1
|
Song C, Spaak JW. Trophic tug-of-war: Coexistence mechanisms within and across trophic levels. Ecol Lett 2024; 27:e14409. [PMID: 38590122 DOI: 10.1111/ele.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Ecological communities encompass rich diversity across multiple trophic levels. While modern coexistence theory has been widely applied to understand community assembly, its traditional formalism only allows assembly within a single trophic level. Here, using an expanded definition of niche and fitness differences applicable to multitrophic communities, we study how diversity within and across trophic levels affects species coexistence. If each trophic level is analysed separately, both lower- and higher trophic levels are governed by the same coexistence mechanisms. In contrast, if the multitrophic community is analysed as a whole, different trophic levels are governed by different coexistence mechanisms: coexistence at lower trophic levels is predominantly limited by fitness differences, whereas coexistence at higher trophic levels is predominantly limited by niche differences. This dichotomy in coexistence mechanisms is supported by theoretical derivations, simulations of phenomenological and trait-based models, and a case study of a primeval forest ecosystem. Our work provides a general and testable prediction of coexistence mechanism operating in multitrophic communities.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Jurg W Spaak
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| |
Collapse
|
2
|
Spaak JW, Schreiber SJ. Building modern coexistence theory from the ground up: The role of community assembly. Ecol Lett 2023; 26:1840-1861. [PMID: 37747362 DOI: 10.1111/ele.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 09/26/2023]
Abstract
Modern coexistence theory (MCT) is one of the leading methods to understand species coexistence. It uses invasion growth rates-the average, per-capita growth rate of a rare species-to identify when and why species coexist. Despite significant advances in dissecting coexistence mechanisms when coexistence occurs, MCT relies on a 'mutual invasibility' condition designed for two-species communities but poorly defined for species-rich communities. Here, we review well-known issues with this component of MCT and propose a solution based on recent mathematical advances. We propose a clear framework for expanding MCT to species-rich communities and for understanding invasion resistance as well as coexistence, especially for communities that could not be analysed with MCT so far. Using two data-driven community models from the literature, we illustrate the utility of our framework and highlight the opportunities for bridging the fields of community assembly and species coexistence.
Collapse
Affiliation(s)
- Jurg W Spaak
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, USA
| |
Collapse
|
3
|
Ontiveros VJ, Capitán JA, Casamayor EO, Alonso D. Colonization-persistence trade-offs in natural bacterial communities. Proc Biol Sci 2023; 290:20230709. [PMID: 37403500 PMCID: PMC10320335 DOI: 10.1098/rspb.2023.0709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Fitness equalizing mechanisms, such as trade-offs, are recognized as one of the main factors promoting species coexistence in community ecology. However, they have rarely been explored in microbial communities. Although microbial communities are highly diverse, the coexistence of their multiple taxa is largely attributed to niche differences and high dispersal rates, following the principle 'everything is everywhere, but the environment selects'. We use a dynamical stochastic model based on the theory of island biogeography to study highly diverse bacterial communities over time across three different systems (soils, alpine lakes and shallow saline lakes). Assuming fitness equalization mechanisms, here we newly analytically derive colonization-persistence trade-offs, and report a signal of such trade-offs in natural bacterial communities. Moreover, we show that different subsets of species in the community drive this trade-off. Rare taxa, which are occasional and more likely to follow independent colonization/extinction dynamics, drive this trade-off in the aquatic communities, while the core sub-community did it in the soils. We conclude that equalizing mechanisms may be more important than previously recognized in bacterial communities. Our work also emphasizes the fundamental value of dynamical models for understanding temporal patterns and processes in highly diverse communities.
Collapse
Affiliation(s)
- Vicente J. Ontiveros
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| | - José A. Capitán
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
- Complex Systems Group. Department of Applied Mathematics, Universidad Politécnica de Madrid. Av. Juan de Herrera, 6. E-28040 Madrid, Spain
| | - Emilio O. Casamayor
- Integrative Freshwater Ecology Group, Centre of Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| | - David Alonso
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| |
Collapse
|
4
|
Spaak JW, Adler PB, Ellner SP. Mechanistic Models of Trophic Interactions: Opportunities for Species Richness and Challenges for Modern Coexistence Theory. Am Nat 2023; 202:E1-E16. [PMID: 37384764 DOI: 10.1086/724660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractMany potential mechanisms promote species coexistence, but we know little about their relative importance. To compare multiple mechanisms, we modeled a two-trophic planktonic food web based on mechanistic species interactions and empirically measured species traits. We simulated thousands of possible communities under realistic and altered interaction strengths to assess the relative importance of three potential drivers of phytoplankton and zooplankton species richness: resource-mediated coexistence mechanisms, predator-prey interactions, and trait trade-offs. Next, we computed niche and fitness differences of competing zooplankton to obtain a deeper understanding of how these mechanisms determine species richness. We found that predator-prey interactions were the most important driver of phytoplankton and zooplankton species richness and that large zooplankton fitness differences were associated with low species richness, but zooplankton niche differences were not associated with species richness. However, for many communities we could not apply modern coexistence theory to compute niche and fitness differences of zooplankton because of conceptual issues with the invasion growth rates arising from trophic interactions. We therefore need to expand modern coexistence theory to fully investigate multitrophic-level communities.
Collapse
|
5
|
García-Callejas D, Godoy O, Buche L, Hurtado M, Lanuza JB, Allen-Perkins A, Bartomeus I. Non-random interactions within and across guilds shape the potential to coexist in multi-trophic ecological communities. Ecol Lett 2023; 26:831-842. [PMID: 36972904 DOI: 10.1111/ele.14206] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 03/29/2023]
Abstract
Theory posits that the persistence of species in ecological communities is shaped by their interactions within and across trophic guilds. However, we lack empirical evaluations of how the structure, strength and sign of biotic interactions drive the potential to coexist in diverse multi-trophic communities. Here, we model community feasibility domains, a theoretically informed measure of multi-species coexistence probability, from grassland communities comprising more than 45 species on average from three trophic guilds (plants, pollinators and herbivores). Contrary to our hypothesis, increasing community complexity, measured either as the number of guilds or community richness, did not decrease community feasibility. Rather, we observed that high degrees of species self-regulation and niche partitioning allow for maintaining larger levels of community feasibility and higher species persistence in more diverse communities. Our results show that biotic interactions within and across guilds are not random in nature and both structures significantly contribute to maintaining multi-trophic diversity.
