1
|
Tariciotti L, Mattioli L, Viganò L, Gallo M, Gambaretti M, Sciortino T, Gay L, Conti Nibali M, Gallotti A, Cerri G, Bello L, Rossi M. Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery. Front Integr Neurosci 2024; 18:1324581. [PMID: 38425673 PMCID: PMC10902498 DOI: 10.3389/fnint.2024.1324581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The sensorimotor integrations subserving object-oriented manipulative actions have been extensively investigated in non-human primates via direct approaches, as intracortical micro-stimulation (ICMS), cytoarchitectonic analysis and anatomical tracers. However, the understanding of the mechanisms underlying complex motor behaviors is yet to be fully integrated in brain mapping paradigms and the consistency of these findings with intraoperative data obtained during awake neurosurgical procedures for brain tumor removal is still largely unexplored. Accordingly, there is a paucity of systematic studies reviewing the cross-species analogies in neural activities during object-oriented hand motor tasks in primates and investigating the concordance with intraoperative findings during brain mapping. The current systematic review was designed to summarize the cortical and subcortical neural correlates of object-oriented fine hand actions, as revealed by fMRI and PET studies, in non-human and human primates and how those were translated into neurosurgical studies testing dexterous hand-movements during intraoperative brain mapping. Methods A systematic literature review was conducted following the PRISMA guidelines. PubMed, EMBASE and Web of Science databases were searched. Original articles were included if they: (1) investigated cortical activation sites on fMRI and/or PET during grasping task; (2) included humans or non-human primates. A second query was designed on the databases above to collect studies reporting motor, hand manipulation and dexterity tasks for intraoperative brain mapping in patients undergoing awake brain surgery for any condition. Due to the heterogeneity in neurosurgical applications, a qualitative synthesis was deemed more appropriate. Results We provided an updated overview of the current state of the art in translational neuroscience about the extended frontoparietal grasping-praxis network with a specific focus on the comparative functioning in non-human primates, healthy humans and how the latter knowledge has been implemented in the neurosurgical operating room during brain tumor resection. Discussion The anatomical and functional correlates we reviewed confirmed the evolutionary continuum from monkeys to humans, allowing a cautious but practical adoption of such evidence in intraoperative brain mapping protocols. Integrating the previous results in the surgical practice helps preserve complex motor abilities, prevent long-term disability and poor quality of life and allow the maximal safe resection of intrinsic brain tumors.
Collapse
Affiliation(s)
- Leonardo Tariciotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Mattioli
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gallo
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gambaretti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Gallotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Fornia L, Leonetti A, Puglisi G, Rossi M, Viganò L, Della Santa B, Simone L, Bello L, Cerri G. The parietal architecture binding cognition to sensorimotor integration: a multimodal causal study. Brain 2024; 147:297-310. [PMID: 37715997 PMCID: PMC10766244 DOI: 10.1093/brain/awad316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 09/18/2023] Open
Abstract
Despite human's praxis abilities are unique among primates, comparative observations suggest that these cognitive motor skills could have emerged from exploitation and adaptation of phylogenetically older building blocks, namely the parieto-frontal networks subserving prehension and manipulation. Within this framework, investigating to which extent praxis and prehension-manipulation overlap and diverge within parieto-frontal circuits could help in understanding how human cognition shapes hand actions. This issue has never been investigated by combining lesion mapping and direct electrophysiological approaches in neurosurgical patients. To this purpose, 79 right-handed left-brain tumour patient candidates for awake neurosurgery were selected based on inclusion criteria. First, a lesion mapping was performed in the early postoperative phase to localize the regions associated with an impairment in praxis (imitation of meaningless and meaningful intransitive gestures) and visuo-guided prehension (reaching-to-grasping) abilities. Then, lesion results were anatomically matched with intraoperatively identified cortical and white matter regions, whose direct electrical stimulation impaired the Hand Manipulation Task. The lesion mapping analysis showed that prehension and praxis impairments occurring in the early postoperative phase were associated with specific parietal sectors. Dorso-mesial parietal resections, including the superior parietal lobe and precuneus, affected prehension performance, while resections involving rostral intraparietal and inferior parietal areas affected praxis abilities (covariate clusters, 5000 permutations, cluster-level family-wise error correction P < 0.05). The dorsal bank of the rostral intraparietal sulcus was associated with both prehension and praxis (overlap of non-covariate clusters). Within praxis results, while resection involving inferior parietal areas affected mainly the imitation of meaningful gestures, resection involving intraparietal areas affected both meaningless and meaningful gesture imitation. In parallel, the intraoperative electrical stimulation of the rostral intraparietal and the adjacent inferior parietal lobe with their surrounding white matter during the hand manipulation task evoked different motor impairments, i.e. the arrest and clumsy patterns, respectively. When integrating lesion mapping and intraoperative stimulation results, it emerges that imitation of praxis gestures first depends on the integrity of parietal areas within the dorso-ventral stream. Among these areas, the rostral intraparietal and the inferior parietal area play distinct roles in praxis and sensorimotor process controlling manipulation. Due to its visuo-motor 'attitude', the rostral intraparietal sulcus, putative human homologue of monkey anterior intraparietal, might enable the visuo-motor conversion of the observed gesture (direct pathway). Moreover, its functional interaction with the adjacent, phylogenetic more recent, inferior parietal areas might contribute to integrate the semantic-conceptual knowledge (indirect pathway) within the sensorimotor workflow, contributing to the cognitive upgrade of hand actions.
Collapse
Affiliation(s)
- Luca Fornia
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Antonella Leonetti
- Department of Oncology and Hemato-Oncology, Neurosurgical Oncology Unit, Università degli Studi di Milano, Milano, 20122, Italy
| | - Guglielmo Puglisi
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Marco Rossi
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Luca Viganò
- Department of Oncology and Hemato-Oncology, Neurosurgical Oncology Unit, Università degli Studi di Milano, Milano, 20122, Italy
| | - Bianca Della Santa
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Luciano Simone
- Department of Medicine and Surgery, Università Degli Studi di Parma, Parma, 43125, Italy
| | - Lorenzo Bello
- Department of Oncology and Hemato-Oncology, Neurosurgical Oncology Unit, Università degli Studi di Milano, Milano, 20122, Italy
| | - Gabriella Cerri
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| |
Collapse
|
3
|
Threethipthikoon T, Li Z, Shigemasu H. Orientation representation in human visual cortices: contributions of non-visual information and action-related process. Front Psychol 2023; 14:1231109. [PMID: 38106392 PMCID: PMC10722153 DOI: 10.3389/fpsyg.2023.1231109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Orientation processing in the human brain plays a crucial role in guiding grasping actions toward an object. Remarkably, despite the absence of visual input, the human visual cortex can still process orientation information. Instead of visual input, non-visual information, including tactile and proprioceptive sensory input from the hand and arm, as well as feedback from action-related processes, may contribute to orientation processing. However, the precise mechanisms by which the visual cortices process orientation information in the context of non-visual sensory input and action-related processes remain to be elucidated. Thus, our study examined the orientation representation within the visual cortices by analyzing the blood-oxygenation-level-dependent (BOLD) signals under four action conditions: direct grasp (DG), air grasp (AG), non-grasp (NG), and uninformed grasp (UG). The images of the cylindrical object were shown at +45° or - 45° orientations, corresponding to those of the real object to be grasped with the whole-hand gesture. Participants judged their orientation under all conditions. Grasping was performed without online visual feedback of the hand and object. The purpose of this design was to investigate the visual areas under conditions involving tactile feedback, proprioception, and action-related processes. To address this, a multivariate pattern analysis was used to examine the differences among the cortical patterns of the four action conditions in orientation representation by classification. Overall, significant decoding accuracy over chance level was discovered for the DG; however, during AG, only the early visual areas showed significant accuracy, suggesting that the object's tactile feedback influences the orientation process in higher visual areas. The NG showed no statistical significance in any area, indicating that without the grasping action, visual input does not contribute to cortical pattern representation. Interestingly, only the dorsal and ventral divisions of the third visual area (V3d and V3v) showed significant decoding accuracy during the UG despite the absence of visual instructions, suggesting that the orientation representation was derived from action-related processes in V3d and visual recognition of object visualization in V3v. The processing of orientation information during non-visually guided grasping of objects relies on other non-visual sources and is specifically divided by the purpose of action or recognition.
