1
|
Wang YF, Xu JY, Liu ZL, Cui HL, Chen P, Cai TG, Li G, Ding LJ, Qiao M, Zhu YG, Zhu D. Biological Interactions Mediate Soil Functions by Altering Rare Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5866-5877. [PMID: 38504110 DOI: 10.1021/acs.est.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Soil microbes, the main driving force of terrestrial biogeochemical cycles, facilitate soil organic matter turnover. However, the influence of the soil fauna on microbial communities remains poorly understood. We investigated soil microbiota dynamics by introducing competition and predation among fauna into two soil ecosystems with different fertilization histories. The interactions significantly affected rare microbial communities including bacteria and fungi. Predation enhanced the abundance of C/N cycle-related genes. Rare microbial communities are important drivers of soil functional gene enrichment. Key rare microbial taxa, including SM1A02, Gammaproteobacteria, and HSB_OF53-F07, were identified. Metabolomics analysis suggested that increased functional gene abundance may be due to specific microbial metabolic activity mediated by soil fauna interactions. Predation had a stronger effect on rare microbes, functional genes, and microbial metabolism compared to competition. Long-term organic fertilizer application increased the soil resistance to animal interactions. These findings provide a comprehensive understanding of microbial community dynamics under soil biological interactions, emphasizing the roles of competition and predation among soil fauna in terrestrial ecosystems.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe-Lun Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hui-Ling Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tian-Gui Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
2
|
Guariento RD, Dalponti G, Carneiro LS, Caliman A. Prey defense phenotype mediates multiple-predator effects in tri-trophic food-webs. J Anim Ecol 2022; 91:2023-2036. [PMID: 35839141 DOI: 10.1111/1365-2656.13777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
1. The emphasis on mechanisms governing the interaction among predators (e.g., cooperation, competition, or intraguild predation) has driven the understanding of multiple-predator effects on prey survival and dynamics. However, overwhelming evidence shows that prey can adaptively respond to predators, exhibiting multiple defensive phenotypes to cope with predation. Nevertheless, there is still a relatively scarce theory connecting the emergence of prey defenses in complex multi-predator scenarios and their ecological consequences. 2. Using a mathematical approach, we evaluated the prevalence of defended prey phenotypes as a function of predator-induced mortality in a two-predator system, and how prey and phenotype dynamics affect trophic cascades. We also evaluated such responses when prey manifests a general defense against both predators (i.e., risk-reducing) or a specialized defense against one predator at the expense of defense against the other predator (i.e., risk trade-off), and when such phenotypes induce fitness and foraging costs. 3. We showed that the emergence of defended phenotypes under multiple predators depends on predator-induced mortality rates, the magnitude of phenotype costs, and the effect of the defensive phenotype on the performance of all predators. 4. Risk-reducing phenotypes enhance prioritized responses to predators with high killing rates, but prioritized responses are diminished when prey manifest risk trade-off phenotypes. Finally, we showed that resource abundance across the predation gradient directly depends on the prevalence of certain prey phenotypes and their effect on foraging costs. 5. Ultimately, our results depict the implications of prey defenses on prey and basal resources abundance in a multiple predators' environment, highlighting the role of the identity of defensive strategies in mediating the strength and nature of trophic cascades, via consumptive or non-consumptive effects.