Collapse
Affiliation(s)
- David García-Callejas
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
- School of Biological Sciences, University of Canterbury, 8140, Christchurch, Private Bag 4800, New Zealand
| | - Oscar Godoy
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | - Lisa Buche
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | - María Hurtado
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | - Jose B Lanuza
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Alfonso Allen-Perkins
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, ETSIDI, Technical University of Madrid, 28040, Madrid, Spain
| | | |
Collapse
|
6
|
Spaak JW, Ke P, Letten AD, De Laender F. Different measures of niche and fitness differences tell different tales. OIKOS 2022. [DOI: 10.1111/oik.09573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jurg W. Spaak
- Dept of Ecology and Evolutionary Biology, Cornell Univ. Ithaca NY USA
| | - Po‐Ju Ke
- Inst. of Ecology and Evolutionary Biology, National Taiwan Univ. Taipei Taiwan
- Dept of Ecology&Evolutionary Biology, Princeton Univ. Princeton NJ USA
| | - Andrew D. Letten
- School of Biological Sciences, Univ. of Queensland Brisbane QLD Australia
| | - Frederik De Laender
- Univ. of Namur Namur Belgium
- Inst. of Life‐Earth‐Environment, Namur Center for Complex Systems Namur Belgium
| |
Collapse
|
7
|
Hawlena H, Garrido M, Cohen C, Halle S, Cohen S. Bringing the Mechanistic Approach Back to Life: A Systematic Review of the Experimental Evidence for Coexistence and Four of Its Classical Mechanisms. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.898074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coexistence theories develop rapidly at the ecology forefront suffering from interdisciplinary gaps and a lack of universality. The modern coexistence theory (MCT) was developed to address these deficiencies by formulating the universal conditions for coexistence. However, despite this theory's mechanistic foundation, initially, it has only rarely been used to determine the exact mechanisms that govern the competitive outcome. Recent theoretical developments have made MCT more accessible to experimentalists, but they can be challenging in practice. We propose that a comprehensive understanding of species co-occurrence patterns in nature can be reached by complementing the phenomenological approach with both the mechanistic view of MCT and coexistence experiments of the type that prevailed from the 1970s to the 2010s, which focused on specific mechanisms (designated the “mechanistic approach”). As a first step in this direction, we conducted a systematic review of the literature from 1967 to 2020, covering mechanistic experiments for invasibility—the criterion for species coexistence—and the best-studied classical coexistence mechanisms, namely, resource-ratio, natural enemy partitioning, frequency-dependent exploitation by generalist enemies, and the storage effect. The goals of the review were to evaluate (i) the percentage of the abovementioned mechanistic experiments that satisfy the theoretical criteria (designated “eligible studies”), (ii) the scope of these eligible studies, and (iii) their level of support for the theoretical predictions, and to identify their (iv) overarching implications and (v) research gaps. Through examination of 2,510 publications, the review reveals that almost 50 years after the theoretical formulations of the above four coexistence mechanisms, we still lack sufficient evidence to reveal the prevalence of coexistence and of each of the coexistence mechanisms, and to assess the dependency of the mechanisms on the natural history of the competing organisms. By highlighting, on the one hand, the overarching implications of the mechanistic approach to coexistence, and on the other hand, current research gaps, and by offering ways to bridge these gaps in the future, we seek to bring the mechanistic approach back to life.
Collapse
|
8
|
Wang X, Wang J, Hu B, Zheng W, Li M, Shen Z, Yu F, Schmid B, Li M. Richness, not evenness, of invasive plant species promotes invasion success into native plant communities via selection effects. OIKOS 2022. [DOI: 10.1111/oik.08966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xue Wang
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Jiang Wang
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Bing Hu
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Wei‐Long Zheng
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Meng Li
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Zhi‐Xiang Shen
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Fei‐Hai Yu
- Inst. of Wetland Ecology&Clone Ecology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Univ. Taizhou China
| | - Bernhard Schmid
- Dept of Geography, Remote Sensing Laboratories, Univ. of Zürich Zürich Switzerland
| | - Mai‐He Li
- Forest Dynamics, Swiss Federal Research Inst. WSL Birmensdorf Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal Univ. Changchun China
| |
Collapse
|
9
|
Irwin D, Schluter D. Hybridization and the Coexistence of Species. Am Nat 2022; 200:E93-E109. [DOI: 10.1086/720365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Simha A, Hoz CPDL, Carley L. Moving beyond the “diversity paradox”: the limitations of competition-based frameworks in understanding species diversity. Am Nat 2022; 200:89-100. [DOI: 10.1086/720002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blab174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Spaak JW, Godoy O, De Laender F. Mapping species niche and fitness differences for communities with multiple interaction types. OIKOS 2021. [DOI: 10.1111/oik.08362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jürg W. Spaak
- Univ. of Namur, Inst. of Life‐Earth‐Environment, Namur Center for Complex Systems Namur Rue de Bruxelles Belgium
| | - Oscar Godoy
- Depto de Biología, Inst. Universitario de Investigación Marina (INMAR), Univ. de Cádiz Puerto Real Spain
| | - Frederik De Laender
- Univ. of Namur, Inst. of Life‐Earth‐Environment, Namur Center for Complex Systems Namur Rue de Bruxelles Belgium
| |
Collapse
|
13
|
Zepeda V, Martorell C. Effects of Phylogenetic Relatedness on Fluctuation-Dependent and Fluctuation-Independent Coexistence Mechanisms in Multispecies Communities. Am Nat 2021; 198:E1-E11. [PMID: 34143720 DOI: 10.1086/714161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractEvolutionary relatedness may hinder stable coexistence due to similar niches and nonlinear responses to competition. The mechanisms driving stability may respond differently to phylogenetic distance. Related species may be synchronic (have similar demographic responses over time), affecting fluctuation-dependent mechanisms: the storage effect should destabilize coexistence, and relative nonlinearity should be stronger due to increased fluctuations in competition. We tested these hypotheses using invasion analysis based on a model parameterized for 19 plant species from a semiarid grassland. Although weakly, coexistence stability increased with phylogenetic distance. Stabilization through fluctuation-independent niche differentiation was stronger between distant relatives as a result of weaker competition. Synchronicity was higher between close relatives, having the expected negative effects on the storage effect's contribution to coexistence. Relative nonlinearity was strong at both ends of the phylogenetic relatedness gradient but not in the middle. This may be the result of different nonlinear responses between distant relatives and of stronger fluctuations in competition due to synchronicity between closer relatives. The effect of phylogenetic distance on coexistence was almost negligible when pairwise species were analyzed, in accordance with previous research. Phylogenetic distance became more important as more species interacted, however, suggesting that evolutionary relatedness may be influential in species-rich communities.