Collapse
Affiliation(s)
| | - Zhen Li
- Guangdong Laboratory of Machine Perception and Intelligent Computing, Shenzhen MSU-BIT University, Shenzhen, China
- Department of Engineering, Shenzhen MSU-BIT University, Shenzhen, China
| | | |
Collapse
|
4
|
Stepniewska I, Kaas JH. The dorsal stream of visual processing and action-specific domains in parietal and frontal cortex in primates. J Comp Neurol 2023; 531:1897-1908. [PMID: 37118872 PMCID: PMC10611900 DOI: 10.1002/cne.25489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023]
Abstract
This review summarizes our findings obtained from over 15 years of research on parietal-frontal networks involved in the dorsal stream of cortical processing. We have presented considerable evidence for the existence of similar, partially independent, parietal-frontal networks involved in specific motor actions in a number of primates. These networks are formed by connections between action-specific domains representing the same complex movement evoked by electrical microstimulation. Functionally matched domains in the posterior parietal (PPC) and frontal (M1-PMC) motor regions are hierarchically related. M1 seems to be a critical link in these networks, since the outputs of M1 are essential to the evoked behavior, whereas PPC and PMC mediate complex movements mostly via their connections with M1. Thus, lesioning or deactivating M1 domains selectively blocks matching PMC and PPC domains, while having limited impact on other domains. When pairs of domains are stimulated together, domains within the same parietal-frontal network (matching domains) are cooperative in evoking movements, while they are mainly competitive with other domains (mismatched domains) within the same set of cortical areas. We propose that the interaction of different functional domains in each cortical region (as well as in striatum) occurs mainly via mutual suppression. Thus, the domains at each level are in competition with each other for mediating one of several possible behavioral outcomes.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
5
|
Bosch TJ, Fercho KA, Hanna R, Scholl JL, Rallis A, Baugh LA. Left anterior supramarginal gyrus activity during tool use action observation after extensive tool use training. Exp Brain Res 2023:10.1007/s00221-023-06646-1. [PMID: 37365345 DOI: 10.1007/s00221-023-06646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
The advanced use of complex tools is considered a primary characteristic of human evolution and technological advancement. However, questions remain regarding whether humans possess unique underlying brain networks that support advanced tool-using abilities. Specifically, previous studies have demonstrated the presence of a structurally and functionally unique region in the left anterior supramarginal gyrus (aSMG), that is consistently active during tool use action observation. This region has been proposed as a primary hub for integrating semantic and technical information to form action plans with tools. However, it is still largely unknown how tool use motor learning affects left aSMG activation or connectivity with other brain regions. To address this, participants with little experience using chopsticks observed an experimenter using chopsticks to perform a novel task while undergoing two functional magnetic resonance imaging (fMRI) scans. Between the scans, participants underwent four weeks of behavioral training where they learned to use chopsticks and achieve proficiency in the observed task. Results demonstrated a significant change in effective connectivity between the left aSMG and the left anterior intraparietal sulcus (aIPS), a region involved in object affordances and planning grasping actions. These findings suggest that during unfamiliar tool use, the left aSMG integrates semantic and technical information to communicate with regions involved with grasp selection, such as the aIPS. This communication then allows appropriate grasps to be planned based on the physical properties of the objects involved and their potential interactions.
Collapse
Affiliation(s)
- Taylor J Bosch
- Division of Basic Biomedical Sciences, Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, 414 E. Clark St., Vermillion, SD, 57069, USA
| | | | - Reuven Hanna
- Division of Basic Biomedical Sciences, Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, 414 E. Clark St., Vermillion, SD, 57069, USA
| | - Jamie L Scholl
- Division of Basic Biomedical Sciences, Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, 414 E. Clark St., Vermillion, SD, 57069, USA
| | - Austin Rallis
- Division of Basic Biomedical Sciences, Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, 414 E. Clark St., Vermillion, SD, 57069, USA
| | - Lee A Baugh
- Division of Basic Biomedical Sciences, Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, 414 E. Clark St., Vermillion, SD, 57069, USA.
| |
Collapse
|
6
|
Marciniak Dg Agra K, Dg Agra P. F = ma. Is the macaque brain Newtonian? Cogn Neuropsychol 2023; 39:376-408. [PMID: 37045793 DOI: 10.1080/02643294.2023.2191843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Intuitive Physics, the ability to anticipate how the physical events involving mass objects unfold in time and space, is a central component of intelligent systems. Intuitive physics is a promising tool for gaining insight into mechanisms that generalize across species because both humans and non-human primates are subject to the same physical constraints when engaging with the environment. Physical reasoning abilities are widely present within the animal kingdom, but monkeys, with acute 3D vision and a high level of dexterity, appreciate and manipulate the physical world in much the same way humans do.
Collapse
Affiliation(s)
- Karolina Marciniak Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| | - Pedro Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| |
Collapse
|
7
|
Bencivenga F, Tullo MG, Maltempo T, von Gal A, Serra C, Pitzalis S, Galati G. Effector-selective modulation of the effective connectivity within frontoparietal circuits during visuomotor tasks. Cereb Cortex 2023; 33:2517-2538. [PMID: 35709758 PMCID: PMC10016057 DOI: 10.1093/cercor/bhac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research, the functional architecture of the subregions of the dorsal posterior parietal cortex (PPC) involved in sensorimotor processing is far from clear. Here, we draw a thorough picture of the large-scale functional organization of the PPC to disentangle the fronto-parietal networks mediating visuomotor functions. To this aim, we reanalyzed available human functional magnetic resonance imaging data collected during the execution of saccades, hand, and foot pointing, and we combined individual surface-based activation, resting-state functional connectivity, and effective connectivity analyses. We described a functional distinction between a more lateral region in the posterior intraparietal sulcus (lpIPS), preferring saccades over pointing and coupled with the frontal eye fields (FEF) at rest, and a more medial portion (mpIPS) intrinsically correlated to the dorsal premotor cortex (PMd). Dynamic causal modeling revealed feedforward-feedback loops linking lpIPS with FEF during saccades and mpIPS with PMd during pointing, with substantial differences between hand and foot. Despite an intrinsic specialization of the action-specific fronto-parietal networks, our study reveals that their functioning is finely regulated according to the effector to be used, being the dynamic interactions within those networks differently modulated when carrying out a similar movement (i.e. pointing) but with distinct effectors (i.e. hand and foot).
Collapse
Affiliation(s)
- Federica Bencivenga
- Corresponding author: Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy.
| | | | - Teresa Maltempo
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Alessandro von Gal
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Roma, Italy
- PhD program in Behavioral Neuroscience, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Sabrina Pitzalis
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Roma, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
| |
Collapse
|
8
|
Arioli M, Cattaneo Z, Parimbelli S, Canessa N. Relational vs representational social cognitive processing: a coordinate-based meta-analysis of neuroimaging data. Soc Cogn Affect Neurosci 2023; 18:7003414. [PMID: 36695428 PMCID: PMC9976764 DOI: 10.1093/scan/nsad003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 06/30/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
The neurocognitive bases of social cognition have been framed in terms of representing others' actions through the mirror system and their mental states via the mentalizing network. Alongside representing another person's actions or mental states, however, social cognitive processing is also shaped by their (mis)match with one's own corresponding states. Here, we addressed the distinction between representing others' states through the action observation or mentalizing networks (i.e. representational processing) and detecting the extent to which such states align with one's own ones (i.e. relational processing, mediated by social conflict). We took a meta-analytic approach to unveil the neural bases of both relational and representational processing by focusing on previously reported brain activations from functional magnetic resonance imaging studies using false-belief and action observation tasks. Our findings suggest that relational processing for belief and action states involves, respectively, the left and right temporo-parietal junction, likely contributing to self-other differentiation. Moreover, distinct sectors of the posterior fronto-medial cortex support social conflict processing for belief and action, possibly through the inhibition of conflictual representations. These data might pave the way for further studies addressing social conflict as an important component of normal and pathological processing, and inform the design of rehabilitative treatments for social deficits.
