1
|
McIlroy SE, terHorst CP, Teece M, Coffroth MA. Nutrient dynamics in coral symbiosis depend on both the relative and absolute abundance of Symbiodiniaceae species. MICROBIOME 2022; 10:192. [PMID: 36336686 PMCID: PMC9639324 DOI: 10.1186/s40168-022-01382-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Symbionts provide a variety of reproductive, nutritional, and defensive resources to their hosts, but those resources can vary depending on symbiont community composition. As genetic techniques open our eyes to the breadth of symbiont diversity within myriad microbiomes, symbiosis research has begun to consider what ecological mechanisms affect the identity and relative abundance of symbiont species and how this community structure impacts resource exchange among partners. Here, we manipulated the in hospite density and relative ratio of two species of coral endosymbionts (Symbiodinium microadriaticum and Breviolum minutum) and used stable isotope enrichment to trace nutrient exchange with the host, Briareum asbestinum. RESULTS The patterns of uptake and translocation of carbon and nitrogen varied with both density and ratio of symbionts. Once a density threshold was reached, carbon acquisition decreased with increasing proportions of S. microadriaticum. In hosts dominated by B. minutum, nitrogen uptake was density independent and intermediate. Conversely, for those corals dominated by S. microadriaticum, nitrogen uptake decreased as densities increased, and as a result, these hosts had the overall highest (at low density) and lowest (at high density) nitrogen enrichment. CONCLUSIONS Our findings show that the uptake and sharing of nutrients was strongly dependent on both the density of symbionts within the host, as well as which symbiont species was dominant. Together, these complex interactive effects suggest that host regulation and the repression of in hospite symbiont competition can ultimately lead to a more productive mutualism. Video Abstract.
Collapse
Affiliation(s)
- Shelby E McIlroy
- School of Biological Sciences, Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, China.
- Graduate Program in Evolution, Ecology and Behaviour, University at Buffalo, Buffalo, NY, 14260, USA.
| | - Casey P terHorst
- Department of Biology, California State University, Northridge, CA, 91330, USA
| | - Mark Teece
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Mary Alice Coffroth
- Graduate Program in Evolution, Ecology and Behaviour, University at Buffalo, Buffalo, NY, 14260, USA
- Department of Geology University at Buffalo, Buffalo, NY, 14260, USA
| |
Collapse
|
2
|
Kitchen SA, Jiang D, Harii S, Satoh N, Weis VM, Shinzato C. Coral larvae suppress heat stress response during the onset of symbiosis decreasing their odds of survival. Mol Ecol 2022; 31:5813-5830. [PMID: 36168983 DOI: 10.1111/mec.16708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023]
Abstract
The endosymbiosis between most corals and their photosynthetic dinoflagellate partners begins early in the host life history, when corals are larvae or juvenile polyps. The capacity of coral larvae to buffer climate-induced stress while in the process of symbiont acquisition could come with physiological trade-offs that alter behaviour, development, settlement and survivorship. Here we examined the joint effects of thermal stress and symbiosis onset on colonization dynamics, survival, metamorphosis and host gene expression of Acropora digitifera larvae. We found that thermal stress decreased symbiont colonization of hosts by 50% and symbiont density by 98.5% over 2 weeks. Temperature and colonization also influenced larval survival and metamorphosis in an additive manner, where colonized larvae fared worse or prematurely metamorphosed more often than noncolonized larvae under thermal stress. Transcriptomic responses to colonization and thermal stress treatments were largely independent, while the interaction of these treatments revealed contrasting expression profiles of genes that function in the stress response, immunity, inflammation and cell cycle regulation. The combined treatment either cancelled or lowered the magnitude of expression of heat-stress responsive genes in the presence of symbionts, revealing a physiological cost to acquiring symbionts at the larval stage with elevated temperatures. In addition, host immune suppression, a hallmark of symbiosis onset under ambient temperature, turned to immune activation under heat stress. Thus, by integrating the physical environment and biotic pressures that mediate presettlement event in corals, our results suggest that colonization may hinder larval survival and recruitment under projected climate scenarios.
