC6817824 DOI: 10.1038/s41598-019-50872-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023] Open
Abstract
Cells, including unicellulars, are highly sensitive to external constraints from their environment. Amoeboid cells change their cell shape during locomotion and in response to external stimuli. Physarum polycephalum is a large multinucleated amoeboid cell that extends and develops pseudopods. In this paper, changes in cell behavior and shape were measured during the exploration of homogenous and non-homogenous environments that presented neutral, and nutritive and/or adverse substances. In the first place, we developed a fully automated image analysis method to measure quantitatively changes in both migration and shape. Then we measured various metrics that describe the area covered, the exploration dynamics, the migration rate and the slime mold shape. Our results show that: (1) Not only the nature, but also the spatial distribution of chemical substances affect the exploration behavior of slime molds; (2) Nutritive and adverse substances both slow down the exploration and prevent the formation of pseudopods; and (3) Slime mold placed in an adverse environment preferentially occupies previously explored areas rather than unexplored areas using mucus secretion as a buffer. Our results also show that slime molds migrate at a rate governed by the substrate up until they get within a critical distance to chemical substances.
Collapse
Affiliation(s)
- Fernando Patino-Ramirez
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Aurèle Boussard
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France
| | - Chloé Arson
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France.
| |
Collapse
|
10
|
Dussutour A, Ma Q, Sumpter D. Phenotypic variability predicts decision accuracy in unicellular organisms. Proc Biol Sci 2019; 286:20182825. [PMID: 30963918 PMCID: PMC6408605 DOI: 10.1098/rspb.2018.2825] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/23/2019] [Indexed: 11/12/2022] Open
Abstract
When deciding between different options, animals including humans face the dilemma that fast decisions tend to be erroneous, whereas accurate decisions tend to be relatively slow. Recently, it has been suggested that differences in the efficacy with which animals make a decision relate closely to individual behavioural differences. In this paper, we tested this hypothesis in a unique unicellular organism, the slime mould Physarum polycephalum. We first confirmed that slime moulds differed consistently in their exploratory behaviour from 'fast' to 'slow' explorers. Second, we showed that slow explorers made more accurate decisions than fast explorers. Third, we demonstrated that slime moulds integrated food cues in time and achieved higher accuracy when sampling time was longer. Lastly, we showed that in a competition context, fast explorers excelled when a single food source was offered, while slow explorers excelled when two food sources varying in quality were offered. Our results revealed that individual differences in accuracy were partly driven by differences in exploratory behaviour. These findings support the hypothesis that decision-making abilities are associated with behavioural types, even in unicellular organisms.
Collapse
Affiliation(s)
- Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Qi Ma
- Mathematics Department, Uppsala University, Uppsala, Sweden
| | - David Sumpter
- Mathematics Department, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Wright CM, Lichtenstein JLL, Doering GN, Pretorius J, Meunier J, Pruitt JN. Collective personalities: present knowledge and new frontiers. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2639-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Vogel D, Dussutour A, Deneubourg JL. Symmetry breaking and inter-clonal behavioural variability in a slime mould. Biol Lett 2018; 14:20180504. [PMID: 30958252 PMCID: PMC6303507 DOI: 10.1098/rsbl.2018.0504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/16/2018] [Indexed: 11/12/2022] Open
Abstract
Cells are dynamic systems capable of switching from isotropic growth to polarized growth even in the absence of any pre-existing external asymmetry. Here, we study this process of symmetry breaking in the acellular slime mould Physarum polycephalum. In these experiments, slime moulds could grow on two identical opposed sources of calcium. We highlighted a positive correlation between growth dynamic, level of symmetry breaking and calcium concentration. We identified three populations of slime moulds within our clonal lineage with similar symmetry breaking behaviours but different motility characteristics. These behavioural differences between slime moulds emerged in the absence of any environmental differences. Such behavioural plasticity could generate cellular diversity, which can be critical for survival.
Collapse
Affiliation(s)
- David Vogel
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062 Toulouse, France
- School of Agriculture, Food and Wine (AFW), University of Adelaide, Adelaide, Australia
| | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062 Toulouse, France
| | - Jean-Louis Deneubourg
- Chemical Physics and Theoretical Biology (CPTB), Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| |
Collapse
|
13
|
Vogel D, Dussutour A. Direct transfer of learned behaviour via cell fusion in non-neural organisms. Proc Biol Sci 2017; 283:rspb.2016.2382. [PMID: 28003457 DOI: 10.1098/rspb.2016.2382] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/25/2016] [Indexed: 01/09/2023] Open
Abstract
Cell fusion is a fundamental phenomenon observed in all eukaryotes. Cells can exchange resources such as molecules or organelles during fusion. In this paper, we ask whether a cell can also transfer an adaptive response to a fusion partner. We addressed this question in the unicellular slime mould Physarum polycephalum, in which cell-cell fusion is extremely common. Slime moulds are capable of habituation, a simple form of learning, when repeatedly exposed to an innocuous repellent, despite lacking neurons and comprising only a single cell. In this paper, we present a set of experiments demonstrating that slime moulds habituated to a repellent can transfer this adaptive response by cell fusion to individuals that have never encountered the repellent. In addition, we show that a slime mould resulting from the fusion of a minority of habituated slime moulds and a majority of unhabituated ones still shows an adaptive response to the repellent. Finally, we further reveal that fusion must last a certain time to ensure an effective transfer of the behavioural adaptation between slime moulds. Our results provide strong experimental evidence that slime moulds exhibit transfer of learned behaviour during cell fusion and raise the possibility that similar phenomena may occur in other cell-cell fusion systems.
