1
|
Couper LI, Nalukwago DU, Lyberger KP, Farner JE, Mordecai EA. How Much Warming Can Mosquito Vectors Tolerate? GLOBAL CHANGE BIOLOGY 2024; 30:e17610. [PMID: 39624973 PMCID: PMC11645978 DOI: 10.1111/gcb.17610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/16/2024]
Abstract
Climate warming is expected to substantially impact the global landscape of mosquito-borne disease, but these impacts will vary across disease systems and regions. Understanding which diseases, and where within their distributions, these impacts are most likely to occur is critical for preparing public health interventions. While research has centered on potential warming-driven expansions in vector transmission, less is known about the potential for vectors to experience warming-driven stress or even local extirpations. In conservation biology, species risk from climate warming is often quantified through vulnerability indices such as thermal safety margins-the difference between an organism's upper thermal limit and its habitat temperature. Here, we estimated thermal safety margins for 8 mosquito species that are the vectors of malaria, dengue, chikungunya, Zika, West Nile and other major arboviruses, across their known ranges to investigate which mosquitoes and regions are most and least vulnerable to climate warming. We find that several of the most medically important mosquito vector species, including Ae. aegypti and An. gambiae, have positive thermal safety margins across the majority of their ranges when realistic assumptions of mosquito behavioral thermoregulation are incorporated. On average, the lowest climate vulnerability, in terms of both the magnitude and duration of thermal safety, was just south of the equator and at northern temperate range edges, and the highest climate vulnerability was in the subtropics. Mosquitoes living in regions including the Middle East, the western Sahara, and southeastern Australia, which are largely comprised of desert and xeric shrubland biomes, have the highest climate vulnerability across vector species.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, California, USA
- Division of Environmental Health Sciences, University of California, Berkeley, California, USA
| | | | - Kelsey P Lyberger
- Department of Biology, Stanford University, Stanford, California, USA
| | - Johannah E Farner
- Department of Biology, Stanford University, Stanford, California, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Cones AG, Westneat DF. Variation in the thermal plasticity of avian embryos is produced by the developmental environment, not genes. Proc Biol Sci 2024; 291:20241892. [PMID: 39378989 PMCID: PMC11461059 DOI: 10.1098/rspb.2024.1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Limited evidence suggests that variation in phenotypic plasticity within populations may arise largely from environmental sources, thereby constraining its evolvability. This is of concern for temperature-sensitive metabolism in the face of climate change. We quantified the relative influence of the developmental environment versus genes on the metabolic plasticity of avian embryos to temperature. We partially cross-fostered 602 house sparrow eggs (Passer domesticus), measured the heart rate plasticity of these embryos to egg temperature and partitioned variance in plasticity. We found that the foster (incubation) environment was the sole meaningful source of variance in embryonic plasticity (not genes, pre-laying effects or ambient conditions). In contrast to heart rate plasticity, offspring growth was influenced by the foster environment, genes/pre-laying parental effects and ambient conditions. Although embryonic plasticity to temperature varied in this population, these results suggest that it is unlikely to evolve quickly. Nevertheless, the expression of this plasticity may be able to shift between generations in response to changes in the developmental environment. Whether the multidimensional plasticity of heart rate to both current temperature and the developmental environment is itself an adaptive, evolved trait allowing avian embryos to optimize their metabolic plasticity to their current environment remains to be tested.
Collapse
Affiliation(s)
- Alexandra G. Cones
- Department of Biology, Ludwig Maximilian University of Munich, Großhaderner Str. 2, Planegg-Martinsried, Bavaria82152, Germany
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY40506, USA
| | - David F. Westneat
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY40506, USA
| |
Collapse
|
3
|
Segura-Hernández L, Hebets EA, Montooth KL, DeLong JP. How Hot is too Hot? Metabolic Responses to Temperature Across Life Stages of a Small Ectotherm. Integr Comp Biol 2024; 64:178-188. [PMID: 38955397 DOI: 10.1093/icb/icae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
To understand how global warming will impact biodiversity, we need to pay attention to those species with higher vulnerability. However, to assess vulnerability, we also need to consider the thermoregulatory mechanisms, body size, and thermal tolerance of species. Studies addressing thermal tolerance on small ectotherms have mostly focused on insects, while other arthropods, such as arachnids remain understudied. Here, we quantified the physiological thermal sensitivity of the pseudoscorpion Dactylochelifer silvestris using a respirometry setup with a ramping temperature increase. Overall, we found that D. silvestris has a much lower metabolic rate than other organisms of similar size. As expected, metabolic rate increased with body size, with adults having larger metabolic rates, but the overall metabolic scaling exponent was low. Both the temperature at which metabolism peaked and the critical thermal maxima were high (>44°C) and comparable to those of other arachnids. The activation energy, which characterizes the rising portion of the thermal sensitivity curve, was 0.66 eV, consistent with predictions for insects and other taxa in general. Heat tolerances and activation energy did not differ across life stages. We conclude that D. silvestris has low metabolic rates and a high thermal tolerance, which would likely influence how all stages and sexes of this species could endure climate change.
Collapse
Affiliation(s)
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - John P DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
4
|
Malod K, Bierman A, Karsten M, Manrakhan A, Weldon CW, Terblanche JS. Evidence for transient deleterious thermal acclimation in field recapture rates of an invasive tropical species, Bactrocera dorsalis (Diptera: Tephritidae). INSECT SCIENCE 2024. [PMID: 39126165 DOI: 10.1111/1744-7917.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Knowing how environmental conditions affect performance traits in pest insects is important to improve pest management strategies. It can be informative for monitoring, but also for control programs where insects are mass-reared, and field-released. Here, we investigated how adult thermal acclimation in sterile Bactrocera dorsalis affects dispersal and recapture rates in the field using a mark-release-recapture method. We also considered how current abiotic factors may affect recapture rates and interact with thermal history. We found that acclimation at 20 or 30 °C for 4 d prior to release reduced the number of recaptures in comparison with the 25 °C control group, but with no differences between groups in the willingness to disperse upon release. However, the deleterious effects of acclimation were only detectable in the first week following release, whereafter only the recent abiotic conditions explained recapture rates. In addition, we found that recent field conditions contributed more than thermal history to explain patterns of recaptures. The two most important variables affecting the number of recaptures were the maximum temperature and the average relative humidity experienced in the 24 h preceding trapping. Our results add to the handful of studies that have considered the effect of thermal acclimation on insect field performance, but notably lend support to the deleterious acclimation hypothesis among the various hypotheses that have been proposed. Finally, this study shows that there are specific abiotic conditions (cold/hot and dry) in which recaptures will be reduced, which may therefore bias estimates of wild population size.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Anandi Bierman
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Minette Karsten
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Aruna Manrakhan
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
- Citrus Research International, Mbombela, South Africa
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
5
|
Hector TE, Shocket MS, Sgrò CM, Hall MD. Acclimation to warmer temperatures can protect host populations from both further heat stress and the potential invasion of pathogens. GLOBAL CHANGE BIOLOGY 2024; 30:e17341. [PMID: 38837568 DOI: 10.1111/gcb.17341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 06/07/2024]
Abstract
Thermal acclimation can provide an essential buffer against heat stress for host populations, while acting simultaneously on various life-history traits that determine population growth. In turn, the ability of a pathogen to invade a host population is intimately linked to these changes via the supply of new susceptible hosts, as well as the impact of warming on its immediate infection dynamics. Acclimation therefore has consequences for hosts and pathogens that extend beyond simply coping with heat stress-governing both population growth trajectories and, as a result, an inherent propensity for a disease outbreak to occur. The impact of thermal acclimation on heat tolerances, however, is rarely considered simultaneously with metrics of both host and pathogen population growth, and ultimately fitness. Using the host Daphnia magna and its bacterial pathogen, we investigated how thermal acclimation impacts host and pathogen performance at both the individual and population scales. We first tested the effect of maternal and direct thermal acclimation on the life-history traits of infected and uninfected individuals, such as heat tolerance, fecundity, and lifespan, as well as pathogen infection success and spore production. We then predicted the effects of each acclimation treatment on rates of host and pathogen population increase by deriving a host's intrinsic growth rate (rm) and a pathogen's basic reproductive number (R0). We found that direct acclimation to warming enhanced a host's heat tolerance and rate of population growth, despite a decline in life-history traits such as lifetime fecundity and lifespan. In contrast, pathogen performance was consistently worse under warming, with within-host pathogen success, and ultimately the potential for disease spread, severely hampered at higher temperatures. Our results suggest that hosts could benefit more from warming than their pathogens, but only by linking multiple individual traits to population processes can the full impact of higher temperatures on host and pathogen population dynamics be realised.
Collapse
Affiliation(s)
| | - Marta S Shocket
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Udino E, Oscos-Snowball MA, Buchanan KL, Mariette MM. A prenatal acoustic signal of heat reduces a biomarker of chronic stress at adulthood across seasons. Front Physiol 2024; 15:1348993. [PMID: 38617060 PMCID: PMC11009423 DOI: 10.3389/fphys.2024.1348993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
During development, phenotype can be adaptively modulated by environmental conditions, sometimes in the long-term. However, with weather variability increasing under climate change, the potential for maladaptive long-term responses to environmental variations may increase. In the arid-adapted zebra finch, parents emit "heat-calls" when experiencing heat during incubation, which adaptively affects offspring growth in the heat, and adult heat tolerance. This suggests that heat-call exposure may adjust individual phenotype to hot conditions, potentially compromising individual sensitivity to cool weather conditions. To test this hypothesis, we manipulated individual prenatal acoustic and postnatal thermal experiences during development, and sought to assess subsequent chronic responses to thermal fluctuations at adulthood. We thus measured heterophil to lymphocyte (H/L) ratios in adults, when held in outdoor aviaries during two summers and two winters. We found that birds exposed to heat-calls as embryos, had consistently lower H/L ratios than controls at adulthood, indicative of lower chronic stress, irrespective of the season. Nonetheless, in all birds, the H/L ratio did vary with short-term weather fluctuations (2, 5 or 7 days), increasing at more extreme (low and high) air temperatures. In addition, the H/L ratio was higher in males than females. Overall, while H/L ratio may reflect how individuals were being impacted by temperature, heat-call exposed individuals did not show a stronger chronic response in winter, and instead appeared more resilient to thermal variability than control individuals. Our findings therefore suggest that heat-call exposure did not compromise individual sensitivity to low temperatures at adulthood. Our study also reveals that prenatal sound can lead to long-term differences in individual physiology or quality/condition, as reflected by H/L ratios, which are consistent with previously-demonstrated reproductive fitness differences.