Collapse
Affiliation(s)
- Sheila A Kitchen
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Duo Jiang
- Statistics Department, Oregon State University, Corvallis, Oregon, USA
| | - Saki Harii
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
3
|
Coffroth MA, Leigh NJ, McIlroy SE, Miller MW, Sheets HD. Genetic structure of dinoflagellate symbionts in coral recruits differs from that of parental or local adults. Ecol Evol 2022; 12:e9312. [PMID: 36188517 PMCID: PMC9484304 DOI: 10.1002/ece3.9312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
The symbiotic relationship between dinoflagellate algae in the family Symbiodiniaceae and scleractinian corals forms the base of the tropical reef ecosystem. In scleractinian corals, recruits acquire symbionts either "vertically" from the maternal colony or initially lack symbionts and acquire them "horizontally" from the environment. Regardless of the mode of acquisition, coral species and individual colonies harbor only a subset of the highly diverse complex of species/taxa within the Symbiodiniaceae. This suggests a genetic basis for specificity, but local environmental conditions and/or symbiont availability may also play a role in determining which symbionts within the Symbiodiniaceae are initially taken up by the host. To address the relative importance of genetic and environmental drivers of symbiont uptake/establishment, we examined the acquisition of these dinoflagellate symbionts in one to three-month-old recruits of Orbicella faveolata to compare symbiont types present in recruits to those of parental populations versus co-occurring adults in their destination reef. Variation in chloroplast 23S ribosomal DNA and in three polymorphic microsatellite loci was examined. We found that, in general, symbiont communities within adult colonies differed between reefs, suggesting that endemism is common among symbiont populations of O. faveolata on a local scale. Among recruits, initial symbiont acquisition was selective. O. faveolata recruits only acquired a subset of locally available symbionts, and these generally did not reflect symbiont populations in adults at either the parental or the outplant reef. Instead, symbiont communities within new recruits at a given outplant site and region tended to be similar to each other, regardless of parental source population. These results suggest temporal variation in the local symbiont source pool, although other possible drivers behind the distinct difference between symbionts within O. faveolata adults and new generations of recruits may include different ontogenetic requirements and/or reduced host selectivity in early ontogeny.
Collapse
Affiliation(s)
| | - Noel J. Leigh
- Graduate Program in Evolution, Ecology and BehaviorUniversity at BuffaloBuffaloNew YorkUSA
| | - Shelby E. McIlroy
- Graduate Program in Evolution, Ecology and BehaviorUniversity at BuffaloBuffaloNew YorkUSA
- Present address:
School of Biological Sciences, The Swire Institute of Marine ScienceThe University of Hong KongHong KongChina
| | - Margaret W. Miller
- NOAA Southeast Fisheries Science CenterMiamiFloridaUSA
- Present address:
SECORE International, Inc.MiamiFloridaUSA
| | - H. David Sheets
- Department of GeologyUniversity at BuffaloBuffaloNew YorkUSA
- Graduate Program in Data AnalyticsCanisius CollegeBuffaloNew YorkUSA
| |
Collapse
|
4
|
Ishii Y, Hatta M, Deguchi R, Kawata M, Maruyama S. Gene expression alterations from reversible to irreversible stages during coral metamorphosis. ZOOLOGICAL LETTERS 2022; 8:4. [PMID: 35078542 PMCID: PMC8787945 DOI: 10.1186/s40851-022-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
For corals, metamorphosis from planktonic larvae to sedentary polyps is an important life event, as it determines the environment in which they live for a lifetime. Although previous studies on the reef-building coral Acropora have clarified a critical time point during metamorphosis when cells are committed to their fates, as defined by an inability to revert back to their previous states as swimming larvae (here referred to as the "point of no return"), the molecular mechanisms of this commitment to a fate remain unclear. To address this issue, we analyzed the transcriptomic changes before and after the point of no return by inducing metamorphosis of Acropora tenuis with Hym-248, a metamorphosis-inducing neuropeptide. Gene Ontology and pathway enrichment analysis of the 5893 differentially expressed genes revealed that G protein-coupled receptors (GPCRs) were enriched, including GABA receptor and Frizzled gene subfamilies, which showed characteristic temporal expression patterns. The GPCRs were then classified by comparison with those of Homo sapiens, Nematostella vectensis and Platynereis dumerilii. Classification of the differentially expressed genes into modules based on expression patterns showed that some modules with large fluctuations after the point of no return were biased toward functions such as protein metabolism and transport. This result suggests that in precommitted larvae, different types of GPCR genes function to ensure a proper environment, whereas in committed larvae, intracellular protein transport and proteolysis may cause a loss of the reversibility of metamorphosis as a result of cell differentiation.