Collapse
|
14
|
Van Allen B, Jones N, Gilbert B, Carscadden K, Germain R. Maternal effects and the outcome of interspecific competition. Ecol Evol 2021; 11:7544-7556. [PMID: 34188833 PMCID: PMC8216948 DOI: 10.1002/ece3.7586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Maternal environmental effects create lagged population responses to past environments. Although they are ubiquitous and vary in expression across taxa, it remains unclear if and how their presence alters competitive interactions in ecological communities.Here, we use a discrete-time competition model to simulate how maternal effects alter competitive dynamics in fluctuating and constant environments. Further, we explore how omitting maternal effects alter estimates of known model parameters from observational time series data.Our simulations demonstrate that (i) maternal effects change competitive outcomes, regardless of whether competitors otherwise interact neutrally or exhibit non-neutral competitive differences, (ii) the consequences of maternal effects for competitive outcomes are mediated by the temporal structure of environmental variation, (iii) even in constant conditions, competitive outcomes are influenced by species' maternal effects strategies, and (iv) in observational time series data, omitting maternal effects reduces variation explained by models and biases parameter estimates, including competition coefficients.Our findings demonstrate that the ecological consequences of maternal effects hinge on the competitive environment. Evolutionary biologists have long recognized that maternal effects can be an important but often overlooked strategy buffering populations from environmental change. We suggest that maternal effects are similarly critical to ecology and call for research into maternal effects as drivers of dynamics in populations and communities.
Collapse
Affiliation(s)
- Benjamin Van Allen
- Ecology, Behavior, and EvolutionUniversity of California San DiegoSan DiegoCAUSA
| | - Natalie Jones
- School of Biological SciencesUniversity of QueenslandBrisbaneQldAustralia
| | - Benjamin Gilbert
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Kelly Carscadden
- Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderCOUSA
| | - Rachel Germain
- Zoology & Biodiversity Research CentreThe University of British ColumbiaVancouverBCCanada
| |
Collapse
|
15
|
van Moorsel SJ, Hahl T, Petchey OL, Ebeling A, Eisenhauer N, Schmid B, Wagg C. Co-occurrence history increases ecosystem stability and resilience in experimental plant communities. Ecology 2020; 102:e03205. [PMID: 32979225 DOI: 10.1002/ecy.3205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 01/29/2023]
Abstract
Understanding factors that maintain ecosystem stability is critical in the face of environmental change. Experiments simulating species loss from grassland have shown that losing biodiversity decreases ecosystem stability. However, as the originally sown experimental communities with reduced biodiversity develop, plant evolutionary processes or the assembly of interacting soil organisms may allow ecosystems to increase stability over time. We explored such effects in a long-term grassland biodiversity experiment with plant communities with either a history of co-occurrence (selected communities) or no such history (naïve communities) over a 4-yr period in which a major flood disturbance occurred. Comparing communities of identical species composition, we found that selected communities had temporally more stable biomass than naïve communities, especially at low species richness. Furthermore, selected communities showed greater biomass recovery after flooding, resulting in more stable post-flood productivity. In contrast to a previous study, the positive diversity-stability relationship was maintained after the flooding. Our results were consistent across three soil treatments simulating the presence or absence of co-selected microbial communities. We suggest that prolonged exposure of plant populations to a particular community context and abiotic site conditions can increase ecosystem temporal stability and resilience due to short-term evolution. A history of co-occurrence can in part compensate for species loss, as can high plant diversity in part compensate for the missing opportunity of such adaptive adjustments.
Collapse
Affiliation(s)
- Sofia J van Moorsel
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.,Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, H3A 1B1, Canada
| | - Terhi Hahl
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Anne Ebeling
- Institute of Ecology and Evolution, University of Jena, Dornburger Strasse 159, Jena, 07743, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany.,Institute of Biology, Leipzig University, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.,Department of Geography, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Cameron Wagg
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.,Agriculture and Agri-Food Canada, 850 Lincoln Road, Fredericton, New Brunswick, E3B 4Z7, Canada
| |
Collapse
|
16
|
Johnson JC, Williams JL. A native annual forb locally excludes a closely related introduced species that co-occurs in oak-savanna habitat remnants. AOB PLANTS 2020; 12:plaa045. [PMID: 33033590 PMCID: PMC7532728 DOI: 10.1093/aobpla/plaa045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Despite the ubiquity of introduced species, their long-term impacts on native plant abundance and diversity remain poorly understood. Coexistence theory offers a tool for advancing this understanding by providing a framework to link short-term individual measurements with long-term population dynamics by directly quantifying the niche and average fitness differences between species. We observed that a pair of closely related and functionally similar annual plants with different origins-native Plectritis congesta and introduced Valerianella locusta-co-occur at the community scale but rarely at the local scale of direct interaction. To test whether niche and/or fitness differences preclude local-scale long-term coexistence, we parameterized models of competitor dynamics with results from a controlled outdoor pot experiment, where we manipulated densities of each species. To evaluate the hypothesis that niche and fitness differences exhibit environmental dependency, leading to community-scale coexistence despite local competitive exclusion, we replicated this experiment with a water availability treatment to determine if this key limiting resource alters the long-term prediction. Water availability impacted population vital rates and intensities of intraspecific versus interspecific competition between P. congesta and V. locusta. Despite environmental influence on competition our model predicts that native P. congesta competitively excludes introduced V. locusta in direct competition across water availability conditions because of an absence of stabilizing niche differences combined with a difference in average fitness, although this advantage weakens in drier conditions. Further, field data demonstrated that P. congesta densities have a negative effect on V. locusta seed prediction. We conclude that native P. congesta limits abundances of introduced V. locusta at the direct-interaction scale, and we posit that V. locusta may rely on spatially dependent coexistence mechanisms to maintain coexistence at the site scale. In quantifying this competitive outcome our study demonstrates mechanistically how a native species may limit the abundance of an introduced invader.