Collapse
Affiliation(s)
- Eve Udino
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Marja A. Oscos-Snowball
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Katherine L. Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mylene M. Mariette
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Doñana Biological Station (EBD-CSIC), Sevilla, Spain
| |
Collapse
|
7
|
Rivera-Rincón N, Altindag UH, Amin R, Graze RM, Appel AG, Stevison LS. "A comparison of thermal stress response between Drosophila melanogaster and Drosophila pseudoobscura reveals differences between species and sexes". JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104616. [PMID: 38278288 PMCID: PMC11048572 DOI: 10.1016/j.jinsphys.2024.104616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The environment is changing faster than anticipated due to climate change, making species more vulnerable to its impacts. The level of vulnerability of species is influenced by factors such as the degree and duration of exposure, as well as the physiological sensitivity of organisms to changes in their environments, which has been shown to vary among species, populations, and individuals. Here, we compared physiological changes in fecundity, critical thermalmaximum (CTmax), respiratory quotient (RQ), and DNA damage in ovaries in response to temperature stress in two species of fruit fly, Drosophila melanogaster (25 vs. 29.5 °C) and Drosophila pseudoobscura (20.5 vs. 25 °C). The fecundity of D. melanogaster was more affected by high temperatures when exposed during egg through adult development, while D. pseudoobscura was most significantly affected when exposed to high temperatures exclusively during egg through pupal development. Additionally, D. melanogaster males exhibited a decrease of CTmax under high temperatures, while females showed an increase of CTmax when exposed to high temperatures during egg through adult development. while D. pseudoobscura females and males showed an increased CTmax only when reared at high temperatures during egg through pupae development. Moreover, both species showed an acceleration in oogenesis and an increase in apoptosis due to heat stress. These changes can likely be attributed to key differences in the geographic range, thermal range, development time, and other different factors between these two systems. Through this comparison of variation in physiology and developmental response to thermal stress, we found important differences between species and sexes that suggest future work needs to account for these factors separately in understanding the effects of constant increased temperatures.
Collapse
Affiliation(s)
- N Rivera-Rincón
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - U H Altindag
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - R Amin
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - R M Graze
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - A G Appel
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| | - L S Stevison
- Department of Biological Sciences, Auburn University, Auburn, AL USA.
| |
Collapse
|
8
|
van Heerwaarden B, Sgrò C, Kellermann VM. Threshold shifts and developmental temperature impact trade-offs between tolerance and plasticity. Proc Biol Sci 2024; 291:20232700. [PMID: 38320612 PMCID: PMC10846935 DOI: 10.1098/rspb.2023.2700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Mounting evidence suggests that ectotherms are already living close to their upper physiological thermal limits. Phenotypic plasticity has been proposed to reduce the impact of climate change in the short-term providing time for adaptation, but the tolerance-plasticity trade-off hypothesis predicts organisms with higher tolerance have lower plasticity. Empirical evidence is mixed, which may be driven by methodological issues such as statistical artefacts, nonlinear reaction norms, threshold shifts or selection. Here, we examine whether threshold shifts (organisms with higher tolerance require stronger treatments to induce maximum plastic responses) influence tolerance-plasticity trade-offs in hardening capacity for desiccation tolerance and critical thermal maximum (CTMAX) across Drosophila species with varying distributions/sensitivity to desiccation/heat stress. We found evidence for threshold shifts in both traits; species with higher heat/desiccation tolerance required longer hardening treatments to induce maximum hardening responses. Species with higher heat tolerance also showed reductions in hardening capacity at higher developmental acclimation temperatures. Trade-off patterns differed depending on the hardening treatment used and the developmental temperature flies were exposed to. Based on these findings, studies that do not consider threshold shifts, or that estimate plasticity under a narrow set of environments, will have a limited ability to assess trade-off patterns and differences in plasticity across species/populations more broadly.
Collapse
Affiliation(s)
| | - Carla Sgrò
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Vanessa M. Kellermann
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
- School of Agriculture Biomedicine and Environment, La Trobe University, Bundoora 3086, Victoria, Australia
| |
Collapse
|
9
|
Merckx T, Nielsen ME, Kankaanpää T, Kadlec T, Yazdanian M, Kivelä SM. Continent-wide parallel urban evolution of increased heat tolerance in a common moth. Evol Appl 2024; 17:e13636. [PMID: 38283598 PMCID: PMC10810253 DOI: 10.1111/eva.13636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024] Open
Abstract
Urbanization and its urban-heat-island effect (UHI) have expanding footprints worldwide. The UHI means that urban habitats experience a higher mean and more frequent extreme high temperatures than rural habitats, impacting the ontogeny and resilience of urban biodiversity. However, many organisms occupy different microhabitats during different life stages and thus may experience the UHI differently across their development. While evolutionary changes in heat tolerance in line with the UHI have been demonstrated, it is unknown whether such evolutionary responses can vary across development. Here, using common-garden-reared Chiasmia clathrata moths from urban and rural populations from three European countries, we tested for urban evolution of heat shock tolerance in two life stages: larvae and adults. Our results indicate widespread urban evolution of increased heat tolerance in the adult stage only, suggesting that the UHI may be a stronger selective agent in adults. We also found that the difference in heat tolerance between urban and rural populations was similar to the difference between Mid- and North-European regions, suggesting similarity between adaptation to the UHI and natural, latitudinal temperature variation. Our observations incentivize further research to quantify the impact of these UHI adaptations on fitness during urbanization and climate change, and to check whether life-stage-specific adaptations in heat tolerance are typical of other ectothermic species that manage to survive in urbanized settings.
Collapse
Affiliation(s)
- Thomas Merckx
- WILD, Biology DepartmentVrije Universiteit BrusselBrusselsBelgium
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Matthew E. Nielsen
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
- Faculty 2 Biology/ChemistryUniversity of BremenBremenGermany
| | | | - Tomáš Kadlec
- Department of EcologyCzech University of Life Sciences PraguePragueCzech Republic
| | | | - Sami M. Kivelä
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| |
Collapse
|
10
|
Jha PK, Zhang N, Rijal JP, Parker LE, Ostoja S, Pathak TB. Climate change impacts on insect pests for high value specialty crops in California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167605. [PMID: 37802357 DOI: 10.1016/j.scitotenv.2023.167605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
California is a global leader in production and supply of walnuts and almonds, and the state is the largest producer of peaches in the U.S. These crops have an important contribution to the California's agricultural economy. Damages to these crops from lepidopteran pests, mainly from Codling moth (Cydia pomonella) (family: Tortricidae), Peach twig borer (Anarsia lineatella) (family: Gelechiidae) and Oriental fruit moth (Grapholita molesta) (family: Tortricidae), are still high, despite the improvement in pest management activities. Given that temperature increase can directly impact the rate of growth and development of these pests, it is important to understand to what extent dynamics of these pests will change in future in California. The objective of this study was to quantify changes in the biofix, lifecycle length, and number of generations for these pests for the entire Central Valley of California. Using a well-established growing-degree days (GDD) model calibrated and validated using observations from orchards of California, and climate change projections from the Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6) General Circulation Models, we found that biofix dates of these pests are expected to shift earlier by up to 28 days, and length of generations is expected to be shortened by up to 19 days, and up to 1.4 extra generations of these pests can be added by the end of the century depending on the scenario. Results from this work would enable industries to prioritize development of practices that are more effective in the long run, such as developing better cultural and biological pest solutions and insect tolerant varieties. Growers and researchers can take proactive actions to minimize future risks associated with these damaging pests. This work can be scalable to other pests and regions to understand regional dynamics of damaging agricultural pests under climate change.
Collapse
Affiliation(s)
- Prakash Kumar Jha
- Division of Agriculture and Natural Resources, University of California, 2801 2(nd) St., Davis, CA 95618, United States of America
| | - Ning Zhang
- USDA California Climate Hub, Davis, CA 95616, United States of America
| | - Jhalendra P Rijal
- Division of Agriculture and Natural Resources, University of California, 2801 2(nd) St., Davis, CA 95618, United States of America
| | - Lauren E Parker
- Institute of the Environment, University of California Davis, One Shields Ave., Davis, CA 95616, United States of America; USDA California Climate Hub, Davis, CA 95616, United States of America
| | - Steven Ostoja
- Institute of the Environment, University of California Davis, One Shields Ave., Davis, CA 95616, United States of America; USDA California Climate Hub, Davis, CA 95616, United States of America; Sustainable Agricultural Water Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Davis, CA 95616, United States of America
| | - Tapan B Pathak
- Division of Agriculture and Natural Resources, University of California, 2801 2(nd) St., Davis, CA 95618, United States of America; Department of Civil and Environmental Engineering, University of California Merced, 5200 N. Lake Rd., Merced, CA 95343, United States of America.