Collapse
Affiliation(s)
- Yuu Ishii
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai, Sendai, Miyagi 980-0845 Japan
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
| | - Masayuki Hatta
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Aoba-ku, Sendai, Sendai, Miyagi 980-0845 Japan
| | - Masakado Kawata
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
| | - Shinichiro Maruyama
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578 Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, 112-8610 Japan
| |
Collapse
|
5
|
Host and Symbiont Cell Cycle Coordination Is Mediated by Symbiotic State, Nutrition, and Partner Identity in a Model Cnidarian-Dinoflagellate Symbiosis. mBio 2020; 11:mBio.02626-19. [PMID: 32156819 PMCID: PMC7064764 DOI: 10.1128/mbio.02626-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biomass regulation is critical to the overall health of cnidarian-dinoflagellate symbioses. Despite the central role of the cell cycle in the growth and proliferation of cnidarian host cells and dinoflagellate symbionts, there are few studies that have examined the potential for host-symbiont coregulation. This study provides evidence for the acceleration of host cell proliferation when in local proximity to clusters of symbionts within cnidarian tentacles. The findings suggest that symbionts augment the cell cycle of not only their enveloping host cells but also neighboring cells in the epidermis and gastrodermis. This provides a possible mechanism for rapid colonization of cnidarian tissues. In addition, the cell cycles of symbionts differed depending on nutritional regime, symbiotic state, and species identity. The responses of cell cycle profiles to these different factors implicate a role for species-specific regulation of symbiont cell cycles within host cnidarian tissues. The cell cycle is a critical component of cellular proliferation, differentiation, and response to stress, yet its role in the regulation of intracellular symbioses is not well understood. To explore host-symbiont cell cycle coordination in a marine symbiosis, we employed a model for coral-dinoflagellate associations: the tropical sea anemone Aiptasia (Exaiptasia pallida) and its native microalgal photosymbionts (Breviolum minutum and Breviolum psygmophilum). Using fluorescent labeling and spatial point-pattern image analyses to characterize cell population distributions in both partners, we developed protocols that are tailored to the three-dimensional cellular landscape of a symbiotic sea anemone tentacle. Introducing cultured symbiont cells to symbiont-free adult hosts increased overall host cell proliferation rates. The acceleration occurred predominantly in the symbiont-containing gastrodermis near clusters of symbionts but was also observed in symbiont-free epidermal tissue layers, indicating that the presence of symbionts contributes to elevated proliferation rates in the entire host during colonization. Symbiont cell cycle progression differed between cultured algae and those residing within hosts; the endosymbiotic state resulted in increased S-phase but decreased G2/M-phase symbiont populations. These phenotypes and the deceleration of cell cycle progression varied with symbiont identity and host nutritional status. These results demonstrate that host and symbiont cells have substantial and species-specific effects on the proliferation rates of their mutualistic partners. This is the first empirical evidence to support species-specific regulation of the symbiont cell cycle within a single cnidarian-dinoflagellate association; similar regulatory mechanisms likely govern interpartner coordination in other coral-algal symbioses and shape their ecophysiological responses to a changing climate.