Collapse
Affiliation(s)
- Jens C Johnson
- Department of Geography and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer L Williams
- Department of Geography and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Godwin CM, Chang F, Cardinale BJ. An empiricist's guide to modern coexistence theory for competitive communities. OIKOS 2020. [DOI: 10.1111/oik.06957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Casey M. Godwin
- School for Environment and Sustainability, Univ. of Michigan 440 Church Street Ann Arbor MI USA
- Cooperative Institute for Great Lakes Research, Univ. of Michigan 440 Church Street Ann Arbor MI USA
| | - Feng‐Hsun Chang
- School for Environment and Sustainability, Univ. of Michigan 440 Church Street Ann Arbor MI USA
| | - Bradley J. Cardinale
- School for Environment and Sustainability, Univ. of Michigan 440 Church Street Ann Arbor MI USA
- Cooperative Institute for Great Lakes Research, Univ. of Michigan 440 Church Street Ann Arbor MI USA
| |
Collapse
|
18
|
Blackford C, Germain RM, Gilbert B. Species Differences in Phenology Shape Coexistence. Am Nat 2020; 195:E168-E180. [DOI: 10.1086/708719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Supriya K, Price TD, Moreau CS. Competition with insectivorous ants as a contributor to low songbird diversity at low elevations in the eastern Himalaya. Ecol Evol 2020; 10:4280-4290. [PMID: 32489596 PMCID: PMC7246197 DOI: 10.1002/ece3.6196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 01/03/2023] Open
Abstract
Competitive interactions between distantly related clades could cause complementary diversity patterns of these clades over large spatial scales. One such example might be ants and birds in the eastern Himalaya; ants are very common at low elevations but almost absent at mid-elevations where the abundance of other arthropods and insectivorous bird diversity peaks. Here, we ask if ants at low elevations could compete with birds for arthropod prey. Specifically, we studied the impact of the Asian weaver ant (Oecophylla smaragdina), a common aggressive ant at low elevations. Diet analysis using molecular methods demonstrate extensive diet overlap between weaver ants and songbirds at both low and mid-elevations. Trees without weaver ants have greater non-ant arthropod abundance and leaf damage. Experimental removal of weaver ants results in an increase in the abundance of non-ant arthropods. Notably, numbers of Coleoptera and Lepidoptera were most affected by removal experiments and were prominent components of both bird and weaver ant diets. Our results suggest that songbirds and weaver ants might potentially compete with each other for arthropod prey at low elevations, thereby contributing to lower insectivorous bird diversity at low elevations in eastern Himalaya. Competition with ants may shape vertebrate diversity patterns across broad biodiversity gradients.
Collapse
Affiliation(s)
- K. Supriya
- School of Life SciencesArizona State UniversityTempeAZUSA
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoILUSA
| | - Trevor D. Price
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoILUSA
- Department of Ecology and EvolutionUniversity of ChicagoChicagoILUSA
| | - Corrie S. Moreau
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoILUSA
- Departments of Entomology and Ecology & Evolutionary BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
20
|
Spaak JW, De Laender F. Intuitive and broadly applicable definitions of niche and fitness differences. Ecol Lett 2020; 23:1117-1128. [DOI: 10.1111/ele.13511] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jurg W. Spaak
- University of Namur Institute of Life‐Earth‐Environment Namur Center for Complex Systems Namur Rue de Bruxelles 61 Belgium
| | - Frederik De Laender
- University of Namur Institute of Life‐Earth‐Environment Namur Center for Complex Systems Namur Rue de Bruxelles 61 Belgium
| |
Collapse
|
21
|
Evolution of an inferior competitor increases resistance to biological invasion. Nat Ecol Evol 2020; 4:419-425. [PMID: 32066886 DOI: 10.1038/s41559-020-1105-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/02/2020] [Indexed: 01/24/2023]
Abstract
Biodiversity is imperilled by the spatial homogenization of life on Earth. As new species invade ecological communities, there is urgent need to understand when native species might resist or succumb to interactions with new species. In the California Floristic Province, a global biodiversity hotspot, we show that populations of a native grass (Vulpia microstachys) have evolved to resist the competitive impacts of a dominant European invader (Bromus hordeaceus). Contrary to classic theory, which predicts that competing species co-evolve to differentiate their niches, our evidence is instead most consistent with the native species having evolved to better compete for those resources used by the invader, curtailing the invader's spread. Evolution to resist an invader was achieved despite populations interacting within a diverse background community (22 species 0.5 m-2 on average), refuting the oft-cited hypothesis that high diversity precludes the evolution of pairwise species interactions. Lastly, unlike studies that have explored the demographic consequences of evolution under competition, ours does so with naturally evolved populations. Our study highlights evolution as an underappreciated coexistence mechanism, acting to buffer species from extinction in the face of biological invasion.
Collapse
|
22
|
Briscoe Runquist RD, Gorton AJ, Yoder JB, Deacon NJ, Grossman JJ, Kothari S, Lyons MP, Sheth SN, Tiffin P, Moeller DA. Context Dependence of Local Adaptation to Abiotic and Biotic Environments: A Quantitative and Qualitative Synthesis. Am Nat 2020; 195:412-431. [PMID: 32097038 DOI: 10.1086/707322] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding how spatially variable selection shapes adaptation is an area of long-standing interest in evolutionary ecology. Recent meta-analyses have quantified the extent of local adaptation, but the relative importance of abiotic and biotic factors in driving population divergence remains poorly understood. To address this gap, we combined a quantitative meta-analysis and a qualitative metasynthesis to (1) quantify the magnitude of local adaptation to abiotic and biotic factors and (2) characterize major themes that influence the motivation and design of experiments that seek to test for local adaptation. Using local-foreign contrasts as a metric of local adaptation (or maladaptation), we found that local adaptation was greater in the presence than in the absence of a biotic interactor, especially for plants. We also found that biotic environments had stronger effects on fitness than abiotic environments when ignoring whether those environments were local versus foreign. Finally, biotic effects were stronger at low latitudes, and abiotic effects were stronger at high latitudes. Our qualitative analysis revealed that the lens through which local adaptation has been examined differs for abiotic and biotic factors. It also revealed biases in the design and implementation of experiments that make quantitative results challenging to interpret and provided directions for future research.