| |
Collapse
|
11
|
Malod K, Bali EMD, Gledel C, Moquet L, Bierman A, Bataka E, Weldon CW, Karsten M, Delatte H, Papadopoulos NT, Terblanche JS. Tethered-flight performance of thermally-acclimated pest fruit flies (Diptera: Tephritidae) suggests that heat waves may promote the spread of Bactrocera species. PEST MANAGEMENT SCIENCE 2023; 79:4153-4161. [PMID: 37309691 DOI: 10.1002/ps.7611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Thermal history may induce phenotypic plasticity in traits that affect performance and fitness. One type of plastic response triggered by thermal history is acclimation. Because flight is linked to movement in the landscape, trapping and detection rates, and underpins the success of pest management tactics, it is particularly important to understand how thermal history may affect pest insect flight performance. We investigated the tethered-flight performance of Ceratitis capitata, Bactrocera dorsalis and Bactrocera zonata (Diptera: Tephritidae), acclimated for 48 h at 20, 25 or 30 °C and tested at 25 °C. We recorded the total distance, average speed, number of flight events and time spent flying during 2-h tests. We also characterized morphometric traits (body mass, wing shape and wing loading) that can affect flight performance. RESULTS The main factor affecting most flight traits was body mass. The heaviest species, B. dorsalis, flew further, was faster and stopped less often in comparison with the two other species. Bactrocera species exhibited faster and longer flight when compared with C. capitata, which may be associated with the shape of their wings. Moreover, thermal acclimation had sex- and species-specific effects on flight performance. Flies acclimated at 20 °C stopped more often, spent less time flying and, ultimately, covered shorter distances. CONCLUSION Flight performance of B. dorsalis is greater than that of B. zonata and C. capitata. The effects of thermal acclimation are species-specific. Warmer acclimation temperatures may allow pest fruit flies to disperse further and faster. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eleftheria-Maria D Bali
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | | | | | - Anandi Bierman
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Evmorfia Bataka
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Minette Karsten
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | | | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
12
|
Ashe‐Jepson E, Arizala Cobo S, Basset Y, Bladon AJ, Kleckova I, Laird‐Hopkins BC, Mcfarlane A, Sam K, Savage AF, Zamora AC, Turner EC, Lamarre GPA. Tropical butterflies use thermal buffering and thermal tolerance as alternative strategies to cope with temperature increase. J Anim Ecol 2023; 92:1759-1770. [PMID: 37438871 PMCID: PMC10953451 DOI: 10.1111/1365-2656.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
Climate change poses a severe threat to many taxa, with increased mean temperatures and frequency of extreme weather events predicted. Insects can respond to high temperatures using behaviour, such as angling their wings away from the sun or seeking cool local microclimates to thermoregulate or through physiological tolerance. In a butterfly community in Panama, we compared the ability of adult butterflies from 54 species to control their body temperature across a range of air temperatures (thermal buffering ability), as well as assessing the critical thermal maxima for a subset of 24 species. Thermal buffering ability and tolerance were influenced by family, wing length, and wing colour, with Pieridae, and butterflies that are large or darker in colour having the strongest thermal buffering ability, but Hesperiidae, small, and darker butterflies tolerating the highest temperatures. We identified an interaction between thermal buffering ability and physiological tolerance, where species with stronger thermal buffering abilities had lower thermal tolerance, and vice versa. This interaction implies that species with more stable body temperatures in the field may be more vulnerable to increases in ambient temperatures, for example heat waves associated with ongoing climate change. Our study demonstrates that tropical species employ diverse thermoregulatory strategies, which is also reflected in their sensitivity to temperature extremes.
Collapse
Affiliation(s)
| | | | - Yves Basset
- ForestGEOSmithsonian Tropical Research InstitutePanamaRepublic of Panama
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Maestria de EntomologiaUniversity of PanamaPanamaRepublic of Panama
| | | | - Irena Kleckova
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyČeské BudějoviceCzech Republic
| | - Benita C. Laird‐Hopkins
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Smithsonian Tropical Research InstitutePanamaRepublic of Panama
| | - Alex Mcfarlane
- ForestGEOSmithsonian Tropical Research InstitutePanamaRepublic of Panama
| | - Katerina Sam
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Amanda F. Savage
- ForestGEOSmithsonian Tropical Research InstitutePanamaRepublic of Panama
| | - Ana Cecilia Zamora
- ForestGEOSmithsonian Tropical Research InstitutePanamaRepublic of Panama
| | | | - Greg P. A. Lamarre
- ForestGEOSmithsonian Tropical Research InstitutePanamaRepublic of Panama
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyČeské BudějoviceCzech Republic
| |
Collapse
|
13
|
Tscholl T, Nachman G, Spangl B, Serve HC, Walzer A. Reproducing during Heat Waves: Influence of Juvenile and Adult Environment on Fecundity of a Pest Mite and Its Predator. BIOLOGY 2023; 12:biology12040554. [PMID: 37106755 PMCID: PMC10136120 DOI: 10.3390/biology12040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
The thermal history of arthropod predators and their prey may affect their reproductive performance during heat waves. Thus, a matching juvenile and adult environment should be beneficial as it enables the individuals to acclimate to extreme conditions. Prey fecundity, however, is also affected by a second stressor, namely predation risk. Here, we assessed the impact of extreme and mild heat waves on the reproductive output of acclimated (juvenile and adult heat wave conditions are matching) and non-acclimated females of the biocontrol agent Phytoseiulus persimilis, a predatory mite, and its herbivorous prey, the two-spotted spider mite Tetranychus urticae, on bean leaves. Their escape and oviposition rates and egg sizes were recorded over 10 days. Additionally, ovipositing prey females were exposed to predator cues and heat waves. Acclimation changed the escape rates and egg sizes of both species, whereas fecundity was only influenced by the adult thermal environment via increased egg numbers under extreme heat waves. Acclimation reduced predator and prey escape rates, which were higher for the predator. Pooled over acclimation, both species deposited more but smaller eggs under extreme heat waves. Acclimation dampened this effect in prey eggs, whereas acclimation resulted in smaller female eggs of the predator. Prey deposited larger male and female eggs. Predator cues reduced prey oviposition, but the effect was small compared to the large increase gained under extreme heat waves. We argue that the success of predators in controlling spider mites during heat waves mainly depends on the fates of escaping predators. A permanent absence of predators may result in the numerical dominance of prey.
Collapse
Affiliation(s)
- Thomas Tscholl
- University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, Institute of Plant Protection, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Gösta Nachman
- University of Copenhagen, Department of Biology, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
| | - Bernhard Spangl
- University of Natural Resources and Life Sciences, Vienna, Department of Landscape, Spatial and Infrastructure Sciences, Institute of Statistics, Peter-Jordan-Straße 82/I, 1190 Vienna, Austria
| | - Hanna Charlotte Serve
- University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, Institute of Plant Protection, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Andreas Walzer
- University of Natural Resources and Life Sciences, Vienna, Department of Crop Sciences, Institute of Plant Protection, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| |
Collapse
|
14
|
Manríquez PH, González CP, Jara ME, Watson SA, Torres R, Domenici P, Duarte C. Combined effects of climate change stressors and predators with contrasting feeding-digestion strategies on a mussel species. MARINE POLLUTION BULLETIN 2023; 187:114554. [PMID: 36621303 DOI: 10.1016/j.marpolbul.2022.114554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/19/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
We investigated the combined effects of Ocean Warming (OW), Acidification (OA) and predator cues (Non-Consumptive Effects; NCEs) of two predators with contrasting feeding-digestion strategies on the mussel Perumytilus purpuratus. We considered starfish-NCEs (partially external digestion) and snail-NCEs (internal digestion). Mussels were exposed for 13 weeks to cross-factored OA (~500 and ~1400 μatm, pCO2) and OW (~15 and ~20 °C) conditions, in the presence/absence of NCEs from one or both predators. Mussels exposed to both NCEs exhibited smaller length and buoyant weight growth than those under control or snail-NCEs conditions. Mussels exposed to starfish-NCEs exhibited smaller wet mass than control mussels. OW and starfish-NCEs in isolation or combined with snail-NCEs increased mussel oxygen consumption. Byssal biogenesis was affected by the three-factors interaction. Clearance rates were affected by the OW × OA interaction. We suggest that mainly starfish-NCEs, in isolation or interacting with OA or/and OW, can threat mussel traits and the associated community.
Collapse
Affiliation(s)
- Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile.
| | - Claudio P González
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - María Elisa Jara
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Sue-Ann Watson
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum Network, Townsville, Queensland 4810, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Rodrigo Torres
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile; Centro de Investigación, Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Punta Arenas, Chile
| | - Paolo Domenici
- CNR-IBF Istituto di Biofisica, Pisa, Area di Ricerca San Cataldo, Via G. Moruzzi N°1, 56124 Pisa, Italy; CNR-IAS Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino, Oristano, Italy
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina de Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Chile
| |
Collapse
|
15
|
Wang C, Li A, Cong R, Qi H, Wang W, Zhang G, Li L. Cis- and Trans-variations of Stearoyl-CoA Desaturase Provide New Insights into the Mechanisms of Diverged Pattern of Phenotypic Plasticity for Temperature Adaptation in Two Congeneric Oyster Species. Mol Biol Evol 2023; 40:6994358. [PMID: 36661848 PMCID: PMC9949715 DOI: 10.1093/molbev/msad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The evolution of phenotypic plasticity plays an essential role in adaptive responses to climate change; however, its regulatory mechanisms in marine organisms which exhibit high phenotypic plasticity still remain poorly understood. The temperature-responsive trait oleic acid content and its major gene stearoyl-CoA desaturase (Scd) expression have diverged in two allopatric congeneric oyster species, cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata. In this study, genetic and molecular methods were used to characterize fatty acid desaturation and membrane fluidity regulated by oyster Scd. Sixteen causative single-nucleotide polymorphisms (SNPs) were identified in the promoter/cis-region of the Scd between wild C. gigas and C. angulata. Further functional experiments showed that an SNP (g.-333C [C. gigas allele] >T [C. angulata allele]) may influence Scd transcription by creating/disrupting the binding motif of the positive trans-factor Y-box factor in C. gigas/C. angulata, which mediates the higher/lower constitutive expression of Scd in C. gigas/C. angulata. Additionally, the positive trans-factor sterol-regulatory element-binding proteins (Srebp) were identified to specifically bind to the promoter of Scd in both species, and were downregulated during cold stress in C. gigas compared to upregulated in C. angulata. This partly explains the relatively lower environmental sensitivity (plasticity) of Scd in C. gigas. This study serves as an experimental case to reveal that both cis- and trans-variations shape the diverged pattern of phenotypic plasticity, which provides new insights into the formation of adaptive traits and the prediction of the adaptive potential of marine organisms to future climate change.