Collapse
|
6
|
McIlroy SE, Cunning R, Baker AC, Coffroth MA. Competition and succession among coral endosymbionts. Ecol Evol 2019; 9:12767-12778. [PMID: 31788212 PMCID: PMC6875658 DOI: 10.1002/ece3.5749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 01/03/2023] Open
Abstract
Host species often support a genetically diverse guild of symbionts, the identity and performance of which can determine holobiont fitness under particular environmental conditions. These symbiont communities are structured by a complex set of potential interactions, both positive and negative, between the host and symbionts and among symbionts. In reef-building corals, stable associations with specific symbiont species are common, and we hypothesize that this is partly due to ecological mechanisms, such as succession and competition, which drive patterns of symbiont winnowing in the initial colonization of new generations of coral recruits. We tested this hypothesis using the experimental framework of the de Wit replacement series and found that competitive interactions occurred among symbionts which were characterized by unique ecological strategies. Aposymbiotic octocoral recruits within high- and low-light environments were inoculated with one of three Symbiodiniaceae species as monocultures or with cross-paired mixtures, and we tracked symbiont uptake using quantitative genetic assays. Priority effects, in which early colonizers excluded competitive dominants, were evidenced under low light, but these early opportunistic species were later succeeded by competitive dominants. Under high light, a more consistent competitive hierarchy was established in which competitive dominants outgrew and limited the abundance of others. These findings provide insight into mechanisms of microbial community organization and symbiosis breakdown and recovery. Furthermore, transitions in competitive outcomes across spatial and temporal environmental variation may improve lifetime host fitness.
Collapse
Affiliation(s)
- Shelby E. McIlroy
- Graduate Program in Evolution, Ecology and BehaviorState University of New YorkUniversity at BuffaloBuffaloNew York
- Swire Institute of Marine ScienceSchool of Biological ScienceThe University of Hong KongHong Kong
- Present address:
Swire Institute of Marine ScienceSchool of Biological ScienceThe University of Hong KongHong Kong
| | - Ross Cunning
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
- Present address:
Daniel P. Haerther Center for Conservation and ResearchJohn G. Shedd AquariumChicagoIllinois
| | - Andrew C. Baker
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida
| | - Mary Alice Coffroth
- Graduate Program in Evolution, Ecology and BehaviorState University of New YorkUniversity at BuffaloBuffaloNew York
- Department of GeologyState University of New YorkUniversity at BuffaloBuffaloNew York
| |
Collapse
|
7
|
Bythell JC, Brown BE, Kirkwood TBL. Do reef corals age? Biol Rev Camb Philos Soc 2017; 93:1192-1202. [PMID: 29282837 DOI: 10.1111/brv.12391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 01/13/2023]
Abstract
Hydra is emerging as a model organism for studies of ageing in early metazoan animals, but reef corals offer an equally ancient evolutionary perspective as well as several advantages, not least being the hard exoskeleton which provides a rich fossil record as well as a record of growth and means of ageing of individual coral polyps. Reef corals are also widely regarded as potentially immortal at the level of the asexual lineage and are assumed not to undergo an intrinsic ageing process. However, putative molecular indicators of ageing have recently been detected in reef corals. While many of the large massive coral species attain considerable ages (>600 years) there are other much shorter-lived species where older members of some populations show catastrophic mortality, compared to juveniles, under environmental stress. Other studies suggestive of ageing include those demonstrating decreased reproduction, increased susceptibility to oxidative stress and disease, reduced regeneration potential and declining growth rate in mature colonies. This review aims to promote interest and research in reef coral ageing, both as a useful model for the early evolution of ageing and as a factor in studies of ecological impacts on reef systems in light of the enhanced effects of environmental stress on ageing in other organisms.
Collapse
Affiliation(s)
- John C Bythell
- School of Natural & Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Barbara E Brown
- School of Natural & Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.,Environmental Research Unit, University of Highlands and Islands, Thurso KW14 7EE, U.K
| | - Thomas B L Kirkwood
- Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, U.K.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|