Collapse
Affiliation(s)
- Maria Arioli
- Department of Human and Social Sciences, University of Bergamo, Bergamo 24100, Italy
| | - Zaira Cattaneo
- Department of Human and Social Sciences, University of Bergamo, Bergamo 24100, Italy.,IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Simone Parimbelli
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia 27100, Italy
| | - Nicola Canessa
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, Pavia 27100, Italy.,Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, Pavia 27100, Italy
| |
Collapse
|
9
|
Van Malderen S, Hehl M, Verstraelen S, Swinnen SP, Cuypers K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Rev Neurosci 2023; 34:129-221. [PMID: 36065080 DOI: 10.1515/revneuro-2022-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed. Our aims are threefold: (1) provide a detailed overview of ds-TMS literature regarding inter- and intra-hemispheric connectivity; (2) describe the applicability and contributions of these interactions to motor control, and; (3) discuss the practical implications and future directions. Of the 3659 studies screened, 109 were included and discussed. Overall, there is remarkable variability in the experimental context for assessing ds-TMS interactions, as well as in the use and reporting of stimulation parameters, hindering a quantitative comparison of results across studies. Further studies examining ds-TMS interactions in a systematic manner, and in which all critical parameters are carefully reported, are needed.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Melina Hehl
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| |
Collapse
|
10
|
Niu M, Palomero-Gallagher N. Architecture and connectivity of the human angular gyrus and of its homolog region in the macaque brain. Brain Struct Funct 2023; 228:47-61. [PMID: 35695934 DOI: 10.1007/s00429-022-02509-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/09/2022] [Indexed: 01/07/2023]
Abstract
The angular gyrus roughly corresponds to Brodmann's area 39, which is a multimodal association brain region located in the posterior apex of the human inferior parietal lobe, at its interface with the temporal and occipital lobes. It encompasses two cyto- and receptor architectonically distinct areas: caudal PGp and rostral PGa. The macaque brain does not present an angular gyrus in the strict sense, and the establishment of homologies was further hindered by the fact that Brodmann defined a single cytoarchitectonic area covering the entire guenon inferior parietal lobule in the monkey brain, i.e. area 7. Latter architectonic studies revealed the existence of 6 architectonically distinct areas within macaque area 7, further connectivity and functional imaging studies supported the hypothesis that the most posterior of these macaque areas, namely Opt and PG, may constitute the homologs of human areas PGp and PGa, respectively. The present review provides an overview of the cyto-, myelo and receptor architecture of human areas PGp and PGa, as well as of their counterparts in the macaque brain, and summarizes current knowledge on the connectivity of these brain areas. Finally, the present study elaborates on the rationale behind the definition of these homologies and their importance in translational studies.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Angular gyrus: an anatomical case study for association cortex. Brain Struct Funct 2023; 228:131-143. [PMID: 35906433 DOI: 10.1007/s00429-022-02537-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
The angular gyrus is associated with a spectrum of higher order cognitive functions. This mini-review undertakes a broad survey of putative neuroanatomical substrates, guided by the premise that area-specific specializations derive from a combination of extrinsic connections and intrinsic area properties. Three levels of spatial resolution are discussed: cellular, supracellular connectivity, and synaptic micro-scale, with examples necessarily drawn mainly from experimental work with nonhuman primates. A significant factor in the functional specialization of the human parietal cortex is the pronounced enlargement. In addition to "more" cells, synapses, and connections, however, the heterogeneity itself can be considered an important property. Multiple anatomical features support the idea of overlapping and temporally dynamic membership in several brain wide subnetworks, but how these features operate in the context of higher cognitive functions remains for continued investigations.
Collapse
|
12
|
Cytoarchitecture, myeloarchitecture, and parcellation of the chimpanzee inferior parietal lobe. Brain Struct Funct 2023; 228:63-82. [PMID: 35676436 DOI: 10.1007/s00429-022-02514-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/22/2022] [Indexed: 01/07/2023]
Abstract
The parietal lobe is a region of especially pronounced change in human brain evolution. Based on comparative neuroanatomical studies, the inferior parietal lobe (IPL) has been shown to be disproportionately larger in humans relative to chimpanzees and macaques. However, it remains unclear whether the underlying histological architecture of IPL cortical areas displays human-specific organization. Chimpanzees are among the closest living relatives of humans, making them an ideal comparative species to investigate potential evolutionary changes in the IPL. We parcellated the chimpanzee IPL using cytoarchitecture and myeloarchitecture, in combination with quantitative comparison of cellular features between the identified cortical areas. Four major areas on the lateral convexity of the chimpanzee IPL (PF, PFG, PG, OPT) and two opercular areas (PFOP, PGOP) were identified, similar to what has been observed in macaques. Analysis of the quantitative profiles of cytoarchitecture showed that cell profile density was significantly different in a combination of layers III, IV, and V between bordering cortical areas, and that the density profiles of these six areas supports their classification as distinct. The similarity to macaque IPL cytoarchitecture suggests that chimpanzees share homologous IPL areas. In comparison, human rostral IPL is reported to differ in its anatomical organization and to contain additional subdivisions, such as areas PFt and PFm. These changes in human brain evolution might have been important as tool making capacities became more complex.
Collapse
|
13
|
Breveglieri R, Borgomaneri S, Filippini M, Tessari A, Galletti C, Davare M, Fattori P. Complementary contribution of the medial and lateral human parietal cortex to grasping: a repetitive TMS study. Cereb Cortex 2022; 33:5122-5134. [PMID: 36245221 PMCID: PMC10152058 DOI: 10.1093/cercor/bhac404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/13/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The dexterous control of our grasping actions relies on the cooperative activation of many brain areas. In the parietal lobe, 2 grasp-related areas collaborate to orchestrate an accurate grasping action: dorsolateral area AIP and dorsomedial area V6A. Single-cell recordings in monkeys and fMRI studies in humans have suggested that both these areas specify grip aperture and wrist orientation, but encode these grasping parameters differently, depending on the context. To elucidate the causal role of phAIP and hV6A, we stimulated these areas, while participants were performing grasping actions (unperturbed grasping). rTMS over phAIP impaired the wrist orientation process, whereas stimulation over hV6A impaired grip aperture encoding. In a small percentage of trials, an unexpected reprogramming of grip aperture or wrist orientation was required (perturbed grasping). In these cases, rTMS over hV6A or over phAIP impaired reprogramming of both grip aperture and wrist orientation. These results represent the first direct demonstration of a different encoding of grasping parameters by 2 grasp-related parietal areas.
Collapse
Affiliation(s)
- Rossella Breveglieri
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Sara Borgomaneri
- University of Bologna Center for studies and research in Cognitive Neuroscience, , 47521 Cesena , Italy
- IRCCS Santa Lucia Foundation , 00179 Rome , Italy
| | - Matteo Filippini
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Alessia Tessari
- University of Bologna Department of Psychology, , 40127 Bologna , Italy
| | - Claudio Galletti
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Marco Davare
- Faculty of Life Sciences and Medicine, King's College London, SE1 1UL London, United Kingdom
| | - Patrizia Fattori
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
- University of Bologna Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), , Bologna , Italy
| |
Collapse
|
14
|
Brown S, Kim E. The neural basis of creative production: A cross-modal ALE meta-analysis. OPEN PSYCHOLOGY 2021. [DOI: 10.1515/psych-2020-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
One of the central questions about the cognitive neuroscience of creativity is the extent to which creativity depends on either domain-specific or domain-general mechanisms. To address this question, we carried out two parallel activation likelihood estimation meta-analyses of creativity: 1) a motoric analysis that combined studies across five domains of creative production (verbalizing, music, movement, writing, and drawing), and 2) an analysis of the standard ideational task used to study divergent thinking, the Alternate Uses task. All experiments contained a contrast between a creative task and a matched non-creative or less-creative task that controlled for the sensorimotor demands of task performance. The activation profiles of the two meta-analyses were non-overlapping, but both pointed to a domain-specific interpretation in which creative production is, at least in part, an enhancement of sensorimotor brain areas involved in non-creative production. The most concordant areas of activation in the motoric meta-analysis were high-level motor areas such as the pre-supplementary motor area and inferior frontal gyrus that interface motor planning and executive control, suggesting a means of uniting domain-specificity and -generality in creative production.
Collapse
Affiliation(s)
- Steven Brown
- Department of Psychology, Neuroscience & Behaviour , McMaster University , Hamilton , ON , Canada
| | - Eunseon Kim
- Department of Psychology, Neuroscience & Behaviour , McMaster University , Hamilton , ON , Canada
| |
Collapse
|
15
|
Foster C, Sheng WA, Heed T, Ben Hamed S. The macaque ventral intraparietal area has expanded into three homologue human parietal areas. Prog Neurobiol 2021; 209:102185. [PMID: 34775040 DOI: 10.1016/j.pneurobio.2021.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
The macaque ventral intraparietal area (VIP) in the fundus of the intraparietal sulcus has been implicated in a diverse range of sensorimotor and cognitive functions such as motion processing, multisensory integration, processing of head peripersonal space, defensive behavior, and numerosity coding. Here, we exhaustively review macaque VIP function, cytoarchitectonics, and anatomical connectivity and integrate it with human studies that have attempted to identify a potential human VIP homologue. We show that human VIP research has consistently identified three, rather than one, bilateral parietal areas that each appear to subsume some, but not all, of the macaque area's functionality. Available evidence suggests that this human "VIP complex" has evolved as an expansion of the macaque area, but that some precursory specialization within macaque VIP has been previously overlooked. The three human areas are dominated, roughly, by coding the head or self in the environment, visual heading direction, and the peripersonal environment around the head, respectively. A unifying functional principle may be best described as prediction in space and time, linking VIP to state estimation as a key parietal sensorimotor function. VIP's expansive differentiation of head and self-related processing may have been key in the emergence of human bodily self-consciousness.