Collapse
Affiliation(s)
- Chaogang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,University of Chinese Academy of Sciences, Beijing, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Haigang Qi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Corresponding author: E-mail:
| |
Collapse
|
16
|
Experimental evidence for stronger impacts of larval but not adult rearing temperature on female fertility and lifespan in a seed beetle. Evol Ecol 2023. [DOI: 10.1007/s10682-022-10227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractTemperature impacts behaviour, physiology and life-history of many life forms. In many ectotherms, phenotypic plasticity within reproductive traits could act as a buffer allowing adaptation to continued global warming within biological limits. But there could be costs involved, potentially affecting adult reproductive performance and population growth. Empirical data on the expression of reproductive plasticity when different life stages are exposed is still lacking. Plasticity in key components of fitness (e.g., reproduction) can impose life-history trade-offs. Ectotherms are sensitive to temperature variation and the resulting thermal stress is known to impact reproduction. So far, research on reproductive plasticity to temperature variation in this species has focused on males. Here, I explore how rearing temperature impacted female reproduction and lifespan in the bruchid beetle Callosobruchus maculatus by exposing them to four constant temperatures (17 °C, 25 °C, 27 °C and 33 °C) during larval or adult stages. In these experiments, larval rearing cohorts (exposed to 17 °C, 25 °C, 27 °C and 33 °C, from egg to adulthood) were tested in a common garden setting at 27 °C and adult rearing cohorts, after having developed entirely at 27 °C, were exposed to four constant rearing temperatures (17 °C, 25 °C, 27 °C and 33 °C). I found stage-specific plasticity in all the traits measured here: fecundity, egg morphological dimensions (length and width), lifespan and egg hatching success (female fertility). Under different larval rearing conditions, fecundity and fertility was drastically reduced (by 51% and 42%) at 17 °C compared to controls (27 °C). Female lifespan was longest at 17 °C across both larval and adult rearing: by 36% and 55% compared to controls. Collectively, these results indicate that larval rearing temperature had greater reproductive impacts. Integrating both larval and adult rearing effects, I present evidence that female fertility is more sensitive during larval development compared to adult rearing temperature in this system.
Collapse
|
17
|
Lawhorn KA, Yanoviak SP. Variation in Larval Thermal Tolerance of Three Saproxylic Beetle Species. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1218-1223. [PMID: 36346643 DOI: 10.1093/ee/nvac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 06/16/2023]
Abstract
Temperature is a key abiotic condition that limits the distributions of organisms, and forest insects are particularly sensitive to thermal extremes. Whereas winged adult insects generally are able to escape unfavorable temperatures, other less-vagile insects (e.g., larvae) must withstand local microclimatic conditions to survive. Here, we measured the thermal tolerance of the larvae of three saproxylic beetle species that are common inhabitants of coarse woody debris (CWD) in temperate forests of eastern North America: Lucanus elaphus Fabricius (Lucanidae), Dendroides canadensis Latreille (Pyrochroidae), and Odontotaenius disjunctus Illiger (Passalidae). We determined how their critical thermal maxima (CTmax) vary with body size (mass), and measured the thermal profiles of CWD representing the range of microhabitats occupied by these species. Average CTmax differed among the three species and increased with mass intraspecifically. However, mass was not a good predictor of thermal tolerance among species. Temperature ramp rate and time in captivity also influenced larval CTmax, but only for D. canadensis and L. elaphus respectively. Heating profiles within relatively dry CWD sometimes exceeded the CTmax of the beetle larvae, and deeper portions of CWD were generally cooler. Interspecific differences in CTmax were not fully explained by microhabitat association, but the results suggest that the distribution of some species within a forest can be affected by local thermal extremes. Understanding the responses of saproxylic beetle larvae to warming habitats will help predict shifts in community structure and ecosystem functioning in light of climate change and increasing habitat fragmentation.
Collapse
Affiliation(s)
- Kane A Lawhorn
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA
| | - Stephen P Yanoviak
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA
| |
Collapse
|
18
|
Huisamen EJ, Karsten M, Terblanche JS. Are Signals of Local Environmental Adaptation Diluted by Laboratory Culture? CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100048. [PMID: 36683956 PMCID: PMC9846451 DOI: 10.1016/j.cris.2022.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Insects have the ability to readily adapt to changes in environmental conditions, however the strength of local environmental adaptation signals under divergent conditions and the occurrence of trait inertia after relaxation of selection, remains poorly understood, especially for traits of climate stress resistance (CSR) and their phenotypic plasticity. The strength of environmental adaptation signals depend on several selection pressures present in the local environment, while trait inertia often occurs when there is a weakening or removal of a source of selection. Here, using Drosophila melanogaster, we asked whether signals of adaptation in CSR traits (critical thermal limits, heat and chill survival and, desiccation and starvation resistance) persist after exposure to laboratory culture for different durations (two vs. ten generations) across four climatically distinct populations. We show that culture duration has large effects on CSR traits and can both amplify or dilute signals of local adaptation. Effects were however dependent upon interactions between the source population, acclimation (adult acclimation at either 18 °C, 23 °C or 28 °C) conditions and the sex of the flies. Trait plasticity is markedly affected by the interaction between the source population, the specific acclimation conditions employed, and the duration in the laboratory. Therefore, a complex matrix of dynamic CSR trait responses is shown in space and time. Given these strong interaction effects, 'snapshot' estimates of environmental adaptation can result in misleading conclusions about the fitness consequences of climate variability.
Collapse
|
19
|
Pottier P, Burke S, Zhang RY, Noble DWA, Schwanz LE, Drobniak SM, Nakagawa S. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol Lett 2022; 25:2245-2268. [PMID: 36006770 DOI: 10.1111/ele.14083] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta-analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non-adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under-studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Rose Y Zhang
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Sanghvi K, Iglesias‐Carrasco M, Zajitschek F, Kruuk LEB, Head ML. Effects of developmental and adult environments on ageing. Evolution 2022; 76:1868-1882. [PMID: 35819127 PMCID: PMC9543291 DOI: 10.1111/evo.14567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 01/22/2023]
Abstract
Developmental and adult environments can interact in complex ways to influence the fitness of individuals. Most studies investigating effects of the environment on fitness focus on environments experienced and traits expressed at a single point in an organism's life. However, environments vary with time, so the effects of the environments that organisms experience at different ages may interact to affect how traits change throughout life. Here, we test whether thermal stress experienced during development leads individuals to cope better with thermal stress as adults. We manipulated temperature during both development and adulthood and measured a range of life-history traits, including senescence, in male and female seed beetles (Callosobruchus maculatus). We found that thermal stress during development reduced adult reproductive performance of females. In contrast, life span and age-dependent mortality were affected more by adult than developmental environments, with high adult temperatures decreasing longevity and increasing age-dependent mortality. Aside from an interaction between developmental and adult environments to affect age-dependent changes in male weight, we did not find any evidence of a beneficial acclimation response to developmental thermal stress. Overall, our results show that effects of developmental and adult environments can be both sex and trait specific, and that a full understanding of how environments interact to affect fitness and ageing requires the integrated study of conditions experienced during different stages of ontogeny.
Collapse
Affiliation(s)
- Krish Sanghvi
- Reserach School of BiologyAustralian National UniversityCanberraACT2601Australia
| | | | - Felix Zajitschek
- School of Biology Earth and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Loeske E. B. Kruuk
- Reserach School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Megan L. Head
- Reserach School of BiologyAustralian National UniversityCanberraACT2601Australia
| |
Collapse
|
21
|
Le Luyer J, Monaco CJ, Milhade L, Reisser C, Soyez C, Raapoto H, Belliard C, Le Moullac G, Ky C, Pernet F. Gene expression plasticity, genetic variation and fatty acid remodelling in divergent populations of a tropical bivalve species. J Anim Ecol 2022; 91:1196-1208. [DOI: 10.1111/1365-2656.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Affiliation(s)
- J. Le Luyer
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - C. J. Monaco
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - L. Milhade
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - C. Reisser
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD Montpellier France
| | - C. Soyez
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - H. Raapoto
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - C. Belliard
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - G. Le Moullac
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
| | - C.‐L. Ky
- Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO, F‐98719 Taravao, Tahiti, Polynésie française France
- Ifremer, IHPE, Univ. Montpellier, CNRS, Univ. Perpignan Via Domitia Montpellier France
| | - F. Pernet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F‐29280 Plouzané France
| |
Collapse
|
22
|
Bawa SA, Gregg PC, Del Soccoro AP, Miller C, Andrew NR. Estimating the differences in critical thermal maximum and metabolic rate of Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) across life stages. PeerJ 2021; 9:e12479. [PMID: 34820201 PMCID: PMC8605760 DOI: 10.7717/peerj.12479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022] Open
Abstract
Temperature is a crucial driver of insect activity and physiological processes throughout their life-history, and heat stress may impact life stages (larvae, pupae and adult) in different ways. Using thermolimit respirometry, we assessed the critical thermal maxima (CTmax-temperature at which an organism loses neuromuscular control), CO2 emission rate (V́CO2) and Q10 (a measure of V́CO2 temperature sensitivity) of three different life stages of Helicoverpa punctigera (Wallengren) by increasing their temperature exposure from 25 °C to 55 °C at a rate of 0.25 °C min−1. We found that the CTmax of larvae (49.1 °C ± 0.3 °C) was higher than pupae (47.4 °C ± 0.2 °C) and adults (46.9 °C ± 0.2 °C). The mean mass-specific CO2 emission rate (ml V́CO2 h−1) of larvae (0.26 ± 0.03 ml V́CO2 h−1) was also higher than adults (0.24 ± 0.04 ml V́CO2 h−1) and pupae (0.06 ± 0.02 ml V́CO2 h−1). The Q10: 25–35 °C for adults (2.01 ± 0.22) was significantly higher compared to larvae (1.40 ± 0.06) and Q10: 35–45 °C for adults (3.42 ± 0.24) was significantly higher compared to larvae (1.95 ± 0.08) and pupae (1.42 ± 0.98) respectively. We have established the upper thermal tolerance of H. punctigera, which will lead to a better understanding of the thermal physiology of this species both in its native range, and as a pest species in agricultural systems.