Collapse
Affiliation(s)
- Rafael Dettogni Guariento
- Laboratório de Ecologia, Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brasil
| | - Guilherme Dalponti
- Laboratório de Ecologia, Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brasil
| | - Luciana Silva Carneiro
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59078-970, RN, Brasil
| | - Adriano Caliman
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, 59078-970, RN, Brasil
| |
Collapse
|
3
|
Hammerschlag N, Fallows C, Meÿer M, Seakamela SM, Orndorff S, Kirkman S, Kotze D, Creel S. Loss of an apex predator in the wild induces physiological and behavioural changes in prey. Biol Lett 2022; 18:20210476. [PMID: 35078332 PMCID: PMC8790382 DOI: 10.1098/rsbl.2021.0476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/20/2021] [Indexed: 01/28/2023] Open
Abstract
Predators can impact prey via predation or risk effects, which can initiate trophic cascades. Given widespread population declines of apex predators, understanding and predicting the associated ecological consequences is a priority. When predation risk is relatively unpredictable or uncontrollable by prey, the loss of predators is hypothesized to release prey from stress; however, there are few tests of this hypothesis in the wild. A well-studied predator-prey system between white sharks (Carcharodon carcharias) and Cape fur seals (Arctocephalus pusillus pusillus) in False Bay, South Africa, has previously demonstrated elevated faecal glucocorticoid metabolite concentrations (fGCMs) in seals exposed to high levels of predation risk from white sharks. A recent decline and disappearance of white sharks from the system has coincided with a pronounced decrease in seal fGCM concentrations. Seals have concurrently been rafting further from shore and over deeper water, a behaviour that would have previously rendered them vulnerable to attack. These results show rapid physiological and behavioural responses by seals to release from predation stress. To our knowledge, this represents the first demonstration in the wild of physiological changes in prey from predator decline, and such responses are likely to increase given the scale and pace of apex predator declines globally.
Collapse
Affiliation(s)
- Neil Hammerschlag
- Department of Environmental Science and Policy, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Chris Fallows
- Apex Shark Expeditions, Shop 3 Quayside Center, Simonstown, Cape Town 7975, South Africa
| | - Michael Meÿer
- Department of Forestry, Fisheries and the Environment, Oceans and Coasts Branch, 2 East Pier Road, Waterfront, Cape Town 8000, South Africa
| | - Simon Mduduzi Seakamela
- Department of Forestry, Fisheries and the Environment, Oceans and Coasts Branch, 2 East Pier Road, Waterfront, Cape Town 8000, South Africa
| | - Samantha Orndorff
- Department of Environmental Science and Policy, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Steve Kirkman
- Department of Forestry, Fisheries and the Environment, Oceans and Coasts Branch, 2 East Pier Road, Waterfront, Cape Town 8000, South Africa
- Marine Apex Predator Research Unit (MAPRU), Department of Zoology and Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Deon Kotze
- Department of Forestry, Fisheries and the Environment, Oceans and Coasts Branch, 2 East Pier Road, Waterfront, Cape Town 8000, South Africa
| | - Scott Creel
- Department of Ecology, Montana State University, Bozeman, MT 59717, USA
- Institutionen för Vilt, Fisk och Miljö, Sveriges lantbruksuniversitet, 90183 Umeå, Sweden
| |
Collapse
|
4
|
Moore AC, Schmitz OJ. Do predators have a role to play in wetland ecosystem functioning? An experimental study in New England salt marshes. Ecol Evol 2021; 11:10956-10967. [PMID: 34429894 PMCID: PMC8366883 DOI: 10.1002/ece3.7880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/08/2022] Open
Abstract
The historical ecological paradigm of wetland ecosystems emphasized the role of physical or "bottom-up" factors in maintaining functions and services. However, recent studies have shown that the loss of predators in coastal salt marshes can lead to a significant reduction in wetland extent due to overgrazing of vegetation by herbivores. Such studies indicate that consumers or "top-down" factors may play a much larger role in the maintenance of wetland ecosystems than was previously thought. The objective of this study was to evaluate whether altering top-down control by manipulating the presence of predators can lead to measurable changes in salt marsh ecosystem properties. Between May and August of 2015 and 2016, we established exclosure and enclosure cages within three New England coastal wetland areas and manipulated the presence of green crab predators to assess how they and their fiddler and purple marsh crab prey affect changes in ecosystem properties. Predator presence was associated with changes in soil nitrogen and aboveground biomass at two of the three field sites, though the magnitude and direction of these effects varied from site to site. Further, path analysis results indicate that across field sites, a combination of bottom-up and top-down factors influenced changes in measured variables. These results challenge the growing consensus that consumers have strong effects, indicating instead that predator impacts may be highly context-dependent.