Collapse
Affiliation(s)
- David Vogel
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062 Toulouse, France.,Unit of Social Ecology, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
14
|
Swarm intelligence in fish? The difficulty in demonstrating distributed and self-organised collective intelligence in (some) animal groups. Behav Processes 2017; 141:141-151. [DOI: 10.1016/j.beproc.2016.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 12/25/2022]
|
15
|
Ioannou CC, Ramnarine IW, Torney CJ. High-predation habitats affect the social dynamics of collective exploration in a shoaling fish. SCIENCE ADVANCES 2017; 3:e1602682. [PMID: 28508069 PMCID: PMC5415332 DOI: 10.1126/sciadv.1602682] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/08/2017] [Indexed: 06/07/2023]
Abstract
Collective decisions play a major role in the benefits that animals gain from living in groups. Although the mechanisms of how groups collectively make decisions have been extensively researched, the response of within-group dynamics to ecological conditions is virtually unknown, despite adaptation to the environment being a cornerstone in biology. We investigate how within-group interactions during exploration of a novel environment are shaped by predation, a major influence on the behavior of prey species. We tested guppies (Poecilia reticulata) from rivers varying in predation risk under controlled laboratory conditions and find the first evidence of differences in group interactions between animals adapted to different levels of predation. Fish from high-predation habitats showed the strongest negative relationship between initiating movements and following others, which resulted in less variability in the total number of movements made between individuals. This relationship between initiating movements and following others was associated with differentiation into initiators and followers, which was only observed in fish from high-predation rivers. The differentiation occurred rapidly, as trials lasted 5 min, and was related to shoal cohesion, where more diverse groups from high-predation habitats were more cohesive. Our results show that even within a single species over a small geographical range, decision-making in a social context can vary with local ecological factors.
Collapse
Affiliation(s)
| | - Indar W. Ramnarine
- Department of Life Sciences, University of the West Indies at St. Augustine, St. Augustine, Trinidad and Tobago
| | - Colin J. Torney
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW, U.K
| |
Collapse
|
16
|
Nicolis SC, Halloy J, Deneubourg JL. Transition between segregation and aggregation: the role of environmental constraints. Sci Rep 2016; 6:32703. [PMID: 27599636 PMCID: PMC5013323 DOI: 10.1038/srep32703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/12/2016] [Indexed: 11/10/2022] Open
Abstract
Interactions between sub-groups (species, strains) have been reported in many species among many taxae. We propose a generic model based on earlier experiments accounting for both conspecific (or between individuals of the same strains) and heterospecific (or between strains) interactions. The model predicts different collective behaviours without any change of individuals’ algorithm as some key generic parameters such as the carrying capacity, the number of individuals involved and the strength of inter-attraction between sub-groups are varied. A key result is the possibility for sub-groups to segregate between patches and for transition between different patterns, even in absence of active agonistic behaviour. The model can be viewed as a network of feedbacks that is independent of the signals or cues involved in mixed groups interactions. Its predictions are therefore applicable to a wide spectrum of situations including social insects (inter castes interaction) and provides insights on possible mechanisms that can be at work.
Collapse
Affiliation(s)
- Stamatios C Nicolis
- Unit of Social Ecology Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - José Halloy
- Laboratoire Interdisciplinaire des Énergies de De main, Université Paris Diderot, Paris VII, France
| | | |
Collapse
|
17
|
Kulkarni P, Getzenberg RH. Disorder, Promiscuous Interactions, and Stochasticity Regulate State Switching in the Unstable Prostate. J Cell Biochem 2016; 117:2235-40. [PMID: 27152744 DOI: 10.1002/jcb.25578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
A causal link between benign prostatic hyperplasia (BPH) and prostate cancer has long been suspected but not widely accepted. A new model is proposed that supports such a connection. In contrast to the prevailing wisdom, our model, that draws on dynamical systems theory, suggests that in response to stress, epithelial cells in the unstable gland can give rise to both types of diseases via a phenotypic switching mechanism. The central idea is that phenotypic switching is a stochastic process which exploits the plasticity of the epithelial cell. It is driven by 'noise' contributed by the conformational dynamics of proteins that are intrinsically disordered. In a system that is noisy when stressed, disorder promotes promiscuity, unmasks latent information, and rewires the network to cause phenotypic switching. Cells with newly acquired phenotypes can transcend the traditional zonal boundaries to give rise to BPH or prostate cancer depending on the microenvironment. Establishing causality between the two diseases may provide us with an opportunity to better understand their etiology and guide prevention and treatment strategies. J. Cell. Biochem. 117: 2235-2240, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland
| | | |
Collapse
|