Collapse
Affiliation(s)
- Celia Foster
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Wei-An Sheng
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany; Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France.
| |
Collapse
|
16
|
Hartwigsen G, Bengio Y, Bzdok D. How does hemispheric specialization contribute to human-defining cognition? Neuron 2021; 109:2075-2090. [PMID: 34004139 PMCID: PMC8273110 DOI: 10.1016/j.neuron.2021.04.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Uniquely human cognitive faculties arise from flexible interplay between specific local neural modules, with hemispheric asymmetries in functional specialization. Here, we discuss how these computational design principles provide a scaffold that enables some of the most advanced cognitive operations, such as semantic understanding of world structure, logical reasoning, and communication via language. We draw parallels to dual-processing theories of cognition by placing a focus on Kahneman's System 1 and System 2. We propose integration of these ideas with the global workspace theory to explain dynamic relay of information products between both systems. Deepening the current understanding of how neurocognitive asymmetry makes humans special can ignite the next wave of neuroscience-inspired artificial intelligence.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Lise Meitner Research Group Cognition and Plasticity, Leipzig, Germany.
| | - Yoshua Bengio
- Mila, Montreal, QC, Canada; University of Montreal, Montreal, QC, Canada
| | - Danilo Bzdok
- Mila, Montreal, QC, Canada; Montreal Neurological Institute, McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, Faculty of Medicine, and School of Computer Science, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
Urgen BA, Orban GA. The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions. Neuroimage 2021; 237:118220. [PMID: 34058335 PMCID: PMC8285591 DOI: 10.1016/j.neuroimage.2021.118220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Action observation is supported by a network of regions in occipito-temporal, parietal, and premotor cortex in primates. Recent research suggests that the parietal node has regions dedicated to different action classes including manipulation, interpersonal interactions, skin displacement, locomotion, and climbing. The goals of the current study consist of: 1) extending this work with new classes of actions that are communicative and specific to humans, 2) investigating how parietal cortex differs from the occipito-temporal and premotor cortex in representing action classes. Human subjects underwent fMRI scanning while observing three action classes: indirect communication, direct communication, and manipulation, plus two types of control stimuli, static controls which were static frames from the video clips, and dynamic controls consisting of temporally-scrambled optic flow information. Using univariate analysis, MVPA, and representational similarity analysis, our study presents several novel findings. First, we provide further evidence for the anatomical segregation in parietal cortex of different action classes: We have found a new site that is specific for representing human-specific indirect communicative actions in cytoarchitectonic parietal area PFt. Second, we found that the discriminability between action classes was higher in parietal cortex than the other two levels suggesting the coding of action identity information at this level. Finally, our results advocate the use of the control stimuli not just for univariate analysis of complex action videos but also when using multivariate techniques.
Collapse
Affiliation(s)
- Burcu A Urgen
- Department of Psychology, Bilkent University, 06800, Bilkent, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, 06800, Bilkent, Ankara, Turkey; National Magnetic Resonance Research Center (UMRAM) and Aysel Sabuncu Brain Research Center, Bilkent University, 06800, Bilkent, Ankara, Turkey.
| | - Guy A Orban
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Italy.
| |
Collapse
|
18
|
Li Z. Unique Neural Activity Patterns Among Lower Order Cortices and Shared Patterns Among Higher Order Cortices During Processing of Similar Shapes With Different Stimulus Types. Iperception 2021; 12:20416695211018222. [PMID: 34104383 PMCID: PMC8161881 DOI: 10.1177/20416695211018222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the neural mechanism of the processing of three-dimensional (3D) shapes defined by disparity and perspective. We measured blood oxygenation level-dependent signals as participants viewed and classified 3D images of convex-concave shapes. According to the cue (disparity or perspective) and element type (random dots or black and white dotted lines), three types of stimuli were used: random dot stereogram, black and white dotted lines with perspective, and black and white dotted lines with binocular disparity. The blood oxygenation level-dependent images were then classified by multivoxel pattern analysis. To identify areas selective to shape, we assessed convex-concave classification accuracy with classifiers trained and tested using signals evoked by the same stimulus type (same cue and element type). To identify cortical regions with similar neural activity patterns regardless of stimulus type, we assessed the convex-concave classification accuracy of transfer classification in which classifiers were trained and tested using different stimulus types (different cues or element types). Classification accuracy using the same stimulus type was high in the early visual areas and subregions of the intraparietal sulcus (IPS), whereas transfer classification accuracy was high in the dorsal subregions of the IPS. These results indicate that the early visual areas process the specific features of stimuli, whereas the IPS regions perform more generalized processing of 3D shapes, independent of a specific stimulus type.
Collapse
Affiliation(s)
- Zhen Li
- Department of Psychology, The University of Hong Kong, Hong Kong, China; Graduate School of Engineering, Kochi University of Technology, Kochi, Japan
| |
Collapse
|
19
|
Basso MA, Frey S, Guerriero KA, Jarraya B, Kastner S, Koyano KW, Leopold DA, Murphy K, Poirier C, Pope W, Silva AC, Tansey G, Uhrig L. Using non-invasive neuroimaging to enhance the care, well-being and experimental outcomes of laboratory non-human primates (monkeys). Neuroimage 2021; 228:117667. [PMID: 33359353 PMCID: PMC8005297 DOI: 10.1016/j.neuroimage.2020.117667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/09/2023] Open
Abstract
Over the past 10-20 years, neuroscience witnessed an explosion in the use of non-invasive imaging methods, particularly magnetic resonance imaging (MRI), to study brain structure and function. Simultaneously, with access to MRI in many research institutions, MRI has become an indispensable tool for researchers and veterinarians to guide improvements in surgical procedures and implants and thus, experimental as well as clinical outcomes, given that access to MRI also allows for improved diagnosis and monitoring for brain disease. As part of the PRIMEatE Data Exchange, we gathered expert scientists, veterinarians, and clinicians who treat humans, to provide an overview of the use of non-invasive imaging tools, primarily MRI, to enhance experimental and welfare outcomes for laboratory non-human primates engaged in neuroscientific experiments. We aimed to provide guidance for other researchers, scientists and veterinarians in the use of this powerful imaging technology as well as to foster a larger conversation and community of scientists and veterinarians with a shared goal of improving the well-being and experimental outcomes for laboratory animals.
Collapse
Affiliation(s)
- M A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences UCLA Los Angeles CA 90095 USA
| | - S Frey
- Rogue Research, Inc. Montreal, QC, Canada
| | - K A Guerriero
- Washington National Primate Research Center University of Washington Seattle, WA USA
| | - B Jarraya
- Cognitive Neuroimaging Unit, INSERM, CEA, NeuroSpin center, 91191 Gif/Yvette, France; Université Paris-Saclay, UVSQ, Foch hospital, Paris, France
| | - S Kastner
- Princeton Neuroscience Institute & Department of Psychology Princeton University Princeton, NJ USA
| | - K W Koyano
- National Institute of Mental Health NIH Bethesda MD 20892 USA
| | - D A Leopold
- National Institute of Mental Health NIH Bethesda MD 20892 USA
| | - K Murphy
- Biosciences Institute and Centre for Behaviour and Evolution, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne NE2 4HH United Kingdom UK
| | - C Poirier
- Biosciences Institute and Centre for Behaviour and Evolution, Faculty of Medical Sciences Newcastle University Newcastle upon Tyne NE2 4HH United Kingdom UK
| | - W Pope
- Department of Radiology UCLA Los Angeles, CA 90095 USA
| | - A C Silva
- Department of Neurobiology University of Pittsburgh, Pittsburgh PA 15261 USA
| | - G Tansey
- National Eye Institute NIH Bethesda MD 20892 USA
| | - L Uhrig
- Cognitive Neuroimaging Unit, INSERM, CEA, NeuroSpin center, 91191 Gif/Yvette, France
| |
Collapse
|
20
|
Rima S, Cottereau BR, Héjja-Brichard Y, Trotter Y, Durand JB. Wide-field retinotopy reveals a new visuotopic cluster in macaque posterior parietal cortex. Brain Struct Funct 2020; 225:2447-2461. [PMID: 32875354 PMCID: PMC7544618 DOI: 10.1007/s00429-020-02134-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/22/2020] [Indexed: 12/31/2022]
Abstract
We investigated the visuotopic organization of macaque posterior parietal cortex (PPC) by combining functional imaging (fMRI) and wide-field retinotopic mapping in two macaque monkeys. Whole brain blood-oxygen-level-dependent (BOLD) signal was recorded while monkeys maintained central fixation during the presentation of large rotating wedges and expending/contracting annulus of a "shaking" fruit basket, designed to maximize the recruitment of PPC neurons. Results of the surface-based population receptive field (pRF) analysis reveal a new cluster of four visuotopic areas at the confluence of the parieto-occipital and intra-parietal sulci, in a location previously defined histologically and anatomically as the posterior intra-parietal (PIP) region. This PIP cluster groups together two recently described areas (CIP1/2) laterally and two newly identified ones (PIP1/2) medially, whose foveal representations merge in the fundus of the intra-parietal sulcus. The cluster shares borders with other visuotopic areas: V3d posteriorly, V3A/DP laterally, V6/V6A medially and LIP anteriorly. Together, these results show that monkey PPC is endowed with a dense set of visuotopic areas, as its human counterpart. The fact that fMRI and wide-field stimulation allows a functional parsing of monkey PPC offers a new framework for studying functional homologies with human PPC.