Collapse
Affiliation(s)
- Samuel A Bawa
- Zoology, Insect Ecology Laboratory, University of New England, Armidale, NSW, Australia.,Asuansi Agric. Station, Cape Coast, Central Region, Ghana
| | - Peter C Gregg
- Agronomy and Soil Science, University of New England, Armidale, NSW, Australia
| | - Alice P Del Soccoro
- Agronomy and Soil Science, University of New England, Armidale, NSW, Australia
| | - Cara Miller
- Science and Technology, University of New England, Armidale, NSW, Australia
| | - Nigel R Andrew
- Zoology, Insect Ecology Laboratory, University of New England, Armidale, NSW, Australia
| |
Collapse
|
23
|
Genetic variation for upper thermal tolerance diminishes within and between populations with increasing acclimation temperature in Atlantic salmon. Heredity (Edinb) 2021; 127:455-466. [PMID: 34446857 PMCID: PMC8551234 DOI: 10.1038/s41437-021-00469-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Populations may counteract lasting temperature changes or recurrent extremes through plasticity or adaptation. However, it remains underexplored how outbreeding, either naturally, unintentionally, or facilitated, may modify a local response potential and whether genotype-by-environment interactions or between-trait correlations can restrict this potential. We quantified population differences and outbreeding effects, within-population genetic variation, and plasticity of these, for thermal performance proxy traits using 32 pedigreed wild, domesticated, and wild-domesticated Atlantic salmon families reared under common-garden conditions. Following exposure to ambient cold (11.6 °C) or ~4° and ~8° warmer summer temperatures, populations differed notably for body length and critical thermal maximum (CTmax) and for thermal plasticity of length, condition, and CTmax, but not for haematocrit. Line-cross analysis suggested mostly additive and some dominant outbreeding effects on means and solely additive outbreeding effects on plasticity. Heritability was detected for all traits. However, with increasing acclimation temperature, differences in CTmax between populations and CTmax heritability diminished, and CTmax breeding values re-ranked. Furthermore, CTmax and body size were negatively correlated at the genetic and phenotypic levels, and there was indirect evidence for a positive correlation between growth potential and thermal performance breadth for growth. Thus, population differences (including those between wild and domesticated populations) in thermal performance and plasticity may present a genetic resource in addition to the within-population genetic variance to facilitate, or impede, thermal adaptation. However, unfavourable genotype-by-environment interactions and negative between-trait correlations may generally hamper joint evolution in response to an increase in average temperature and temporary extremes.
Collapse
|
24
|
Rebolledo AP, Sgrò CM, Monro K. Thermal Performance Curves Are Shaped by Prior Thermal Environment in Early Life. Front Physiol 2021; 12:738338. [PMID: 34744779 PMCID: PMC8564010 DOI: 10.3389/fphys.2021.738338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Understanding links between thermal performance and environmental variation is necessary to predict organismal responses to climate change, and remains an ongoing challenge for ectotherms with complex life cycles. Distinct life stages can differ in thermal sensitivity, experience different environmental conditions as development unfolds, and, because stages are by nature interdependent, environmental effects can carry over from one stage to affect performance at others. Thermal performance may therefore respond to carryover effects of prior thermal environments, yet detailed insights into the nature, strength, and direction of those responses are still lacking. Here, in an aquatic ectotherm whose early planktonic stages (gametes, embryos, and larvae) govern adult abundances and dynamics, we explore the effects of prior thermal environments at fertilization and embryogenesis on thermal performance curves at the end of planktonic development. We factorially manipulate temperatures at fertilization and embryogenesis, then, for each combination of prior temperatures, measure thermal performance curves for survival of planktonic development (end of the larval stage) throughout the performance range. By combining generalized linear mixed modeling with parametric bootstrapping, we formally estimate and compare curve descriptors (thermal optima, limits, and breadth) among prior environments, and reveal carryover effects of temperature at embryogenesis, but not fertilization, on thermal optima at completion of development. Specifically, thermal optima shifted to track temperature during embryogenesis, while thermal limits and breadth remained unchanged. Our results argue that key aspects of thermal performance are shaped by prior thermal environment in early life, warranting further investigation of the possible mechanisms underpinning that response, and closer consideration of thermal carryover effects when predicting organismal responses to climate change.
Collapse
|
25
|
Hector TE, Sgrò CM, Hall MD. Thermal limits in the face of infectious disease: How important are pathogens? GLOBAL CHANGE BIOLOGY 2021; 27:4469-4480. [PMID: 34170603 DOI: 10.1111/gcb.15761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The frequency and severity of both extreme thermal events and disease outbreaks are predicted to continue to shift as a consequence of global change. As a result, species persistence will likely be increasingly dependent on the interaction between thermal stress and pathogen exposure. Missing from the intersection between studies of infectious disease and thermal ecology, however, is the capacity for pathogen exposure to directly disrupt a host's ability to cope with thermal stress. Common sources of variation in host thermal performance, which are likely to interact with infection, are also often unaccounted for when assessing either the vulnerability of species or the potential for disease spread during extreme thermal events. Here, we describe how infection can directly alter host thermal limits, to a degree that exceeds the level of variation commonly seen across species large geographic distributions and that equals the detrimental impact of other ecologically relevant stressors. We then discuss various sources of heterogeneity within and between populations that are likely to be important in mediating the impact that infection has on variation in host thermal limits. In doing so we highlight how infection is a widespread and important source of variation in host thermal performance, which will have implications for both the persistence and vulnerability of species and the dynamics and transmission of disease in a more thermally extreme world.
Collapse
Affiliation(s)
- Tobias E Hector
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Vic., Australia
- Centre of Geometric Biology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
26
|
Barley JM, Cheng BS, Sasaki M, Gignoux-Wolfsohn S, Hays CG, Putnam AB, Sheth S, Villeneuve AR, Kelly M. Limited plasticity in thermally tolerant ectotherm populations: evidence for a trade-off. Proc Biol Sci 2021; 288:20210765. [PMID: 34493077 PMCID: PMC8424342 DOI: 10.1098/rspb.2021.0765] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Many species face extinction risks owing to climate change, and there is an urgent need to identify which species' populations will be most vulnerable. Plasticity in heat tolerance, which includes acclimation or hardening, occurs when prior exposure to a warmer temperature changes an organism's upper thermal limit. The capacity for thermal acclimation could provide protection against warming, but prior work has found few generalizable patterns to explain variation in this trait. Here, we report the results of, to our knowledge, the first meta-analysis to examine within-species variation in thermal plasticity, using results from 20 studies (19 species) that quantified thermal acclimation capacities across 78 populations. We used meta-regression to evaluate two leading hypotheses. The climate variability hypothesis predicts that populations from more thermally variable habitats will have greater plasticity, while the trade-off hypothesis predicts that populations with the lowest heat tolerance will have the greatest plasticity. Our analysis indicates strong support for the trade-off hypothesis because populations with greater thermal tolerance had reduced plasticity. These results advance our understanding of variation in populations' susceptibility to climate change and imply that populations with the highest thermal tolerance may have limited phenotypic plasticity to adjust to ongoing climate warming.
Collapse
Affiliation(s)
- Jordanna M. Barley
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Brian S. Cheng
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Matthew Sasaki
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| | | | - Cynthia G. Hays
- Department of Biology, Keene State College, Keene, NH 03435, USA
| | - Alysha B. Putnam
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Seema Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Andrew R. Villeneuve
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Morgan Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
27
|
Pottier P, Burke S, Drobniak SM, Lagisz M, Nakagawa S. Sexual (in)equality? A meta‐analysis of sex differences in thermal acclimation capacity across ectotherms. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Patrice Pottier
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| | - Samantha Burke
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| | - Szymon M. Drobniak
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Malgorzata Lagisz
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| | - Shinichi Nakagawa
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| |
Collapse
|
28
|
Willot Q, Loos B, Terblanche JS. Interactions between developmental and adult acclimation have distinct consequences for heat tolerance and heat stress recovery. J Exp Biol 2021; 224:271049. [PMID: 34308995 DOI: 10.1242/jeb.242479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022]
Abstract
Developmental and adult thermal acclimation can have distinct, even opposite, effects on adult heat resistance in ectotherms. Yet, their relative contribution to heat-hardiness of ectotherms remains unclear despite the broad ecological implications thereof. Furthermore, the deterministic relationship between heat knockdown and recovery from heat stress is poorly understood but significant for establishing causal links between climate variability and population dynamics. Here, using Drosophila melanogaster in a full-factorial experimental design, we assessed the heat tolerance of flies in static stress assays, and document how developmental and adult acclimation interact with a distinct pattern to promote survival to heat stress in adults. We show that warmer adult acclimation is the initial factor enhancing survival to constant stressful high temperatures in flies, but also that the interaction between adult and developmental acclimation becomes gradually more important to ensure survival as the stress persists. This provides an important framework revealing the dynamic interplay between these two forms of acclimation that ultimately enhance thermal tolerance as a function of stress duration. Furthermore, by investigating recovery rates post-stress, we also show that the process of heat-hardening and recovery post-heat knockdown are likely to be based on set of (at least partially) divergent mechanisms. This could bear ecological significance as a trade-off may exist between increasing thermal tolerance and maximizing recovery rates post-stress, constraining population responses when exposed to variable and stressful climatic conditions.