Collapse
|
23
|
Why are tall-statured energy grasses of polyploid species complexes potentially invasive? A review of their genetic variation patterns and evolutionary plasticity. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02053-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Lewin GR, Stacy A, Michie KL, Lamont RJ, Whiteley M. Large-scale identification of pathogen essential genes during coinfection with sympatric and allopatric microbes. Proc Natl Acad Sci U S A 2019; 116:19685-19694. [PMID: 31427504 PMCID: PMC6765283 DOI: 10.1073/pnas.1907619116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Recent evidence suggests that the genes an organism needs to survive in an environment drastically differ when alone or in a community. However, it is not known if there are universal functions that enable microbes to persist in a community and if there are functions specific to interactions between microbes native to the same (sympatric) or different (allopatric) environments. Here, we ask how the essential functions of the oral pathogen Aggregatibacter actinomycetemcomitans change during pairwise coinfection in a murine abscess with each of 15 microbes commonly found in the oral cavity and 10 microbes that are not. A. actinomycetemcomitans was more abundant when coinfected with allopatric than with sympatric microbes, and this increased fitness correlated with expanded metabolic capacity of the coinfecting microbes. Using transposon sequencing, we discovered that 33% of the A. actinomycetemcomitans genome is required for coinfection fitness. Fifty-nine "core" genes were required across all coinfections and included genes necessary for aerobic respiration. The core genes were also all required in monoinfection, indicating the essentiality of these genes cannot be alleviated by a coinfecting microbe. Furthermore, coinfection with some microbes, predominately sympatric species, induced the requirement for over 100 new community-dependent essential genes. In contrast, in other coinfections, predominately with nonoral species, A. actinomycetemcomitans required 50 fewer genes than in monoinfection, demonstrating that some allopatric microbes can drastically alleviate gene essentialities. These results expand our understanding of how diverse microbes alter growth and gene essentiality within polymicrobial infections.
Collapse
Affiliation(s)
- Gina R Lewin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30324
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332
| | - Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, Bethesda, MD 20892
| | - Kelly L Michie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30324
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332;
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30324
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
25
|
Song C, Barabás G, Saavedra S. On the Consequences of the Interdependence of Stabilizing and Equalizing Mechanisms. Am Nat 2019; 194:627-639. [PMID: 31613676 DOI: 10.1086/705347] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We present an overlooked but important property of modern coexistence theory (MCT), along with two key new results and their consequences. The overlooked property is that stabilizing mechanisms (increasing species' niche differences) and equalizing mechanisms (reducing species' fitness differences) have two distinct sets of meanings within MCT: one in a two-species context and another in a general multispecies context. We demonstrate that the two-species framework is not a special case of the multispecies one, and therefore these two parallel frameworks must be studied independently. Our first result is that, using the two-species framework and mechanistic consumer-resource models, stabilizing and equalizing mechanisms exhibit complex interdependence, such that changing one will simultaneously change the other. Furthermore, the nature and direction of this simultaneous change sensitively depend on model parameters. The second result states that while MCT is often seen as bridging niche and neutral modes of coexistence by building a niche-neutrality continuum, the interdependence between stabilizing and equalizing mechanisms acts to break this continuum under almost any biologically relevant circumstance. We conclude that the complex entanglement of stabilizing and equalizing terms makes their impact on coexistence difficult to understand, but by seeing them as aggregated effects (rather than underlying causes) of coexistence, we may increase our understanding of ecological dynamics.
Collapse
|
26
|
Germain RM, Mayfield MM, Gilbert B. The 'filtering' metaphor revisited: competition and environment jointly structure invasibility and coexistence. Biol Lett 2019; 14:rsbl.2018.0460. [PMID: 30135118 DOI: 10.1098/rsbl.2018.0460] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/26/2018] [Indexed: 11/12/2022] Open
Abstract
'Filtering', or the reduction in species diversity that occurs because not all species can persist in all locations, is thought to unfold hierarchically, controlled by the environment at large scales and competition at small scales. However, the ecological effects of competition and the environment are not independent, and observational approaches preclude investigation into their interplay. We use a demographic approach with 30 plant species to experimentally test: (i) the effect of competition on species persistence in two soil moisture environments, and (ii) the effect of environmental conditions on mechanisms underlying competitive coexistence. We find that competitors cause differential species persistence across environments even when effects are lacking in the absence of competition, and that the traits which determine persistence depend on the competitive environment. If our study had been observational and trait-based, we would have erroneously concluded that the environment filters species with low biomass, shallow roots and small seeds. Changing environmental conditions generated idiosyncratic effects on coexistence outcomes, increasing competitive exclusion of some species while promoting coexistence of others. Our results highlight the importance of considering environmental filtering in the light of, rather than in isolation from, competition, and challenge community assembly models and approaches to projecting future species distributions.
Collapse
Affiliation(s)
- Rachel M Germain
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Margaret M Mayfield
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin Gilbert
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
27
|
Broekman MJE, Muller-Landau HC, Visser MD, Jongejans E, Wright SJ, de Kroon H. Signs of stabilisation and stable coexistence. Ecol Lett 2019; 22:1957-1975. [PMID: 31328414 DOI: 10.1111/ele.13349] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/19/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023]
Abstract
Many empirical studies motivated by an interest in stable coexistence have quantified negative density dependence, negative frequency dependence, or negative plant-soil feedback, but the links between these empirical results and ecological theory are not straightforward. Here, we relate these analyses to theoretical conditions for stabilisation and stable coexistence in classical competition models. By stabilisation, we mean an excess of intraspecific competition relative to interspecific competition that inherently slows or even prevents competitive exclusion. We show that most, though not all, tests demonstrating negative density dependence, negative frequency dependence, and negative plant-soil feedback constitute sufficient conditions for stabilisation of two-species interactions if applied to data for per capita population growth rates of pairs of species, but none are necessary or sufficient conditions for stable coexistence of two species. Potential inferences are even more limited when communities involve more than two species, and when performance is measured at a single life stage or vital rate. We then discuss two approaches that enable stronger tests for stable coexistence-invasibility experiments and model parameterisation. The model parameterisation approach can be applied to typical density-dependence, frequency-dependence, and plant-soil feedback data sets, and generally enables better links with mechanisms and greater insights, as demonstrated by recent studies.