Collapse
|
5
|
Smith JG, Tomoleoni J, Staedler M, Lyon S, Fujii J, Tinker MT. Behavioral responses across a mosaic of ecosystem states restructure a sea otter-urchin trophic cascade. Proc Natl Acad Sci U S A 2021; 118:e2012493118. [PMID: 33836567 PMCID: PMC7980363 DOI: 10.1073/pnas.2012493118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Consumer and predator foraging behavior can impart profound trait-mediated constraints on community regulation that scale up to influence the structure and stability of ecosystems. Here, we demonstrate how the behavioral response of an apex predator to changes in prey behavior and condition can dramatically alter the role and relative contribution of top-down forcing, depending on the spatial organization of ecosystem states. In 2014, a rapid and dramatic decline in the abundance of a mesopredator (Pycnopodia helianthoides) and primary producer (Macrocystis pyrifera) coincided with a fundamental change in purple sea urchin (Strongylocentrotus purpuratus) foraging behavior and condition, resulting in a spatial mosaic of kelp forests interspersed with patches of sea urchin barrens. We show that this mosaic of adjacent alternative ecosystem states led to an increase in the number of sea otters (Enhydra lutris nereis) specializing on urchin prey, a population-level increase in urchin consumption, and an increase in sea otter survivorship. We further show that the spatial distribution of sea otter foraging efforts for urchin prey was not directly linked to high prey density but rather was predicted by the distribution of energetically profitable prey. Therefore, we infer that spatially explicit sea otter foraging enhances the resistance of remnant forests to overgrazing but does not directly contribute to the resilience (recovery) of forests. These results highlight the role of consumer and predator trait-mediated responses to resource mosaics that are common throughout natural ecosystems and enhance understanding of reciprocal feedbacks between top-down and bottom-up forcing on the regional stability of ecosystems.
Collapse
Affiliation(s)
- Joshua G Smith
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060;
| | - Joseph Tomoleoni
- Santa Cruz Field Station, Western Ecological Research Center, US Geological Survey, Santa Cruz, CA 95060
| | - Michelle Staedler
- Department of Conservation Research, Monterey Bay Aquarium, Monterey, CA 93940
| | - Sophia Lyon
- Santa Cruz Field Station, Western Ecological Research Center, US Geological Survey, Santa Cruz, CA 95060
| | - Jessica Fujii
- Department of Conservation Research, Monterey Bay Aquarium, Monterey, CA 93940
| | - M Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060
- Santa Cruz Field Station, Western Ecological Research Center, US Geological Survey, Santa Cruz, CA 95060
| |
Collapse
|
6
|
Peacor SD, Barton BT, Kimbro DL, Sih A, Sheriff MJ. A framework and standardized terminology to facilitate the study of predation-risk effects. Ecology 2020; 101:e03152. [PMID: 32736416 DOI: 10.1002/ecy.3152] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 03/14/2020] [Accepted: 06/08/2020] [Indexed: 11/10/2022]
Abstract
The very presence of predators can strongly influence flexible prey traits such as behavior, morphology, life history, and physiology. In a rapidly growing body of literature representing diverse ecological systems, these trait (or "fear") responses have been shown to influence prey fitness components and density, and to have indirect effects on other species. However, this broad and exciting literature is burdened with inconsistent terminology that is likely hindering the development of inclusive frameworks and general advances in ecology. We examine the diverse terminology used in the literature, and discuss pros and cons of the many terms used. Common problems include the same term being used for different processes, and many different terms being used for the same process. To mitigate terminological barriers, we developed a conceptual framework that explicitly distinguishes the multiple predation-risk effects studied. These multiple effects, along with suggested standardized terminology, are risk-induced trait responses (i.e., effects on prey traits), interaction modifications (i.e., effects on prey-other-species interactions), nonconsumptive effects (i.e., effects on the fitness and density of the prey), and trait-mediated indirect effects (i.e., the effects on the fitness and density of other species). We apply the framework to three well studied systems to highlight how it can illuminate commonalities and differences among study systems. By clarifying and elucidating conceptually similar processes, the framework and standardized terminology can facilitate communication of insights and methodologies across systems and foster cross-disciplinary perspectives.