Collapse
Affiliation(s)
- Quentin Willot
- Center for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - John S Terblanche
- Center for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|
29
|
Fieler AM, Rosendale AJ, Farrow DW, Dunlevy MD, Davies B, Oyen K, Xiao Y, Benoit JB. Larval thermal characteristics of multiple ixodid ticks. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110939. [PMID: 33794367 PMCID: PMC8500258 DOI: 10.1016/j.cbpa.2021.110939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022]
Abstract
Temperature limits the geographic ranges of several tick species. Little is known about the thermal characteristics of these pests outside of a few studies on survival related to thermal tolerance. In this study, thermal tolerance limits, thermal preference, and the impact of temperature on activity levels and metabolic rate were examined in larvae for six species of ixodid ticks. Tolerance of low temperatures ranged from -15 to -24 °C with Dermacentor andersoni surviving the lowest temperatures. High temperature survival ranged from 41 to 47 °C, with Rhipicephalus sanguineus sensu lato having the highest upper lethal limit. Ixodes scapularis showed the lowest survival at both low and high temperatures. Thermal preference temperatures were tested from 0 to 41 °C. The majority of species preferred temperatures between 17 and 22 °C, while Dermacentor variabilis preferred significantly lower temperatures, near 12 °C. Overall activity was measured across a range of temperatures from 10 to 60 °C, and most tick species had the greatest activity near 30 °C. Metabolic rate was the greatest between 30 and 40 °C for all tick species and was relatively stable from 5 to 20 °C. The optimal temperature for tick larvae is likely near the thermal preference for each species, where oxygen consumption is low and activity occurs that will balance questing and conservation of nutrient reserves. In summary, tick species vary greatly in their thermal characteristics, and our results will be critical to predict distribution of these ectoparasites with changing climates.
Collapse
Affiliation(s)
- Alicia M Fieler
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA; Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Megan D Dunlevy
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Benjamin Davies
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yanyu Xiao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
30
|
Leung JYS, Russell BD, Coleman MA, Kelaher BP, Connell SD. Long-term thermal acclimation drives adaptive physiological adjustments of a marine gastropod to reduce sensitivity to climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145208. [PMID: 33548706 DOI: 10.1016/j.scitotenv.2021.145208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Ocean warming is predicted to challenge the persistence of a variety of marine organisms, especially when combined with ocean acidification. While temperature affects virtually all physiological processes, the extent to which thermal history mediates the adaptive capacity of marine organisms to climate change has been largely overlooked. Using populations of a marine gastropod (Turbo undulatus) with different thermal histories (cool vs. warm), we compared their physiological adjustments following exposure (8-week) to ocean acidification and warming. Compared to cool-acclimated counterparts, we found that warm-acclimated individuals had a higher thermal threshold (i.e. increased CTmax by 2 °C), which was unaffected by the exposure to ocean acidification and warming. Thermal history also strongly mediated physiological effects, where warm-acclimated individuals adjusted to warming by conserving energy, suggested by lower respiration and ingestion rates, energy budget (i.e. scope for growth) and O:N ratio. After exposure to warming, warm-acclimated individuals had higher metabolic rates and greater energy budget due to boosted ingestion rates, but such compensatory feeding disappeared when combined with ocean acidification. Overall, we suggest that thermal history can be a critical mediator of physiological performance under future climatic conditions. Given the relatively gradual rate of global warming, marine organisms may be better able to adaptively adjust their physiology to future climate than what short-term experiments currently convey.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Bayden D Russell
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Melinda A Coleman
- New South Wales Department of Primary Industries, Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia
| | - Brendan P Kelaher
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia
| | - Sean D Connell
- Southern Seas Ecology Laboratories, The Environment Institute, School of Biological Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
31
|
Morgan Fleming J, Carter AW, Sheldon KS. Dung beetles show metabolic plasticity as pupae and smaller adult body size in response to increased temperature mean and variance. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104215. [PMID: 33662376 DOI: 10.1016/j.jinsphys.2021.104215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Though organisms may use thermal plasticity to cope with novel temperature regimes, our understanding of plastic responses is limited. Research on thermal plasticity has traditionally focused on the response of organisms to shifts in mean temperatures. However, increased temperature variation can have a greater impact on organismal performance than mean temperature alone. In addition, thermal plasticity studies are often designed to investigate plasticity in response to more extreme temperatures despite the fact that organisms make physiological adjustments to diurnal temperature fluctuations that they experience. Using pupae of the dung beetle Onthophagus taurus, we investigated the potential for plasticity in response to increasing temperature mean and variance using thermal regimes that were well within the species critical thermal limits. We reared 40 beetles from egg to pupae (n = 20) or adults (n = 20) at one of nine incubation treatments, including all combinations of three mean temperatures (22, 24, 26 °C) and three amplitudes of fluctuation (±2, ±4, ±8 °C). To measure thermal plasticity of pupae, we quantified CO2 production across a range of temperatures (i.e., 15, 20, 25, and 30 °C) for 20 beetles per treatment. The relationship between CO2 production and temperature provides an estimate of energetic costs at a given temperature (i.e., using the intercept) and thermal sensitivity (i.e., using the slope). We reared the remaining O. taurus in each treatment (n = 20) to adulthood and then recorded mass (g) to determine body size, a proxy for fitness. Pupae exhibited thermal plasticity in response to the additive and interactive effects of temperature mean and variance. Pupae reared in the warmest and most variable treatment (26 ± 8 °C) showed the greatest decrease in overall metabolism compared to all other treatments, and adult beetles from this treatment (26 ± 8 °C) were also significantly smaller than adult beetles from any other treatment. We found that both temperature mean and variance contributed to thermal plasticity of pupae and had consequences for adult body size, a trait related to dung beetle fitness. Importantly, the temperatures we used in our treatments are not extreme and are likely well below the critical thermal maxima of the species, demonstrating that organisms can make adjustments to temperatures they experience across diurnal or seasonal timescales.
Collapse
Affiliation(s)
- J Morgan Fleming
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| | - Amanda W Carter
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| | - Kimberly S Sheldon
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| |
Collapse
|
32
|
Male fertility thermal limits predict vulnerability to climate warming. Nat Commun 2021; 12:2214. [PMID: 33850157 PMCID: PMC8044094 DOI: 10.1038/s41467-021-22546-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
Forecasting which species/ecosystems are most vulnerable to climate warming is essential to guide conservation strategies to minimize extinction. Tropical/mid-latitude species are predicted to be most at risk as they live close to their upper critical thermal limits (CTLs). However, these assessments assume that upper CTL estimates, such as CTmax, are accurate predictors of vulnerability and ignore the potential for evolution to ameliorate temperature increases. Here, we use experimental evolution to assess extinction risk and adaptation in tropical and widespread Drosophila species. We find tropical species succumb to extinction before widespread species. Male fertility thermal limits, which are much lower than CTmax, are better predictors of species' current distributions and extinction in the laboratory. We find little evidence of adaptive responses to warming in any species. These results suggest that species are living closer to their upper thermal limits than currently presumed and evolution/plasticity are unlikely to rescue populations from extinction.
Collapse
|
33
|
Chirgwin E, Connallon T, Monro K. The thermal environment at fertilization mediates adaptive potential in the sea. Evol Lett 2021; 5:154-163. [PMID: 33868711 PMCID: PMC8045945 DOI: 10.1002/evl3.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/04/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Additive genetic variation for fitness at vulnerable life stages governs the adaptive potential of populations facing stressful conditions under climate change, and can depend on current conditions as well as those experienced by past stages or generations. For sexual populations, fertilization is the key stage that links one generation to the next, yet the effects of fertilization environment on the adaptive potential at the vulnerable stages that then unfold during development are rarely considered, despite climatic stress posing risks for gamete function and fertility in many taxa and external fertilizers especially. Here, we develop a simple fitness landscape model exploring the effects of environmental stress at fertilization and development on the adaptive potential in early life. We then test our model with a quantitative genetic breeding design exposing family groups of a marine external fertilizer, the tubeworm Galeolaria caespitosa, to a factorial manipulation of current and projected temperatures at fertilization and development. We find that adaptive potential in early life is substantially reduced, to the point of being no longer detectable, by genotype‐specific carryover effects of fertilization under projected warming. We interpret these results in light of our fitness landscape model, and argue that the thermal environment at fertilization deserves more attention than it currently receives when forecasting the adaptive potential of populations confronting climate change.
Collapse
Affiliation(s)
- Evatt Chirgwin
- School of Biological Sciences Monash University Clayton Victoria Australia.,Cesar Australia Parkville Victoria Australia
| | - Tim Connallon
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Keyne Monro
- School of Biological Sciences Monash University Clayton Victoria Australia
| |
Collapse
|
34
|
da Silva CRB, Beaman JE, Dorey JB, Barker SJ, Congedi NC, Elmer MC, Galvin S, Tuiwawa M, Stevens MI, Alton LA, Schwarz MP, Kellermann V. Climate change and invasive species: a physiological performance comparison of invasive and endemic bees in Fiji. J Exp Biol 2021; 224:jeb230326. [PMID: 33257439 DOI: 10.1242/jeb.230326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022]
Abstract
Anthropogenic climate change and invasive species are two of the greatest threats to biodiversity, affecting the survival, fitness and distribution of many species around the globe. Invasive species are often expected to have broad thermal tolerance, be highly plastic, or have high adaptive potential when faced with novel environments. Tropical island ectotherms are expected to be vulnerable to climate change as they often have narrow thermal tolerance and limited plasticity. In Fiji, only one species of endemic bee, Homalictus fijiensis, is commonly found in the lowland regions, but two invasive bee species, Braunsapis puangensis and Ceratina dentipes, have recently been introduced into Fiji. These introduced species pollinate invasive plants and might compete with H. fijiensis and other native pollinators for resources. To test whether certain performance traits promote invasiveness of some species, and to determine which species are the most vulnerable to climate change, we compared the thermal tolerance, desiccation resistance, metabolic rate and seasonal performance adjustments of endemic and invasive bees in Fiji. The two invasive species tended to be more resistant to thermal and desiccation stress than H. fijiensis, while H. fijiensis had greater capacity to adjust their CTmax with season, and H. fijiensis females tended to have higher metabolic rates than B. puangensis females. These findings provide mixed support for current hypotheses for the functional basis of the success of invasive species; however, we expect the invasive bees in Fiji to be more resilient to climate change because of their increased thermal tolerance and desiccation resistance.