Collapse
Affiliation(s)
- Maarten J E Broekman
- Department of Plant Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Helene C Muller-Landau
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Balboa, Ancón, Panamá
| | - Marco D Visser
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Eelke Jongejans
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - S J Wright
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Balboa, Ancón, Panamá
| | - Hans de Kroon
- Department of Plant Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Harmon LJ, Andreazzi CS, Débarre F, Drury J, Goldberg EE, Martins AB, Melián CJ, Narwani A, Nuismer SL, Pennell MW, Rudman SM, Seehausen O, Silvestro D, Weber M, Matthews B. Detecting the macroevolutionary signal of species interactions. J Evol Biol 2019; 32:769-782. [DOI: 10.1111/jeb.13477] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Luke J. Harmon
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Department of Biological Sciences University of Idaho Moscow Idaho
| | | | - Florence Débarre
- Sorbonne Université, UPMC Univ Paris 06, CNRS, IRD, INRA, Université Paris Diderot, Institute of Ecology and Environmental Sciences (UMR7618) Paris France
| | | | - Emma E. Goldberg
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul Minnesota
| | - Ayana B. Martins
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Instituto de Física ‘Gleb Wataghin’ Universidade Estadual de Campinas Campinas Brazil
| | - Carlos J. Melián
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology Eawag Dübendorf Switzerland
| | - Scott L. Nuismer
- Department of Biological Sciences University of Idaho Moscow Idaho
| | - Matthew W. Pennell
- Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver British Columbia
| | - Seth M. Rudman
- Department of Biology University of Pennsylvania Philadelphia Pennsylvania
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences Global Gothenburg Biodiversity Centre University of Gothenburg Gothenburg Sweden
| | - Marjorie Weber
- Department of Plant Biology & Program in Ecology, Evolution, and Behavior Michigan State University East Lansing Michigan
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution University of Bern Bern Switzerland
| |
Collapse
|
29
|
Godoy O. Coexistence theory as a tool to understand biological invasions in species interaction networks: Implications for the study of novel ecosystems. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13343] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Oscar Godoy
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR) Universidad de Cádiz Puerto Real Spain
| |
Collapse
|
30
|
Grainger TN, Letten AD, Gilbert B, Fukami T. Applying modern coexistence theory to priority effects. Proc Natl Acad Sci U S A 2019; 116:6205-6210. [PMID: 30850518 PMCID: PMC6442631 DOI: 10.1073/pnas.1803122116] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modern coexistence theory is increasingly used to explain how differences between competing species lead to coexistence versus competitive exclusion. Although research testing this theory has focused on deterministic cases of competitive exclusion, in which the same species always wins, mounting evidence suggests that competitive exclusion is often historically contingent, such that whichever species happens to arrive first excludes the other. Coexistence theory predicts that historically contingent exclusion, known as priority effects, will occur when large destabilizing differences (positive frequency-dependent growth rates of competitors), combined with small fitness differences (differences in competitors' intrinsic growth rates and sensitivity to competition), create conditions under which neither species can invade an established population of its competitor. Here we extend the empirical application of modern coexistence theory to determine the conditions that promote priority effects. We conducted pairwise invasion tests with four strains of nectar-colonizing yeasts to determine how the destabilizing and fitness differences that drive priority effects are altered by two abiotic factors characterizing the nectar environment: sugar concentration and pH. We found that higher sugar concentrations increased the likelihood of priority effects by reducing fitness differences between competing species. In contrast, higher pH did not change the likelihood of priority effects, but instead made competition more neutral by bringing both fitness differences and destabilizing differences closer to zero. This study demonstrates how the empirical partitioning of priority effects into fitness and destabilizing components can elucidate the pathways through which environmental conditions shape competitive interactions.
Collapse
Affiliation(s)
- Tess Nahanni Grainger
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Andrew D Letten
- Department of Biology, Stanford University, Stanford, CA 94305
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Benjamin Gilbert
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, CA 94305;
| |
Collapse
|
31
|
LeCraw RM, Srivastava DS. Biogeographic context dependence of trophic cascade strength in bromeliad food webs. Ecology 2019; 100:e02692. [PMID: 30868556 DOI: 10.1002/ecy.2692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/30/2019] [Accepted: 02/19/2019] [Indexed: 01/17/2023]
Abstract
Ecosystem functions and the biomass of lower trophic levels are frequently controlled by predators. The strength of top-down control in these trophic cascades can be affected by the identity and diversity of predators, prey, and resources, as well as environmental conditions such as temperature, moisture, and nutrient loading, which can all impact interaction strength between trophic levels. Few studies have been able to replicate a complete community over a large geographic area to compare the full trophic cascade in a manipulative experiment. Here, we identify geographic dependency in trophic cascade strength, and the driving factors and specific mechanisms behind it, by combining geographically replicated experiments with a novel approach of community analogues of common garden and transplant experiments. We studied a predator-detritivore-detritus food web in bromeliads in Puerto Rico, Costa Rica, and Brazil. We found that interaction strengths between resources, consumers, and predators were strongly site-specific, but the exact mechanism differed between trophic levels. Large bodied predators created strong interaction strengths between predator and consumer trophic levels, reducing consumer abundance regardless of the geographic location, whereas small-bodied predators created weak interactions with no impact on consumer abundances in any site. In contrast, the interaction strength between consumers and resources varied among sites, depending on the dominant species of leaf detritus. More labile leaf species in Costa Rica created a strong consumer-resource interaction and therefore strong trophic cascade, whereas tougher leaf species in Brazil created a weak consumer-resource interaction, and an overall weaker trophic cascade. Our study highlights the importance of replicating experiments over geographic scales to understand general patterns of ecological processes.