Collapse
Affiliation(s)
- Scott D Peacor
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Brandon T Barton
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA
| | - David L Kimbro
- Department of Marine and Environmental Science, Northeastern University, Nahant, Massachusetts, 01908, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California Davis, Davis, California, 95616, USA
| | - Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, 20747, USA
| |
Collapse
|
7
|
Kimbro DL, Scherer AE, Byers JE, Grabowski JH, Hughes AR, Piehler MF, Smee DL. Environmental gradients influence biogeographic patterns of nonconsumptive predator effects on oysters. Ecosphere 2020. [DOI: 10.1002/ecs2.3260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- David L. Kimbro
- Marine Science Center Northeastern University Nahant Massachusetts01908USA
| | - Avery E. Scherer
- River Science and Restoration Lab Cramer Fish Sciences West Sacramento California95691USA
| | - James E. Byers
- Odum School of Ecology University of Georgia Athens Georgia30602USA
| | | | - A. Randall Hughes
- Marine Science Center Northeastern University Nahant Massachusetts01908USA
| | - Michael F. Piehler
- Institute of Marine Sciences University of North Carolina at Chapel Hill Morehead City North Carolina28557USA
- Institute for the Environment University of North Carolina at Chapel Hill Morehead City North Carolina28557USA
| | | |
Collapse
|
8
|
Abstract
Observational studies have not yet shown that environmental variables can explain pervasive nonlinear patterns of species abundance, because those patterns could result from (indirect) interactions with other species (e.g., competition), and models only estimate direct responses. The experiments that could extract these indirect effects at regional to continental scales are not feasible. Here, a biophysical approach quantifies environment- species interactions (ESI) that govern community change from field data. Just as species interactions depend on population abundances, so too do the effects of environment, as when drought is amplified by competition. By embedding dynamic ESI within framework that admits data gathered on different scales, we quantify responses that are induced indirectly through other species, including probabilistic uncertainty in parameters, model specification, and data. Simulation demonstrates that ESI are needed for accurate interpretation. Analysis demonstrates how nonlinear responses arise even when their direct responses to environment are linear. Applications to experimental lakes and the Breeding Bird Survey (BBS) yield contrasting estimates of ESI. In closed lakes, interactions involving phytoplankton and their zooplankton grazers play a large role. By contrast, ESI are weak in BBS, as expected where year-to-year movement degrades the link between local population growth and species interactions. In both cases, nonlinear responses to environmental gradients are induced by interactions between species. Stability analysis indicates stability in the closed-system lakes and instability in BBS. The probabilistic framework has direct application to conservation planning that must weigh risk assessments for entire habitats and communities against competing interests.
Collapse
|
9
|
Kimbro DL, Tillotson HG, White JW. Environmental forcing and predator consumption outweigh the nonconsumptive effects of multiple predators on oyster reefs. Ecology 2020; 101:e03041. [PMID: 32134508 DOI: 10.1002/ecy.3041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/27/2020] [Accepted: 01/23/2020] [Indexed: 11/05/2022]
Abstract
The ability to predict how predators structure ecosystems has been shown to depend on identifying both consumptive effects (CEs) and nonconsumptive effects (NCEs) of predators on prey fitness. Prey populations may also be affected by interactions between multiple predators across life stages of the prey and by environmental factors such as disturbance. However, the intersection of these multiple drivers of prey dynamics has yet to be empirically evaluated. We addressed this knowledge gap using eastern oysters (Crassostrea virginica), a species known to suffer NCEs, as the focal prey. Over 4 months, we manipulated orthogonally the life stage (none, juvenile, adult, or both) at which oysters experienced simulated predation (CE) and exposure to olfactory cues of a juvenile oyster predator (crab), adult predator (conch), sequentially the crab and then the conch, or none. We replicated this experiment at three sites along an environmental gradient in a Florida (USA) estuary. For both juvenile and adult oysters, survival was reduced solely by CEs, and variation in growth was best explained by among-site variation in water flow, with a much smaller and negative effect of predator cue. Adults exposed to conch cue exhibited reduced growth (an NCE), but this effect was outweighed by a positive CE on growth: Surviving oysters grew faster at lower densities. Finally, conch cue reduced larval settlement (another NCE), but this was swamped by among-site variation in larval supply. This research highlights how strong environmental gradients and predator CEs may outweigh the influence of NCEs, even in prey known to respond to predator cues. These findings serve as a cautionary tale for the importance of evaluating NCE processes over temporal scales and across environmental gradients relevant to prey demography.