Collapse
Affiliation(s)
- Samy Rima
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France.
- Centre National de la Recherche Scientifique, Toulouse Cedex, France.
| | - Benoit R Cottereau
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse Cedex, France
| | - Yseut Héjja-Brichard
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse Cedex, France
| | - Yves Trotter
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse Cedex, France
| | - Jean-Baptiste Durand
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Toulouse, France.
- Centre National de la Recherche Scientifique, Toulouse Cedex, France.
| |
Collapse
|
21
|
Sawamura H, Urgen BA, Corbo D, Orban GA. A parietal region processing numerosity of observed actions: An FMRI study. Eur J Neurosci 2020; 52:4732-4750. [PMID: 32745369 PMCID: PMC7818403 DOI: 10.1111/ejn.14930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 11/29/2022]
Abstract
When observing others' behavior, it is important to perceive not only the identity of the observed actions (OAs), but also the number of times they were performed. Given the mounting evidence implicating posterior parietal cortex in action observation, and in particular that of manipulative actions, the aim of this study was to identify the parietal region, if any, that contributes to the processing of observed manipulative action (OMA) numerosity, using the functional magnetic resonance imaging technique. Twenty‐one right‐handed healthy volunteers performed two discrimination tasks while in the scanner, responding to video stimuli in which an actor performed manipulative actions on colored target balls that appeared four times consecutively. The subjects discriminated between two small numerosities of either OMAs (“Action” condition) or colors of balls (“Ball” condition). A significant difference between the “Action” and “Ball” conditions was observed in occipito‐temporal cortex and the putative human anterior intraparietal sulcus (phAIP) area as well as the third topographic map of numerosity‐selective neurons at the post‐central sulcus (NPC3) of the left parietal cortex. A further region of interest analysis of the group‐average data showed that at the single voxel level the latter area, more than any other parietal or occipito‐temporal numerosity map, favored numerosity of OAs. These results suggest that phAIP processes the identity of OMAs, while neighboring NPC3 likely processes the numerosity of the identified OAs.
Collapse
Affiliation(s)
- Hiromasa Sawamura
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Department of Ophthalmology, the University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Burcu A Urgen
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Department of Psychology, Bilkent University, Ankara, Turkey.,Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey.,Aysel Sabuncu Brain Research Center and National Magnetic Resonance Research Center, Bilkent University (UMRAM), Ankara, Turkey
| | - Daniele Corbo
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Neuroradiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Guy A Orban
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
22
|
Stable readout of observed actions from format-dependent activity of monkey's anterior intraparietal neurons. Proc Natl Acad Sci U S A 2020; 117:16596-16605. [PMID: 32581128 PMCID: PMC7369316 DOI: 10.1073/pnas.2007018117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The anterior intraparietal area (AIP) is a crucial hub in the observed manipulative action (OMA) network of primates. While macaques observe manipulative action videos, their AIP neuronal activity robustly encodes first the viewpoint from which the action is observed, then the actor’s body posture, and finally the observed-action identity. Despite the lack of fully invariant OMA-selective single neurons, OMA exemplars could be decoded accurately from the activity of a set of units that maintain stable OMA selectivity despite rescaling their firing rate across formats. We propose that by integrating signals multiplicatively about others’ action and their visual format, the AIP can provide a stable readout of OMA identity at the population level. Humans accurately identify observed actions despite large dynamic changes in their retinal images and a variety of visual presentation formats. A large network of brain regions in primates participates in the processing of others’ actions, with the anterior intraparietal area (AIP) playing a major role in routing information about observed manipulative actions (OMAs) to the other nodes of the network. This study investigated whether the AIP also contributes to invariant coding of OMAs across different visual formats. We recorded AIP neuronal activity from two macaques while they observed videos portraying seven manipulative actions (drag, drop, grasp, push, roll, rotate, squeeze) in four visual formats. Each format resulted from the combination of two actor’s body postures (standing, sitting) and two viewpoints (lateral, frontal). Out of 297 recorded units, 38% were OMA-selective in at least one format. Robust population code for viewpoint and actor’s body posture emerged shortly after stimulus presentation, followed by OMA selectivity. Although we found no fully invariant OMA-selective neuron, we discovered a population code that allowed us to classify action exemplars irrespective of the visual format. This code depends on a multiplicative mixing of signals about OMA identity and visual format, particularly evidenced by a set of units maintaining a relatively stable OMA selectivity across formats despite considerable rescaling of their firing rate depending on the visual specificities of each format. These findings suggest that the AIP integrates format-dependent information and the visual features of others’ actions, leading to a stable readout of observed manipulative action identity.
Collapse
|
23
|
Lanzilotto M, Ferroni CG, Livi A, Gerbella M, Maranesi M, Borra E, Passarelli L, Gamberini M, Fogassi L, Bonini L, Orban GA. Anterior Intraparietal Area: A Hub in the Observed Manipulative Action Network. Cereb Cortex 2020; 29:1816-1833. [PMID: 30766996 PMCID: PMC6418391 DOI: 10.1093/cercor/bhz011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
Current knowledge regarding the processing of observed manipulative actions (OMAs) (e.g., grasping, dragging, or dropping) is limited to grasping and underlying neural circuitry remains controversial. Here, we addressed these issues by combining chronic neuronal recordings along the anteroposterior extent of monkeys’ anterior intraparietal (AIP) area with tracer injections into the recorded sites. We found robust neural selectivity for 7 distinct OMAs, particularly in the posterior part of AIP (pAIP), where it was associated with motor coding of grip type and own-hand visual feedback. This cluster of functional properties appears to be specifically grounded in stronger direct connections of pAIP with the temporal regions of the ventral visual stream and the prefrontal cortex, as connections with skeletomotor related areas and regions of the dorsal visual stream exhibited opposite or no rostrocaudal gradients. Temporal and prefrontal areas may provide visual and contextual information relevant for manipulative action processing. These results revise existing models of the action observation network, suggesting that pAIP constitutes a parietal hub for routing information about OMA identity to the other nodes of the network.