Collapse
Affiliation(s)
- Robin M LeCraw
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T1Z4, Canada
| | - Diane S Srivastava
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T1Z4, Canada
| |
Collapse
|
32
|
|
33
|
Li SP, Tan J, Yang X, Ma C, Jiang L. Niche and fitness differences determine invasion success and impact in laboratory bacterial communities. THE ISME JOURNAL 2019; 13:402-412. [PMID: 30254322 PMCID: PMC6331569 DOI: 10.1038/s41396-018-0283-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 11/09/2022]
Abstract
There is increasing awareness of invasion in microbial communities worldwide, but the mechanisms behind microbial invasions remain poorly understood. Specifically, we know little about how the evolutionary and ecological differences between invaders and natives regulate invasion success and impact. Darwin's naturalization hypothesis suggests that the phylogenetic distance between invaders and natives could be a useful predictor of invasion, and modern coexistence theory proposes that invader-native niche and fitness differences combine to determine invasion outcome. However, the relative importance of phylogenetic distance, niche difference and fitness difference for microbial invasions has rarely been examined. By using laboratory bacterial microcosms as model systems, we experimentally assessed the roles of these differences for the success of bacterial invaders and their impact on native bacterial community structure. We found that the phylogenetic distance between invaders and natives failed to explain invasion success and impact for two of three invaders at the phylogenetic scale considered. Further, we found that invasion success was better explained by invader-native niche differences than relative fitness differences for all three invaders, whereas invasion impact was better explained by invader-native relative fitness differences than niche differences. These findings highlight the utility of considering modern coexistence theory to gain a more mechanistic understanding of microbial invasions.
Collapse
Affiliation(s)
- Shao-Peng Li
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jiaqi Tan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Xian Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chao Ma
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 230036, Hefei, Anhui, China.
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
34
|
Relative performance of co-occurring alien plant invaders depends on traits related to competitive ability more than niche differences. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1884-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Germain RM, Grainger TN, Jones NT, Gilbert B. Maternal provisioning is structured by species’ competitive neighborhoods. OIKOS 2018. [DOI: 10.1111/oik.05530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Rachel M. Germain
- Dept Botany and Dept of Zoology, Univ. of British Columbia; Vancouver BC Canada
| | - Tess N. Grainger
- Dept Ecology and Evolutionary Biology, Univ. of Toronto; Toronto ON Canada
| | - Natalie T. Jones
- Dept Biological Sciences, Univ. of California - San Diego; San Diego CA USA
| | - Benjamin Gilbert
- Dept Ecology and Evolutionary Biology, Univ. of Toronto; Toronto ON Canada
| |
Collapse
|
36
|
Start D. Predator macroevolution drives trophic cascades and ecosystem functioning. Proc Biol Sci 2018; 285:20180384. [PMID: 30051862 PMCID: PMC6083245 DOI: 10.1098/rspb.2018.0384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/03/2018] [Indexed: 01/08/2023] Open
Abstract
Biologists now recognize that ecology can drive evolution, and that evolution in turn produces ecological patterns. I extend this thinking to include longer time scales, suggesting that macroevolutionary transitions can create phenotypic differences among species, which then have predictable impacts on species interactions, community assembly and ecosystem functioning. Repeated speciation can exacerbate these patterns by creating communities with similar phenotypes and hence ecological impacts. Here, I use several experiments to test these ideas in dragonfly larvae that occupy ponds with fish, ponds without fish, or both. I show that macroevolutionary transitions between habitats cause fishless pond species to be more active relative to fish pond specialists, reducing prey abundance, shifting prey community composition and creating stronger trophic cascades. These effects scale up to the community level with predictable consequences for ecosystem multi-functioning. I suggest that macroevolutionary history can have predictable impacts on phenotypic traits, with consequences for interacting species and ecosystems.
Collapse
Affiliation(s)
- Denon Start
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S3B2, Canada
| |
Collapse
|
37
|
Cenci S, Song C, Saavedra S. Rethinking the importance of the structure of ecological networks under an environment-dependent framework. Ecol Evol 2018; 8:6852-6859. [PMID: 30073049 PMCID: PMC6065350 DOI: 10.1002/ece3.4252] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/21/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022] Open
Abstract
A major quest in network and community ecology has been centered on understanding the importance of structural patterns in species interaction networks-the synthesis of who interacts with whom in a given location and time. In the past decades, much effort has been devoted to infer the importance of a particular structure by its capacity to tolerate an external perturbation on its structure or dynamics. Here, we demonstrate that such a perspective leads to inconsistent conclusions. That is, the importance of a network structure changes as a function of the external perturbations acting on a community at any given point in time. Thus, we discuss a research agenda to investigate the relative importance of the structure of ecological networks under an environment-dependent framework. We hypothesize that only by studying systematically the link between network structure and community dynamics under an environment-dependent framework, we can uncover the limits at which communities can tolerate environmental changes.