Collapse
Affiliation(s)
- David L Kimbro
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts, 01908, USA
| | - Hanna G Tillotson
- Department of Biology, Florida State University, Tallahassee, Florida, 32306, USA.,Florida Department of Environmental Protection, Tallahassee, Florida, 32399, USA
| | - J Wilson White
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, 97365, USA
| |
Collapse
|
10
|
Trophic Regulations of the Soil Microbiome. Trends Microbiol 2019; 27:771-780. [DOI: 10.1016/j.tim.2019.04.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 12/28/2022]
|
11
|
García-Callejas D, Molowny-Horas R, Araújo MB, Gravel D. Spatial trophic cascades in communities connected by dispersal and foraging. Ecology 2019; 100:e02820. [PMID: 31314929 DOI: 10.1002/ecy.2820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/23/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Pairwise interactions between species have both direct and indirect consequences that reverberate throughout the whole ecosystem. In particular, interaction effects may propagate in a spatial dimension, to localities connected by organismal movement. Here we study the propagation of interaction effects with a spatially explicit metacommunity model, where local sites are connected by dispersal, foraging, or by both types of movement. We show that indirect pairwise effects are, in most cases, of the same sign as direct effects if localities are connected by dispersing species. However, if foraging is prevalent, this correspondence is broken, and indirect effects between species often have a different sign than direct effects. This highlights the importance of indirect interactions across space and their inherent unpredictability in complex settings with species foraging across local patches. Further, the effect of a species over another in a local patch does not necessarily correspond to its effect at the metacommunity scale; this correspondence is again mediated by the type of movement across localities. Every species, despite their trophic position or spatial range, displays a non-zero net effect over every other species in our model metacommunities. Thus we show that local dynamics and local interactions between species can trigger indirect effects all across the set of connected patches, and these effects have a distinct signature depending on whether the prevalent connection between patches is via dispersal or via foraging. However, the magnitude of this effect between any two species strongly decays with the distance between them. These theoretical results strengthen the importance of considering indirect effects across species at both the community and metacommunity levels, highlight the differences between types of movement across locations, and thus open novel avenues for the study of interaction effects in spatially explicit settings.
Collapse
Affiliation(s)
- David García-Callejas
- Estación Biológica de Doñana, CSIC, Calle Américo Vespucio 26, 41092, Sevilla, Spain
| | | | - Miguel B Araújo
- Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), Calle de José Gutiérrez Abascal 2, Madrid, 28006, Spain.,InBio/Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), Largo dos Colegiais, Universidade de Évora, Évora, 7000, Portugal.,Center for Macroecology, Evolution and Climate (CMEC), Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Dominique Gravel
- Département de Biologie, Universite de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
12
|
Ecosystem Function and Services of Aquatic Predators in the Anthropocene. Trends Ecol Evol 2019; 34:369-383. [PMID: 30857757 DOI: 10.1016/j.tree.2019.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/23/2022]
Abstract
Arguments for the need to conserve aquatic predator (AP) populations often focus on the ecological and socioeconomic roles they play. Here, we summarize the diverse ecosystem functions and services connected to APs, including regulating food webs, cycling nutrients, engineering habitats, transmitting diseases/parasites, mediating ecological invasions, affecting climate, supporting fisheries, generating tourism, and providing bioinspiration. In some cases, human-driven declines and increases in AP populations have altered these ecosystem functions and services. We present a social ecological framework for supporting adaptive management decisions involving APs in response to social and environmental change. We also identify outstanding questions to guide future research on the ecological functions and ecosystem services of APs in a changing world.