Collapse
Affiliation(s)
- Carmen R B da Silva
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Julian E Beaman
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - James B Dorey
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
- Biological and Earth Sciences, South Australian Museum, Adelaide, SA 5000, Australia
| | - Sarah J Barker
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Nicholas C Congedi
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Matt C Elmer
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Stephen Galvin
- School of Geography, Earth Science and Environment, The University of the South Pacific, Laucala Campus, Suva, Fiji
| | - Marika Tuiwawa
- South Pacific Regional Herbarium and Biodiversity Centre, The University of the South Pacific, Laucala Campus, Suva, Fiji
| | - Mark I Stevens
- Biological and Earth Sciences, South Australian Museum, Adelaide, SA 5000, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Michael P Schwarz
- College of Science and Engineering, Flinders University, Bedford Park, SA 5000, Australia
| | - Vanessa Kellermann
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
35
|
Ma CS, Ma G, Pincebourde S. Survive a Warming Climate: Insect Responses to Extreme High Temperatures. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:163-184. [PMID: 32870704 DOI: 10.1146/annurev-ento-041520-074454] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Global change includes a substantial increase in the frequency and intensity of extreme high temperatures (EHTs), which influence insects at almost all levels. The number of studies showing the ecological importance of EHTs has risen in recent years, but the knowledge is rather dispersed in the contemporary literature. In this article, we review the biological and ecological effects of EHTs actually experienced in the field, i.e., when coupled to fluctuating thermal regimes. First, we characterize EHTs in the field. Then, we summarize the impacts of EHTs on insects at various levels and the processes allowing insects to buffer EHTs. Finally, we argue that the mechanisms leading to positive or negative impacts of EHTs on insects can only be resolved from integrative approaches considering natural thermal regimes. Thermal extremes, perhaps more than the gradual increase in mean temperature, drive insect responses to climate change, with crucial impacts on pest management and biodiversity conservation.
Collapse
Affiliation(s)
- Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France;
| |
Collapse
|
36
|
Acclimation temperature affects thermal reaction norms for energy reserves in Drosophila. Sci Rep 2020; 10:21681. [PMID: 33303846 PMCID: PMC7729904 DOI: 10.1038/s41598-020-78726-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Organisms have evolved various physiological mechanisms to cope with unfavourable environmental conditions. The ability to tolerate non-optimal thermal conditions can be substantially improved by acclimation. In this study, we examined how an early-life acclimation to different temperatures (19 °C, 25 °C and 29 °C) influences thermal reaction norms for energy stores in Drosophila adults. Our results show that acclimation temperature has a significant effect on the amount of stored fat and glycogen (and their relative changes) and the optimal temperature for their accumulation. Individuals acclimated to 19 °C had, on average, more energy reserves than flies that were initially maintained at 25 °C or 29 °C. In addition, acclimation caused a shift in optimal temperature for energy stores towards acclimation temperature. We also detected significant population differences in this response. The effect of acclimation on the optimal temperature for energy stores was more pronounced in flies from the temperate climate zone (Slovakia) than in individuals from the tropical zone (India). Overall, we found that the acclimation effect was stronger after acclimation to low (19 °C) than to high (29 °C) temperature. The observed sensitivity of thermal reaction norms for energy reserves to acclimation temperature can have important consequences for surviving periods of food scarcity, especially at suboptimal temperatures.
Collapse
|
37
|
Kingsolver JG, Moore ME, Hill CA, Augustine KE. Growth, stress, and acclimation responses to fluctuating temperatures in field and domesticated populations of Manduca sexta. Ecol Evol 2020; 10:13980-13989. [PMID: 33391696 PMCID: PMC7771122 DOI: 10.1002/ece3.6991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Diurnal fluctuations in temperature are ubiquitous in terrestrial environments, and insects and other ectotherms have evolved to tolerate or acclimate to such fluctuations. Few studies have examined whether ectotherms acclimate to diurnal temperature fluctuations, or how natural and domesticated populations differ in their responses to diurnal fluctuations. We examine how diurnally fluctuating temperatures during development affect growth, acclimation, and stress responses for two populations of Manduca sexta: a field population that typically experiences wide variation in mean and fluctuations in temperature, and a laboratory population that has been domesticated in nearly constant temperatures for more than 300 generations. Laboratory experiments showed that diurnal fluctuations throughout larval development reduced pupal mass for the laboratory but not the field population. The differing effects of diurnal fluctuations were greatest at higher mean temperature (30°C): Here diurnal fluctuations reduced pupal mass and increased pupal development time for the laboratory population, but had little effect for the field population. We also evaluated how mean and fluctuations in temperature during early larval development affected growth rate during the final larval instar as a function of test temperature. At an intermediate (25°C) mean temperature, both the laboratory and field population showed a positive acclimation response to diurnal fluctuations, in which subsequent growth rate was significantly higher at most test temperatures. In contrast at higher mean temperature (30°C), diurnal fluctuations significantly reduced subsequent growth rate at most test temperatures for the laboratory population, but not for the field population. These results suggest that during domestication in constant temperatures, the laboratory population has lost the capacity to tolerate or acclimate to high and fluctuating temperatures. Population differences in acclimation capacity in response to temperature fluctuations have not been previously demonstrated, but they may be important for understanding the evolution of reaction norms and performance curves.
Collapse
Affiliation(s)
| | | | | | - Kate E. Augustine
- Department of BiologyUniversity of North CarolinaChapel HillNCUSA
- Manaaki Whenua – Landcare ResearchAucklandNew Zealand
| |
Collapse
|
38
|
van Heerwaarden B, Kellermann V. Does Plasticity Trade Off With Basal Heat Tolerance? Trends Ecol Evol 2020; 35:874-885. [DOI: 10.1016/j.tree.2020.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/28/2022]
|
39
|
Effects of Temperature on Lifespan of Drosophila melanogaster from Different Genetic Backgrounds: Links between Metabolic Rate and Longevity. INSECTS 2020; 11:insects11080470. [PMID: 32722420 PMCID: PMC7469197 DOI: 10.3390/insects11080470] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/01/2023]
Abstract
Despite many studies of the aging process, questions about key factors ensuring longevity have not yet found clear answers. Temperature seems to be one of the most important factors regulating lifespan. However, the genetic background may also play a key role in determining longevity. The aim of this study was to investigate the relationship between the temperature, genetic background (fruit fly origin), and metabolic rate on lifespan. Experiments were performed with the use of the wild type Drosophila melanogaster fruit flies originating from Australia, Canada, and Benin and the reference OregonR strain. The metabolic rate of D. melanogaster was measured at 20 °C, 25 °C, and 28 °C in an isothermal calorimeter. We found a strong negative relationship between the total heat flow and longevity. A high metabolic rate leads to increased aging in males and females in all strains. Furthermore, our results showed that temperature has a significant effect on fecundity and body weight. We also showed the usefulness of the isothermal calorimetry method to study the effect of environmental stress conditions on the metabolic activity of insects. This may be particularly important for the forecasting of impact of global warming on metabolic activity and lifespan of various insects.
Collapse
|
40
|
Simões P, Santos MA, Carromeu-Santos A, Quina AS, Santos M, Matos M. Beneficial developmental acclimation in reproductive performance under cold but not heat stress. J Therm Biol 2020; 90:102580. [DOI: 10.1016/j.jtherbio.2020.102580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 01/03/2023]
|
41
|
Shinner R, Terblanche JS, Clusella-Trullas S. Across-stage consequences of thermal stress have trait-specific effects and limited fitness costs in the harlequin ladybird, Harmonia axyridis. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10045-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Critical Thermal Limits Do Not Vary between Wild-caught and Captive-bred Tadpoles of Agalychnis spurrelli (Anura: Hylidae). DIVERSITY-BASEL 2020. [DOI: 10.3390/d12020043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Captive-bred organisms are widely used in ecology, evolution and conservation research, especially in scenarios where natural populations are scarce or at risk of extinction. Yet, it is still unclear whether captivity may alter thermal tolerances, crucial traits to predict species resilience to global warming. Here, we study whether captive-bred tadpoles of the gliding treefrog (Agalychnis spurrelli) show different thermal tolerances than wild-caught individuals. Our results show that there are no differences between critical thermal limits (CTmax and CTmin) of captive-bred and wild-caught tadpoles exposed to three-day acclimatization at 20 °C. Therefore, we suggest that the use of captive-bred amphibians is valid and may be appropriate in experimental comparisons to thermal physiological studies of wild populations.
Collapse
|
43
|
Healy TM, Bock AK, Burton RS. Variation in developmental temperature alters adulthood plasticity of thermal tolerance in Tigriopus californicus. ACTA ACUST UNITED AC 2019; 222:jeb.213405. [PMID: 31597734 DOI: 10.1242/jeb.213405] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
In response to environmental change, organisms rely on both genetic adaptation and phenotypic plasticity to adjust key traits that are necessary for survival and reproduction. Given the accelerating rate of climate change, plasticity may be particularly important. For organisms in warming aquatic habitats, upper thermal tolerance is likely to be a key trait, and many organisms express plasticity in this trait in response to developmental or adulthood temperatures. Although plasticity at one life stage may influence plasticity at another life stage, relatively little is known about this possibility for thermal tolerance. Here, we used locally adapted populations of the copepod Tigriopus californicus to investigate these potential effects in an intertidal ectotherm. We found that low latitude populations had greater critical thermal maxima (CTmax) than high latitude populations, and variation in developmental temperature altered CTmax plasticity in adults. After development at 25°C, CTmax was plastic in adults, whereas no adulthood plasticity in this trait was observed after development at 20°C. This pattern was identical across four populations, suggesting that local thermal adaptation has not shaped this effect among these populations. Differences in the capacities to maintain ATP synthesis rates and to induce heat shock proteins at high temperatures, two likely mechanisms of local adaptation in this species, were consistent with changes in CTmax owing to phenotypic plasticity, which suggests that there is likely mechanistic overlap between the effects of plasticity and adaptation. Together, these results indicate that developmental effects may have substantial impacts on upper thermal tolerance plasticity in adult ectotherms.