Collapse
Affiliation(s)
- Simone Cenci
- Department of Civil and Environmental EngineeringMITCambridgeMassachusetts
| | - Chuliang Song
- Department of Civil and Environmental EngineeringMITCambridgeMassachusetts
| | - Serguei Saavedra
- Department of Civil and Environmental EngineeringMITCambridgeMassachusetts
| |
Collapse
|
38
|
Godoy O, Bartomeus I, Rohr RP, Saavedra S. Towards the Integration of Niche and Network Theories. Trends Ecol Evol 2018; 33:287-300. [DOI: 10.1016/j.tree.2018.01.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 12/31/2022]
|
39
|
Geographical co-occurrence of butterfly species: the importance of niche filtering by host plant species. Oecologia 2018; 186:995-1005. [DOI: 10.1007/s00442-018-4062-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
40
|
Cadotte MW, Davies TJ, Peres-Neto PR. Why phylogenies do not always predict ecological differences. ECOL MONOGR 2017. [DOI: 10.1002/ecm.1267] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Marc W. Cadotte
- Department of Biological Sciences; University of Toronto-Scarborough; 1265 Military Trail Toronto Ontario M1C 1A4 Canada
- Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong; Higher Education Institutes; College of Ecology and Evolution; Sun Yat-sen University; Guangzhou China
| | - T. Jonathan Davies
- Department of Biology; McGill University; 1205 Dr. Penfield Avenue Montréal Quebec H3A 1B1 Canada
- African Centre for DNA Barcoding; University of Johannesburg; APK Campus PO Box 524 Auckland Park Johannesburg 2006 South Africa
| | - Pedro R. Peres-Neto
- Canada Research Chair in Spatial Modelling and Biodiversity; Départment des sciences biologiques; Université du Québec à Montréal; C.P. 8888, succursale Centreville Montréal Quebec H3C 3P8 Canada
- Department of Biology; Concordia University; Montréal Quebec H4B 1R6 Canada
| |
Collapse
|
41
|
Pires MM, Silvestro D, Quental TB. Interactions within and between clades shaped the diversification of terrestrial carnivores. Evolution 2017; 71:1855-1864. [PMID: 28543226 DOI: 10.1111/evo.13269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 05/02/2017] [Indexed: 11/29/2022]
Abstract
A longstanding debate in evolutionary biology and paleontology is whether ecological interactions such as competition impose diversity dependence on speciation and extinction rates. Here, we analyze the fossil record of terrestrial mammalian carnivores in North America and Eurasia using a Bayesian framework to assess whether their diversity dynamics were affected by diversity dependence within and between families (12 in Eurasia, 10 in North America). We found eight instances of within-clade diversity dependence suppressing speciation rates and detected between-clade effects increasing extinction rates in six instances. Diversity dependence often involved lineages that migrated between continents and we found that speciation was more responsive to diversity changes within the clade, whereas extinction responded to diversity of taxa in other clades. The analysis of the fossil record of Carnivora suggests that interactions within and between clades are associated with different speciation and extinction regimes, opening room for a broader theory of diversity dependence.
Collapse
Affiliation(s)
- Mathias M Pires
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, 11294, 05422-970, São Paulo, Brazil
| | - Daniele Silvestro
- Department of Evolution and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, 413 19, Gothenburg, Sweden
| | - Tiago B Quental
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, 11294, 05422-970, São Paulo, Brazil
| |
Collapse
|
42
|
Gilbert B, Levine JM. Ecological drift and the distribution of species diversity. Proc Biol Sci 2017; 284:20170507. [PMID: 28566486 PMCID: PMC5454268 DOI: 10.1098/rspb.2017.0507] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/27/2017] [Indexed: 11/12/2022] Open
Abstract
Ecological drift causes species abundances to fluctuate randomly, lowering diversity within communities and increasing differences among otherwise equivalent communities. Despite broad interest in ecological drift, ecologists have little experimental evidence of its consequences in nature, where competitive forces modulate species abundances. We manipulated drift by imposing 40-fold variation in the size of experimentally assembled annual plant communities and holding their edge-to-interior ratios comparable. Drift over three generations was greater than predicted by neutral models, causing high extinction rates and fast divergence in composition among smaller communities. Competitive asymmetries drove populations of most species to small enough sizes that demographic stochasticity could markedly influence dynamics, increasing the importance of drift in communities. The strong effects of drift occurred despite stabilizing niche differences, which cause species to have greater population growth rates when at low local abundance. Overall, the importance of ecological drift appears greater in non-neutral communities than previously recognized, and varies with community size and the type and strength of density dependence.
Collapse
Affiliation(s)
- Benjamin Gilbert
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Jonathan M Levine
- Institute for Integrative Biology, Eidgenössiche Technische Hochschule Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
43
|
Nakadai R, Kawakita A. Patterns of temporal and enemy niche use by a community of leaf cone moths (Caloptilia) coexisting on maples (Acer) as revealed by metabarcoding. Mol Ecol 2017; 26:3309-3319. [PMID: 28316099 DOI: 10.1111/mec.14105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
The diversity of herbivorous insects is often considered a function of host plant diversity. However, recent research has uncovered many examples of closely related herbivores using the same host plant(s), suggesting that partitioning of host plants is not the only mechanism generating diversity. Herbivores sharing hosts may utilize different parts of the same plant, but such resource partitioning is often not apparent; hence, the factors that allow closely related herbivores to coexist are still largely undetermined. We examined whether partitioning of phenology or natural enemies may explain the coexistence of leaf cone moths (Caloptilia; Gracillariidae) associated with maples (Acer; Sapindaceae). Larval activity of 10 sympatric Caloptilia species found on nine maple species was monitored every 2-3 weeks for a total of 13 sampling events, and an exhaustive search for internal parasitoid wasps was conducted using high-throughput sequencing. Blocking primers were used to facilitate the detection of wasp larvae inside moth tissue. We found considerable phenological overlap among Caloptilia species, with two clear peaks in July and September-October. Coexisting Caloptilia species also had largely overlapping parasitoid communities; a total of 13 chalcid and ichneumon wasp species attacked Caloptilia in a nonspecific fashion at an overall parasitism rate of 46.4%. Although coexistence may be facilitated by factors not accounted for in this study, it appears that niche partitioning is not necessary for closely related herbivores to stably coexist on shared hosts. Co-occurrence without resource partitioning may provide an additional axis along which herbivorous insects attain increased species richness.
Collapse
Affiliation(s)
- Ryosuke Nakadai
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113, Japan
| | - Atsushi Kawakita
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
44
|
Loughnan D, Gilbert B. Trait-mediated community assembly: distinguishing the signatures of biotic and abiotic filters. OIKOS 2017. [DOI: 10.1111/oik.03945] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Deirdre Loughnan
- Dept of Ecology and Evolutionary Biology; Univ. of Toronto; 25 Willcocks Street ON M5S 3B2 Canada
- Dept of Geography; Univ. of British Columbia; Vancouver BC Canada
| | - Benjamin Gilbert
- Dept of Ecology and Evolutionary Biology; Univ. of Toronto; 25 Willcocks Street ON M5S 3B2 Canada
| |
Collapse
|
45
|
Letten AD, Ke P, Fukami T. Linking modern coexistence theory and contemporary niche theory. ECOL MONOGR 2017. [DOI: 10.1002/ecm.1242] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew D. Letten
- Department of Biology Stanford University Stanford California 94305 USA
| | - Po‐Ju Ke
- Department of Biology Stanford University Stanford California 94305 USA
| | - Tadashi Fukami
- Department of Biology Stanford University Stanford California 94305 USA
| |
Collapse
|