Collapse
|
13
|
Thakur MP, Griffin JN, Künne T, Dunker S, Fanesi A, Eisenhauer N. Temperature effects on prey and basal resources exceed that of predators in an experimental community. Ecol Evol 2018; 8:12670-12680. [PMID: 30619572 PMCID: PMC6308891 DOI: 10.1002/ece3.4695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/15/2023] Open
Abstract
Climate warming alters the structure of ecological communities by modifying species interactions at different trophic levels. Yet, the consequences of warming-led modifications in biotic interactions at higher trophic levels on lower trophic groups are lesser known. Here, we test the effects of multiple predator species on prey population size and traits and subsequent effects on basal resources along an experimental temperature gradient (12-15°C, 17-20°C, and 22-25°C). We experimentally assembled food web modules with two congeneric predatory mites (Hypoaspis miles and Hypoaspis aculeifer) and two Collembola prey species (Folsomia candida and Proisotoma minuta) on a litter and yeast mixture as the basal resources. We hypothesized that warming would modify interactions within and between predator species, and that these alterations would cascade to basal resources via changes in the density and traits (body size and lipid: protein ratio) of the prey species. The presence of congeners constrained the growth of the predatory species independent of warming despite warming increased predator density in their respective monocultures. We found that warming effects on both prey and basal resources were greater than the effects of predator communities. Our results further showed opposite effects of warming on predator (increase) and prey densities (decrease), indicating a warming-induced trophic mismatch, which are likely to alter food web structures. We highlight that warmer environments can restructure food webs by its direct effects on lower trophic groups even without modifying top-down effects.
Collapse
Affiliation(s)
- Madhav P. Thakur
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
- Netherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | | | - Tom Künne
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Susanne Dunker
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Helmholtz Centre for Environmental Research—UFZLeipzigGermany
| | - Andrea Fanesi
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| |
Collapse
|
14
|
Matassa CM, Ewanchuk PJ, Trussell GC. Cascading effects of a top predator on intraspecific competition at intermediate and basal trophic levels. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Trussell GC, Matassa CM, Ewanchuk PJ. Moving beyond linear food chains: trait-mediated indirect interactions in a rocky intertidal food web. Proc Biol Sci 2017; 284:20162590. [PMID: 28330919 PMCID: PMC5378083 DOI: 10.1098/rspb.2016.2590] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/27/2017] [Indexed: 11/12/2022] Open
Abstract
In simple, linear food chains, top predators can have positive indirect effects on basal resources by causing changes in the traits (e.g. behaviour, feeding rates) of intermediate consumers. Although less is known about trait-mediated indirect interactions (TMIIs) in more complex food webs, it has been suggested that such complexity dampens trophic cascades. We examined TMIIs between a predatory crab (Carcinus maenas) and two ecologically important basal resources, fucoid algae (Ascophyllum nodosum) and barnacles (Semibalanus balanoides), which are consumed by herbivorous (Littorina littorea) and carnivorous (Nucella lapillus) snails, respectively. Because crab predation risk suppresses snail feeding rates, we hypothesized that crabs would also shape direct and indirect interactions among the multiple consumers and resources. We found that the magnitude of TMIIs between the crab and each resource depended on the suite of intermediate consumers present in the food web. Carnivorous snails (Nucella) transmitted TMIIs between crabs and barnacles. However, crab-algae TMIIs were transmitted by both herbivorous (Littorina) and carnivorous (Nucella) snails, and these TMIIs were additive. By causing Nucella to consume fewer barnacles, crab predation risk allowed fucoids that had settled on or between barnacles to remain in the community. Hence, positive interactions between barnacles and algae caused crab-algae TMIIs to be strongest when both consumers were present. Studies of TMIIs in more realistic, reticulate food webs will be necessary for a more complete understanding of how predation risk shapes community dynamics.
Collapse
Affiliation(s)
- Geoffrey C Trussell
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Catherine M Matassa
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Patrick J Ewanchuk
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA
| |
Collapse
|