Collapse
Affiliation(s)
- Timothy M Healy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA 92093-0202, USA
| | - Antonia K Bock
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA 92093-0202, USA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive #0202, La Jolla, CA 92093-0202, USA
| |
Collapse
|
44
|
Hector TE, Sgrò CM, Hall MD. Pathogen exposure disrupts an organism's ability to cope with thermal stress. GLOBAL CHANGE BIOLOGY 2019; 25:3893-3905. [PMID: 31148326 DOI: 10.1111/gcb.14713] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
As a result of global climate change, species are experiencing an escalation in the severity and regularity of extreme thermal events. With patterns of disease distribution and transmission predicted to undergo considerable shifts in the coming years, the interplay between temperature and pathogen exposure will likely determine the capacity of a population to persist under the dual threat of global change and infectious disease. In this study, we investigated how exposure to a pathogen affects an individual's ability to cope with extreme temperatures. Using experimental infections of Daphnia magna with its obligate bacterial pathogen Pasteuria ramosa, we measured upper thermal limits of multiple host and pathogen genotype combinations across the dynamic process of infection and under various forms (static and ramping) of thermal stress. We find that pathogens substantially limit the thermal tolerance of their host, with the reduction in upper thermal limits on par with the breadth of variation seen across similar species entire geographical ranges. The precise magnitude of any reduction, however, was specific to the host and pathogen genotype combination. In addition, as thermal ramping rate slowed, upper thermal limits of both healthy and infected individuals were reduced. Our results suggest that the capacity of a population to evolve new thermal limits, when also faced with the threat of infection, will depend not only on a host's genetic variability in warmer environments, but also on the frequency of host and pathogen genotypes. We suggest that pathogen-induced alterations of host thermal performance should be taken into account when assessing the resilience of any population and its potential for adaptation to global change.
Collapse
Affiliation(s)
- Tobias E Hector
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
45
|
Hoffmann AA, Sgrò CM. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: How much environmental control is needed? Integr Zool 2019; 13:355-371. [PMID: 29168624 PMCID: PMC6099205 DOI: 10.1111/1749-4877.12297] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Researchers and practitioners are increasingly using comparative assessments of critical thermal and physiological limits to assess the relative vulnerability of ectothermic species to extreme thermal and aridity conditions occurring under climate change. In most assessments of vulnerability, critical limits are compared across taxa exposed to different environmental and developmental conditions. However, many aspects of vulnerability should ideally be compared when species are exposed to the same environmental conditions, allowing a partitioning of sources of variation such as used in quantitative genetics. This is particularly important when assessing the importance of different types of plasticity to critical limits, using phylogenetic analyses to test for evolutionary constraints, isolating genetic variants that contribute to limits, characterizing evolutionary interactions among traits limiting adaptive responses, and when assessing the role of cross generation effects. However, vulnerability assessments based on critical thermal/physiological limits also need to take place within a context that is relevant to field conditions, which is not easily provided under controlled environmental conditions where behavior, microhabitat, stress exposure rates and other factors will differ from field conditions. There are ways of reconciling these requirements, such as by taking organisms from controlled environments and then testing their performance under field conditions (or vice versa). While comparisons under controlled environments are challenging for many taxa, assessments of critical thermal limits and vulnerability will always be incomplete unless environmental effects within and across generations are considered, and where the ecological relevance of assays measuring critical limits can be established.
Collapse
Affiliation(s)
- Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
46
|
Agudelo-Cantero GA, Navas CA. Interactive effects of experimental heating rates, ontogeny and body mass on the upper thermal limits of anuran larvae. J Therm Biol 2019; 82:43-51. [PMID: 31128658 DOI: 10.1016/j.jtherbio.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Biological and methodological factors influence the upper thermal limits (UTL) of ectothermic animals, but most factors have been studied independently. Few studies have integrated variables, so our understanding about sources of UTL variation remains fragmentary. Thereby, we investigated synergic effects of experimental protocols (heating rates, ΔTs) and biological factors (ontogeny and body mass) on the UTL on the larvae of two anuran species (Physalaemus nattereri and Boana pardalis), specifically their Critical Thermal Maximum (CTmax). The species displayed slightly different responses to ΔTs: In B. pardalis tadpoles both average and variance of CTmax increased at a fastest ΔT, the same response happened in P. nattereri tadpoles at slow and moderate ΔTs. Also, the CTmax of P. nattereri declined at the end of metamorphosis independently of ΔT, but tadpoles at all developmental stages still displayed higher heat tolerance at the slow ΔT. Finally, we detected small, synergic effects of body mass and ΔTs on the CTmax of both species. In small B. pardalis tadpoles and premetamorphic P. nattereri tadpoles, body mass had a positive effect on CTmax, but only at slow and moderate ΔTs, probably indicating physiological responses. A similar trend was observed in large B. pardalis tadpoles at the fast ΔT, but this result is likely to be influenced by thermal inertia. Our findings contribute to integrate the understanding of factors influencing UTL in small ectothermic animals. This understanding is critical to discuss the physiological component of vulnerability to climate change that is related to acute temperatures.
Collapse
Affiliation(s)
- Gustavo A Agudelo-Cantero
- Graduate School Program in General Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão 101, Travessa 14, CEP 05508-090, São Paulo, Brazil.
| | - Carlos A Navas
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão 101, Travessa 14, CEP 05508-090, São Paulo, Brazil.
| |
Collapse
|
47
|
Klepsatel P, Girish TN, Dircksen H, Gáliková M. Reproductive fitness of Drosophila is maximised by optimal developmental temperature. ACTA ACUST UNITED AC 2019; 222:jeb.202184. [PMID: 31064855 DOI: 10.1242/jeb.202184] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/30/2019] [Indexed: 01/19/2023]
Abstract
Whether the character of developmental plasticity is adaptive or non-adaptive has often been a matter of controversy. Although thermal developmental plasticity has been studied in Drosophila for several traits, it is not entirely clear how it affects reproductive fitness. We, therefore, investigated how developmental temperature affects reproductive performance (early fecundity and egg-to-adult viability) of wild-caught Drosophila melanogaster We tested competing hypotheses on the character of developmental thermal plasticity using a full-factorial design with three developmental and adulthood temperatures within the natural thermal range of this species. To account for potential intraspecific differences, we examined flies from tropical (India) and temperate (Slovakia) climate zones. Our results show that flies from both populations raised at an intermediate developmental temperature (25°C) have comparable or higher early fecundity and fertility at all tested adulthood temperatures, while lower (17°C) or higher developmental temperatures (29°C) did not entail any advantage under the tested thermal regimes. Importantly, the superior thermal performance of flies raised at 25°C is apparent even after taking two traits positively associated with reproductive output into account: body size and ovariole number. Thus, in D. melanogaster, development at a given temperature does not necessarily provide any advantage in this thermal environment in terms of reproductive fitness. Our findings strongly support the optimal developmental temperature hypothesis, which states that in different thermal environments, the highest fitness is achieved when an organism is raised at its optimal developmental temperature.
Collapse
Affiliation(s)
- Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | | | - Heinrich Dircksen
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, S-106 91 Stockholm, Sweden
| | - Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.,Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, S-106 91 Stockholm, Sweden
| |
Collapse
|
48
|
Bai CM, Ma G, Cai WZ, Ma CS. Independent and combined effects of daytime heat stress and night-time recovery determine thermal performance. Biol Open 2019; 8:bio.038141. [PMID: 30837225 PMCID: PMC6451327 DOI: 10.1242/bio.038141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Organisms often experience adverse high temperatures during the daytime, but they may also recover or repair themselves during the night-time when temperatures are more moderate. Thermal effects of daily fluctuating temperatures may thus be divided into two opposite processes (i.e. negative effects of daytime heat stress and positive effects of night-time recovery). Despite recent progress on the consequences of increased daily temperature variability, the independent and combined effects of daytime and night-time temperatures on organism performance remain unclear. By independently manipulating daily maximum and minimum temperatures, we tested how changes in daytime heat stress and night-time recovery affect development, survival and heat tolerance of the lady beetle species Propylea japonica Thermal effects on development and survival differed between daytime and night-time. Daytime high temperatures had negative effects whereas night-time mild temperatures had positive effects. The extent of daytime heat stress and night-time recovery also affected development and critical thermal maximum, which indicates that there were both independent and combined effects of daytime and night-time temperatures on thermal performances. Our findings provide insight into the thermal effect of day-to-night temperature variability and have important implications for predicting the impacts of diel asymmetric warming under climate change.
Collapse
Affiliation(s)
- Chun-Ming Bai
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China.,Department of Entomology, College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Wan-Zhi Cai
- Department of Entomology, College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
49
|
Enriquez-Urzelai U, Sacco M, Palacio AS, Pintanel P, Tejedo M, Nicieza AG. Ontogenetic reduction in thermal tolerance is not alleviated by earlier developmental acclimation in Rana temporaria. Oecologia 2019; 189:385-394. [DOI: 10.1007/s00442-019-04342-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/21/2019] [Indexed: 11/28/2022]
|
50
|
Kellermann V, Hoffmann AA, Overgaard J, Loeschcke V, Sgrò CM. Plasticity for desiccation tolerance across Drosophila species is affected by phylogeny and climate in complex ways. Proc Biol Sci 2019. [PMID: 29540521 DOI: 10.1098/rspb.2018.0048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Comparative analyses of ectotherm susceptibility to climate change often focus on thermal extremes, yet responses to aridity may be equally important. Here we focus on plasticity in desiccation resistance, a key trait shaping distributions of Drosophila species and other small ectotherms. We examined the extent to which 32 Drosophila species, varying in their distribution, could increase their desiccation resistance via phenotypic plasticity involving hardening, linking these responses to environment, phylogeny and basal resistance. We found no evidence to support the seasonality hypothesis; species with higher hardening plasticity did not occupy environments with higher and more seasonal precipitation. As basal resistance increased, the capacity of species to respond via phenotypic plasticity decreased, suggesting plastic responses involving hardening may be constrained by basal resistance. Trade-offs between basal desiccation resistance and plasticity were not universal across the phylogeny and tended to occur within specific clades. Phylogeny, environment and trade-offs all helped to explain variation in plasticity for desiccation resistance but in complex ways. These findings suggest some species have the ability to counter dry periods through plastic responses, whereas others do not; and this ability will depend to some extent on a species' placement within a phylogeny, along with its basal level of resistance.
Collapse
Affiliation(s)
- Vanessa Kellermann
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Ary A Hoffmann
- School of BioSciences, The University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | | | - Volker Loeschcke
- Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|