Collapse
Affiliation(s)
- Marco Lanzilotto
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | | | - Alessandro Livi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Monica Maranesi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Elena Borra
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Lauretta Passarelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, Bologna, Italy
| | - Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, Bologna, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Guy A Orban
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| |
Collapse
|
24
|
Cattaneo L, Giampiccolo D, Meneghelli P, Tramontano V, Sala F. Cortico-cortical connectivity between the superior and inferior parietal lobules and the motor cortex assessed by intraoperative dual cortical stimulation. Brain Stimul 2020; 13:819-831. [DOI: 10.1016/j.brs.2020.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 01/02/2023] Open
|
25
|
Medendorp WP, Heed T. State estimation in posterior parietal cortex: Distinct poles of environmental and bodily states. Prog Neurobiol 2019; 183:101691. [DOI: 10.1016/j.pneurobio.2019.101691] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023]
|
26
|
Borra E, Luppino G. Large-scale temporo–parieto–frontal networks for motor and cognitive motor functions in the primate brain. Cortex 2019; 118:19-37. [DOI: 10.1016/j.cortex.2018.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
|
27
|
Passarelli L, Rosa MGP, Bakola S, Gamberini M, Worthy KH, Fattori P, Galletti C. Uniformity and Diversity of Cortical Projections to Precuneate Areas in the Macaque Monkey: What Defines Area PGm? Cereb Cortex 2019; 28:1700-1717. [PMID: 28369235 DOI: 10.1093/cercor/bhx067] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
We report on the corticocortical connections of areas on the mesial surface of the macaque posterior parietal cortex, based on 10 retrograde tracer injections targeting different parts of the precuneate gyrus. Analysis of afferent connections supported the existence of two areas: PGm (also known as 7 m) and area 31. Both areas received major afferents from the V6A complex and from the external subdivision of area 23, but they differed in most other aspects. Area 31 showed greater emphasis on connections with premotor and parietal sensorimotor areas, whereas PGm received a greater proportion of its afferents from visuomotor structures involved in spatial cognition (including the lateral intraparietal cortex, inferior parietal lobule, and the putative visual areas in the ventral part of the precuneus). Medially, the anterior cingulate cortex (area 24) preferentially targeted area 31, whereas retrosplenial areas preferentially targeted PGm. These results indicate that earlier views on the connections of PGm were based on tracer injections that included parts of adjacent areas (including area 31), and prompt a reassessment of the limits of PGm. Our findings are compatible with a primary role of PGm in visuospatial cognition (including navigation), while supporting a role for area 31 in sensorimotor planning and coordination.
Collapse
Affiliation(s)
- Lauretta Passarelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marcello G P Rosa
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Sophia Bakola
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.,Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Michela Gamberini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Katrina H Worthy
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
28
|
Styrkowiec PP, Nowik AM, Króliczak G. The neural underpinnings of haptically guided functional grasping of tools: An fMRI study. Neuroimage 2019; 194:149-162. [DOI: 10.1016/j.neuroimage.2019.03.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/26/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022] Open
|
29
|
Magri C, Fabbri S, Caramazza A, Lingnau A. Directional tuning for eye and arm movements in overlapping regions in human posterior parietal cortex. Neuroimage 2019; 191:234-242. [DOI: 10.1016/j.neuroimage.2019.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
|
30
|
Bahmani H, Li Q, Logothetis NK, Keliris GA. Responses of Neurons in Lateral Intraparietal Area Depend on Stimulus-Associated Reward During Binocular Flash Suppression. Front Syst Neurosci 2019; 13:9. [PMID: 30914928 PMCID: PMC6422913 DOI: 10.3389/fnsys.2019.00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 02/25/2019] [Indexed: 11/13/2022] Open
Abstract
Discovering neural correlates of subjective perception and dissociating them from sensory input has fascinated neuroscientists for a long time. Bistable and multistable perception phenomena have exhibited great experimental potential to address this question. Here, we performed electrophysiological recordings from single neurons in lateral intraparietal area (LIP) of rhesus macaques during stimulus and perceptual transitions induced by binocular flash suppression (BFS). LIP neurons demonstrated transient bursts of activity after stimulus presentation and stimulus or perceptual switches but only a minority of cells demonstrated stimulus and perceptual selectivity. To enhance LIP neural selectivity, we performed a second experiment in which the competing stimuli were associated with asymmetric rewards. We found that transient and sustained activities substantially increased while the proportion of stimulus selective neurons remained approximately the same, albeit with increased selectivity magnitude. In addition, we observed mild increases in the proportion of perceptually selective neurons which also showed increase magnitude of selectivity. Importantly, the increased selectivity of cells after the reward manipulation was not directly reflecting the reward size per se but an enhancement in stimulus differentiation. Based on our results, we conjecture that LIP contributes to perceptual transitions and serves a modulatory role in perceptual selection taking into account the stimulus behavioral value.
Collapse
Affiliation(s)
- Hamed Bahmani
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Bernstein Center for Computational Neuroscience, Tuebingen, Germany
| | - Qinglin Li
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Bernstein Center for Computational Neuroscience, Tuebingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, United Kingdom
| | - Georgios A Keliris
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Bernstein Center for Computational Neuroscience, Tuebingen, Germany.,Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
31
|
O'Rawe JF, Huang AS, Klein DN, Leung HC. Posterior parietal influences on visual network specialization during development: An fMRI study of functional connectivity in children ages 9 to 12. Neuropsychologia 2019; 127:158-170. [PMID: 30849407 DOI: 10.1016/j.neuropsychologia.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 11/27/2022]
Abstract
Visual processing in the primate brain is highly organized along the ventral visual pathway, although it is still unclear how categorical selectivity emerges in this system. While many theories have attempted to explain the pattern of visual specialization within the ventral occipital and temporal areas, the biased connectivity hypothesis provides a framework which postulates extrinsic connectivity as a potential mechanism in shaping the development of category selectivity. As the posterior parietal cortex plays a central role in visual attention, we examined whether the pattern of parietal connectivity with the face and scene processing regions is closely linked with the functional properties of these two visually selective networks in a cohort of 60 children ages 9 to 12. Functionally localized face and scene selective regions were used in deriving each visual network's resting-state functional connectivity. The children's face and scene processing networks appeared to show a weak network segregation during resting state, which was confirmed when compared to that of a group of gender and handedness matched adults. Parietal regions of these children showed differential connectivity with the face and scene networks, and the extent of this differential parietal-visual connectivity predicted individual differences in the degree of segregation between the two visual networks, which in turn predicted individual differences in visual perception performance. Finally, the pattern of parietal connectivity with the face processing network also predicted the foci of face-related activation in the right fusiform gyrus across children. These findings provide evidence that extrinsic connectivity with regions such as the posterior parietal cortex may have important implications in the development of specialized visual processing networks.
Collapse
Affiliation(s)
| | - Anna S Huang
- Department of Psychology, Stony Brook University, USA
| | | | | |
Collapse
|
32
|
Orban GA, Ferri S, Platonov A. The role of putative human anterior intraparietal sulcus area in observed manipulative action discrimination. Brain Behav 2019; 9:e01226. [PMID: 30740932 PMCID: PMC6422812 DOI: 10.1002/brb3.1226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Although it has become widely accepted that the action observation network (AON) includes three levels (occipito-temporal, parietal and premotor), little is known concerning the specific role of these levels within perceptual tasks probing action observation. Recent single cell studies suggest that the parietal level carries the information required to discriminate between two-alternative observed actions, but do not exclude possible contributions from the other two levels. METHODS Two functional magnetic resonance imaging experiments used a task-based attentional modulation paradigm in which subjects viewed videos of an actor performing a manipulative action on a coloured object, and discriminated between either two observed manipulative actions, two actors or two colours. RESULTS Both experiments demonstrated that relative to actor and colour discrimination, discrimination between observed manipulative actions involved the putative human anterior intraparietal sulcus (phAIP) area in parietal cortex. In one experiment, where the observed actions also differed with regard to effectors, premotor cortex was also specifically recruited. CONCLUSIONS Our results highlight the primary role of parietal cortex in discriminating between two-alternative observed manipulative actions, consistent with the view that this level plays a major role in representing the identity of an observed action.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefania Ferri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Artem Platonov
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
33
|
Richter M, Amunts K, Mohlberg H, Bludau S, Eickhoff SB, Zilles K, Caspers S. Cytoarchitectonic segregation of human posterior intraparietal and adjacent parieto-occipital sulcus and its relation to visuomotor and cognitive functions. Cereb Cortex 2019; 29:1305-1327. [PMID: 30561508 PMCID: PMC6373694 DOI: 10.1093/cercor/bhy245] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/27/2018] [Indexed: 01/05/2023] Open
Abstract
Human posterior intraparietal sulcus (pIPS) and adjacent posterior wall of parieto-occipital sulcus (POS) are functionally diverse, serving higher motor, visual and cognitive functions. Its microstructural basis, though, is still largely unknown. A similar or even more pronounced architectonical complexity, as described in monkeys, could be assumed. We cytoarchitectonically mapped the pIPS/POS in 10 human postmortem brains using an observer-independent, quantitative parcellation. 3D-probability maps were generated within MNI reference space and used for functional decoding and meta-analytic coactivation modeling based on the BrainMap database to decode the general structural-functional organization of the areas. Seven cytoarchitectonically distinct areas were identified: five within human pIPS, three on its lateral (hIP4-6) and two on its medial wall (hIP7-8); and two (hPO1, hOc6) in POS. Mediocaudal areas (hIP7, hPO1) were predominantly involved in visual processing, whereas laterorostral areas (hIP4-6, 8) were associated with higher cognitive functions, e.g. counting. This shift was mirrored by systematic changes in connectivity, from temporo-occipital to premotor and prefrontal cortex, and in cytoarchitecture, from prominent Layer IIIc pyramidal cells to homogeneous neuronal distribution. This architectonical mosaic within human pIPS/POS represents a structural basis of its functional and connectional heterogeneity. The new 3D-maps of the areas enable dedicated assessments of structure-function relationships.
Collapse
Affiliation(s)
- Monika Richter
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Svenja Caspers
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| |
Collapse
|
34
|
Potok W, Maskiewicz A, Króliczak G, Marangon M. The temporal involvement of the left supramarginal gyrus in planning functional grasps: A neuronavigated TMS study. Cortex 2019; 111:16-34. [DOI: 10.1016/j.cortex.2018.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/04/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023]
|
35
|
Churan J, Braun DI, Gegenfurtner KR, Bremmer F. Comparison of the precision of smooth pursuit in humans and head unrestrained monkeys. J Eye Mov Res 2018; 11. [PMID: 33828708 PMCID: PMC7904314 DOI: 10.16910/jemr.11.4.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Direct comparison of results of humans and monkeys is often complicated by differences in experimental conditions. We replicated in head unrestrained macaques experiments of a recent study comparing human directional precision during smooth pursuit eye movements (SPEM) and saccades to moving targets (Braun & Gegenfurtner, 2016). Directional precision of human SPEM follows an exponential decay function reaching optimal values of 1.5°-3° within 300 ms after target motion onset, whereas precision of initial saccades to moving targets is slightly better. As in humans, we found general agreement in the devel-opment of directional precision of SPEM over time and in the differences between direc-tional precision of initial saccades and SPEM initiation. However, monkeys showed over-all lower precision in SPEM compared to humans. This was most likely due to differences in experimental conditions, such as in the stabilization of the head, which was by a chin and a head rest in human subjects and unrestrained in monkeys.
Collapse
Affiliation(s)
- Jan Churan
- University of Marburg & CMBB, Marburg, Germany
| | | | | | | |
Collapse
|
36
|
Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev 2018; 94:31-44. [DOI: 10.1016/j.neubiorev.2018.08.003] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 11/30/2022]
|
37
|
Decoding Brain States for Planning Functional Grasps of Tools: A Functional Magnetic Resonance Imaging Multivoxel Pattern Analysis Study. J Int Neuropsychol Soc 2018; 24:1013-1025. [PMID: 30196800 DOI: 10.1017/s1355617718000590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES We used multivoxel pattern analysis (MVPA) to investigate neural selectivity for grasp planning within the left-lateralized temporo-parieto-frontal network of areas (praxis representation network, PRN) typically associated with tool-related actions, as studied with traditional neuroimaging contrasts. METHODS We used data from 20 participants whose task was to plan functional grasps of tools, with either right or left hands. Region of interest and whole-brain searchlight analyses were performed to show task-related neural patterns. RESULTS MVPA revealed significant contributions to functional grasp planning from the anterior intraparietal sulcus (aIPS) and its immediate vicinities, supplemented by inputs from posterior subdivisions of IPS, and the ventral lateral occipital complex (vLOC). Moreover, greater local selectivity was demonstrated in areas near the superior parieto-occipital cortex and dorsal premotor cortex, putatively forming the dorso-dorsal stream. CONCLUSIONS A contribution from aIPS, consistent with its role in prospective grasp formation and/or encoding of relevant tool properties (e.g., potential graspable parts), is likely to accompany the retrieval of manipulation and/or mechanical knowledge subserved by the supramarginal gyrus for achieving action goals. An involvement of vLOC indicates that MVPA is particularly sensitive to coding of object properties, their identities and even functions, for a support of grip formation. Finally, the engagement of the superior parieto-frontal regions as revealed by MVPA is consistent with their selectivity for transient features of tools (i.e., variable affordances) for anticipatory hand postures. These outcomes support the notion that, compared to traditional approaches, MVPA can reveal more fine-grained patterns of neural activity. (JINS, 2018, 24, 1013-1025).
Collapse
|
38
|
Shape responses in a macaque frontal area connected to posterior parietal cortex. Neuroimage 2018; 179:298-312. [DOI: 10.1016/j.neuroimage.2018.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/18/2018] [Accepted: 06/15/2018] [Indexed: 11/30/2022] Open
|
39
|
Erlikhman G, Caplovitz GP, Gurariy G, Medina J, Snow JC. Towards a unified perspective of object shape and motion processing in human dorsal cortex. Conscious Cogn 2018; 64:106-120. [PMID: 29779844 DOI: 10.1016/j.concog.2018.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023]
Abstract
Although object-related areas were discovered in human parietal cortex a decade ago, surprisingly little is known about the nature and purpose of these representations, and how they differ from those in the ventral processing stream. In this article, we review evidence for the unique contribution of object areas of dorsal cortex to three-dimensional (3-D) shape representation, the localization of objects in space, and in guiding reaching and grasping actions. We also highlight the role of dorsal cortex in form-motion interaction and spatiotemporal integration, possible functional relationships between 3-D shape and motion processing, and how these processes operate together in the service of supporting goal-directed actions with objects. Fundamental differences between the nature of object representations in the dorsal versus ventral processing streams are considered, with an emphasis on how and why dorsal cortex supports veridical (rather than invariant) representations of objects to guide goal-directed hand actions in dynamic visual environments.
Collapse
Affiliation(s)
| | | | - Gennadiy Gurariy
- Department of Psychology, University of Nevada, Reno, USA; Department of Psychology, University of Wisconsin, Milwaukee, USA
| | - Jared Medina
- Department of Psychological and Brain Sciences, University of Delaware, USA
| | | |
Collapse
|
40
|
Boosting the Motor Outcome of the Untrained Hand by Action Observation: Mirror Visual Feedback, Video Therapy, or Both Combined-What Is More Effective? Neural Plast 2018; 2018:8369262. [PMID: 29849570 PMCID: PMC5914099 DOI: 10.1155/2018/8369262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/11/2018] [Indexed: 11/21/2022] Open
Abstract
Action observation (AO) allows access to a network that processes visuomotor and sensorimotor inputs and is believed to be involved in observational learning of motor skills. We conducted three consecutive experiments to examine the boosting effect of AO on the motor outcome of the untrained hand by either mirror visual feedback (MVF), video therapy (VT), or a combination of both. In the first experiment, healthy participants trained either with MVF or without mirror feedback while in the second experiment, participants either trained with VT or observed animal videos. In the third experiment, participants first observed video clips that were followed by either training with MVF or training without mirror feedback. The outcomes for the untrained hand were quantified by scores from five motor tasks. The results demonstrated that MVF and VT significantly increase the motor performance of the untrained hand by the use of AO. We found that MVF was the most effective approach to increase the performance of the target effector. On the contrary, the combination of MVF and VT turns out to be less effective looking from clinical perspective. The gathered results suggest that action-related motor competence with the untrained hand is acquired by both mirror-based and video-based AO.
Collapse
|
41
|
Alizadeh AM, Van Dromme I, Verhoef BE, Janssen P. Caudal Intraparietal Sulcus and three-dimensional vision: A combined functional magnetic resonance imaging and single-cell study. Neuroimage 2018; 166:46-59. [DOI: 10.1016/j.neuroimage.2017.10.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/28/2017] [Accepted: 10/21/2017] [Indexed: 11/30/2022] Open
|
42
|
|
43
|
Abstract
The mirror mechanism is a basic mechanism that transforms sensory representations of others' actions into motor representations of the same actions in the brain of the observer. The mirror mechanism plays an important role in understanding actions of others. In the present chapter we discuss first the basic organization of the posterior parietal lobe in the monkey, stressing that it is best characterized as a motor scaffold, on the top of which sensory information is organized. We then describe the location of the mirror mechanism in the posterior parietal cortex of the monkey, and its functional role in areas PFG, and anterior, ventral, and lateral intraparietal areas. We will then present evidence that a similar functional organization is present in humans. We will conclude by discussing the role of the mirror mechanism in the recognition of action performed with tools.
Collapse
|
44
|
Abstract
Action observation is the visual process analyzing the actions of others to determine their goals and how the actor's body (part) movements permit attaining those goals. Our recent psychophysical study demonstrated that 1) observed action (OA) perception differs from shape perception in viewpoint and duration dependence, and 2) accuracy and reaction times of OA discrimination are fitted by the proportional-rate diffusion model whereby a sensory stage provides noisy evidence that is accumulated up to a criterion or bound by a decision stage. That study was devoted to observation of manipulative actions, following a general trend of the field. Recent functional imaging studies of action observation, however, have established various OA classes as separate entities with processing routes involving distinct posterior parietal cortex (PPC) regions. Here, we show that the diffusion model applies to multiple OA classes. Even more importantly, the observers' ability to discriminate exemplars of a given class differs considerably between OA classes and these performance differences correspond to differences in model parameters. In particular, OA classes differ in the bound parameter which we propose may reflect an urgency signal originating in the PPC regions corresponding to the sensory stages of different OA classes.
Collapse
Affiliation(s)
- Artem Platonov
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Guy A Orban
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
45
|
Functional anatomy of the macaque temporo-parieto-frontal connectivity. Cortex 2017; 97:306-326. [DOI: 10.1016/j.cortex.2016.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/21/2016] [Accepted: 12/04/2016] [Indexed: 01/19/2023]
|
46
|
Harvey BM, Ferri S, Orban GA. Comparing Parietal Quantity-Processing Mechanisms between Humans and Macaques. Trends Cogn Sci 2017; 21:779-793. [DOI: 10.1016/j.tics.2017.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/16/2022]
|
47
|
Chen N, Lu J, Shao H, Weng X, Fang F. Neural mechanisms of motion perceptual learning in noise. Hum Brain Mapp 2017; 38:6029-6042. [PMID: 28901676 DOI: 10.1002/hbm.23808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 11/08/2022] Open
Abstract
Practice improves our perceptual ability. However, the neural mechanisms underlying this experience-dependent plasticity in adult brain remain unclear. Here, we studied the long-term neural correlates of motion perceptual learning. Subjects' behavioral performance and BOLD signals were tracked before, immediately after, and 2 weeks after practicing a motion direction discrimination task in noise over six daily sessions. Parallel to the specificity and persistency of the behavioral learning effect, we found that training sharpened the cortical tuning in MT, and enhanced the connectivity strength from MT to the intraparietal sulcus (IPS, a motion decision-making area). In addition, the decoding accuracy for the trained motion direction was improved in IPS 2 weeks after training. The dual changes in the sensory and the high-level cortical areas suggest that learning refines the neural representation of the trained stimulus and facilitates the information transmission in the decision process. Our findings are consistent with the functional specialization in the visual cortex, and provide empirical evidence to the reweighting theory of perceptual learning at a large spatial scale. Hum Brain Mapp 38:6029-6042, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nihong Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, People's Republic of China.,Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, 100871, People's Republic of China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, People's Republic of China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, People's Republic of China.,Department of Psychology, University of Southern California, Los Angeles, California 90089-1061
| | - Junshi Lu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, People's Republic of China.,Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, 100871, People's Republic of China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, People's Republic of China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, People's Republic of China
| | - Hanyu Shao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuchu Weng
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, People's Republic of China.,Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, 100871, People's Republic of China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, People's Republic of China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
48
|
Arcaro MJ, Livingstone MS. Retinotopic Organization of Scene Areas in Macaque Inferior Temporal Cortex. J Neurosci 2017; 37:7373-7389. [PMID: 28674177 PMCID: PMC5546109 DOI: 10.1523/jneurosci.0569-17.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/15/2017] [Accepted: 06/24/2017] [Indexed: 11/21/2022] Open
Abstract
Primates have specialized domains in inferior temporal (IT) cortex that are responsive to particular image categories. Though IT traditionally has been regarded as lacking retinotopy, several recent studies in monkeys have shown that retinotopic maps extend to face patches along the lower bank of the superior temporal sulcus (STS) and neighboring regions of IT cortex. Here, we used fMRI to map the retinotopic organization of medial ventral temporal cortex in four monkeys (2 male and 2 female). We confirm the presence of visual field maps within and around the lower bank of the STS and extend these prior findings to scene-selective cortex in the ventral-most regions of IT. Within the occipitotemporal sulcus (OTS), we identified two retinotopic areas, OTS1 and OTS2. The polar angle representation of OTS2 was a mirror reversal of the OTS1 representation. These regions contained representations of the contralateral periphery and were selectively active for scene versus face, body, or object images. The extent of this retinotopy parallels that in humans and shows that the organization of the scene network is preserved across primate species. In addition retinotopic maps were identified in dorsal extrastriate, posterior parietal, and frontal cortex as well as the thalamus, including both the lateral geniculate nucleus and pulvinar. Together, it appears that most, if not all, of the macaque visual system contains organized representations of visual space.SIGNIFICANCE STATEMENT Primates have specialized domains in inferior temporal (IT) cortex that are responsive to particular image categories. Though retinotopic maps are considered a fundamental organizing principle of posterior visual cortex, IT traditionally has been regarded as lacking retinotopy. Recent imaging studies have demonstrated the presence of several visual field maps within the lateral IT. Using neuroimaging, we found multiple representations of visual space within ventral IT cortex of macaques that included scene-selective cortex. Scene domains were biased toward the peripheral visual field. These data demonstrate the prevalence of visual field maps throughout the primate visual system, including late stages in the ventral visual hierarchy, and support the idea that domains representing different categories are biased toward different parts of the visual field.
Collapse
Affiliation(s)
- Michael J Arcaro
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
49
|
Mohan H, de Haan R, Mansvelder HD, de Kock CPJ. The posterior parietal cortex as integrative hub for whisker sensorimotor information. Neuroscience 2017. [PMID: 28642168 DOI: 10.1016/j.neuroscience.2017.06.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Our daily life consists of a continuous interplay between incoming sensory information and outgoing motor plans. Particularly during goal-directed behavior and active exploration of the sensory environment, brain circuits are merging sensory and motor signals. This is referred to as sensorimotor integration and is relevant for locomotion, vision or tactile exploration. The somatosensory (tactile) system is an attractive modality to study sensorimotor integration in health and disease, motivated by the need for revolutionary technology that builds upon conceptual understanding of sensorimotor integration, such as brain-machine-interfaces and neuro-prosthetics. In this perspective, we focus on the rat whisker system and put forward the posterior parietal cortex as a potential circuit where sensorimotor integration could occur during active somatosensation.
Collapse
Affiliation(s)
- Hemanth Mohan
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - Roel de Haan
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - Christiaan P J de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, The Netherlands.
| |
Collapse
|
50
|
Chen Y, Ren H, Zhang N, Troy FA, Wang B. Biochemical Characterization and Analyses of Polysialic-Acid-Associated Carrier Proteins and Genes in Piglets during Neonatal Development. Chembiochem 2017; 18:1270-1278. [PMID: 28444921 DOI: 10.1002/cbic.201700029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Indexed: 01/22/2023]
Abstract
Polysialic acid plays a key role in cancer metastasis and neurodevelopment. Our aim was to determine the developmental gene-expression profiles for the two polysialyltransferases ST8Sia II and ST8Sia IV, neural cell-adhesion molecules (NCAMs), SynCAM 1, neuropilin-2 (NRP2) and their polysialylated cognate glycans in different regions of the piglet brain during postnatal development. Our findings show that: 1) the cellular levels of mRNA coding for ST8Sia II and ST8Sia IV, NCAMs, SynCAM 1, NRP2 and polySia are age-dependent and cell-type-specific during neonatal brain development, 2) there was a lack of correlation between abundance level of mRNA coding for ST8Sia II and ST8Sia IV and the abundance level of the post-translation expression of polySia in all nine brain regions, 3) expression levels of polySia did not correlate with the levels of the carrier proteins NCAM-140, SynCAM 1 and NRP2 in nine brain regions, and 4) the cellular abundance of ST8Sia II and ST8Sia IV in nine subregions of piglet brain is regulated at the level of translation/post-translation, and not at the level of transcription. Collectively, our findings suggest that neuronal and glial cells within different regions of the brain have different transcriptional programs that can direct cell division at different rates based on the activity levels of ST8Sia II and ST8Sia IV and the level of their carrier proteins during neurodevelopment.
Collapse
Affiliation(s)
- Yue Chen
- Medical College of Xiamen University, Xiamen City, 361005, China
| | - He Ren
- Medical College of Xiamen University, Xiamen City, 361005, China
| | - Nai Zhang
- Medical College of Xiamen University, Xiamen City, 361005, China
| | - Frederic A Troy
- Medical College of Xiamen University, Xiamen City, 361005, China.,Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Davis, CA, 95616, USA
| | - Bing Wang
- Medical College of Xiamen University, Xiamen City, 361005, China.,School of Animal and Veterinary Science, Charles Sturt University, Locked Bag, Boorooma Street, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|