1
|
Taviani M, Montagna P, Hosie AM, Castellan G, Kemper C, Foglini F, McCulloch M, Trotter J. Whale fall chemosymbiotic communities in a southwest Australian submarine canyon fill a distributional gap. Heliyon 2024; 10:e29206. [PMID: 38628702 PMCID: PMC11016972 DOI: 10.1016/j.heliyon.2024.e29206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
A whale fall community of chemosymbiotic invertebrates living on cetacean bones has been identified off southwestern Australia during a Remotely Operated Vehicle (ROV) survey at bathyal depths within the Bremer Marine Park, which is part of important marine mammal areas (IMMA) of the Albany Canyon Region. Cetacean bones on the seafloor of the Hood Canyon, consisted of isolated skulls of three species of beaked whales (family Ziphiidae): Mesoplodon cf. layardii, M. grayi, and M. hectori, a few vertebrae, and lower jaws. One of the beaked whale skulls (Mesoplodon cf. layardii) was sampled and found to be intensely colonised by hundreds of specimens of a bathymodilinae mussel ("Adipicola" s.l.). Live polychaetes (Phyllochaetopterus?), skeneimorph gastropods, and amphipods (Seba, Leptamphopus) colonised the skull bone, which represent a later stage (sulfophilic) of carcass decomposition. The reducing sediment below the skull was inhabited by lucinid (Lucinoma) and vesicomyid (Calyptogena) chemosymbiotic bivalves. Additionally, the sediment thanatocoenosis comprised shells of various other chemosymbiotic bivalves, such as Acharax, thyasirids, lucinids, vesicomyids, and limpets, representing the complex ecological turnover phases through time in this whale fall chemosynthetic habitat. With one exception, all bones recovered were colonized by bathymodiolin mussels. This is the first documented case of a chemosynthetic community and associated chemosymbiotic fauna relating to beaked whales, and the first fully documented record of a whale fall community within the Australian Southern Ocean region.
Collapse
Affiliation(s)
- Marco Taviani
- Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), Bologna, Italy
- Stazione Zoologica ‘Anton Dohrn’, Naples, Italy
| | - Paolo Montagna
- Stazione Zoologica ‘Anton Dohrn’, Naples, Italy
- Istituto di Scienze Polari (ISP), Consiglio Nazionale delle Ricerche (CNR), Bologna, Italy
| | - Andrew M. Hosie
- Collections & Research, Western Australian Museum, Welshpool, Australia
| | - Giorgio Castellan
- Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), Bologna, Italy
| | - Catherine Kemper
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Federica Foglini
- Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), Bologna, Italy
| | - Malcom McCulloch
- Oceans Graduate School and Oceans Institute, The University of Western Australia, Perth, Australia
| | - Julie Trotter
- Oceans Graduate School and Oceans Institute, The University of Western Australia, Perth, Australia
| |
Collapse
|
2
|
Zhao R, Zhao F, Zheng S, Li X, Wang J, Xu K. Bacteria, Protists, and Fungi May Hold Clues of Seamount Impact on Diversity and Connectivity of Deep-Sea Pelagic Communities. Front Microbiol 2022; 13:773487. [PMID: 35464911 PMCID: PMC9024416 DOI: 10.3389/fmicb.2022.773487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
The topography and hydrography around seamounts have a strong influence on plankton biogeography. The intrinsic properties of various biological taxa inherently also shape their distribution. Therefore, it is hypothesized that different pelagic groups respond differently to effects of seamounts regarding their distribution and connectivity patterns. Herein, bacterial, protist, and fungal diversity was investigated across the water column around the Kocebu Guyot in the western Pacific Ocean. A higher connectivity was detected for bacteria than for protists and an extremely low connectivity for fungi, which might be attributed to parasitic and commensal interactions of many fungal taxa. The seamount enhanced the vertical connectivity of bacterial and protist communities, but significantly reduced protist connectivity along horizontal dimension. Such effects provide ecological opportunities for eukaryotic adaption and diversification. All the bacterial, protist, and fungal communities were more strongly affected by deterministic than stochastic processes. Drift appeared to have a more significant role in influencing the fungal community than other groups. Our study indicates the impact of seamounts on the pelagic community distribution and connectivity and highlights the mechanism of horizontally restricted dispersal combined with vertical mixing, which promotes the diversification of eukaryotic life.
Collapse
Affiliation(s)
- Rongjie Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shan Zheng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xuegang Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jianing Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
3
|
Linse K, Copley JT, Connelly DP, Larter RD, Pearce DA, Polunin NVC, Rogers AD, Chen C, Clarke A, Glover AG, Graham AGC, Huvenne VAI, Marsh L, Reid WDK, Roterman CN, Sweeting CJ, Zwirglmaier K, Tyler PA. Fauna of the Kemp Caldera and its upper bathyal hydrothermal vents (South Sandwich Arc, Antarctica). ROYAL SOCIETY OPEN SCIENCE 2019; 6:191501. [PMID: 31827872 PMCID: PMC6894572 DOI: 10.1098/rsos.191501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 05/24/2023]
Abstract
Faunal assemblages at hydrothermal vents associated with island-arc volcanism are less well known than those at vents on mid-ocean ridges and back-arc spreading centres. This study characterizes chemosynthetic biotopes at active hydrothermal vents discovered at the Kemp Caldera in the South Sandwich Arc. The caldera hosts sulfur and anhydrite vent chimneys in 1375-1487 m depth, which emit sulfide-rich fluids with temperatures up to 212°C, and the microbial community of water samples in the buoyant plume rising from the vents was dominated by sulfur-oxidizing Gammaproteobacteria. A total of 12 macro- and megafaunal taxa depending on hydrothermal activity were collected in these biotopes, of which seven species were known from the East Scotia Ridge (ESR) vents and three species from vents outside the Southern Ocean. Faunal assemblages were dominated by large vesicomyid clams, actinostolid anemones, Sericosura sea spiders and lepetodrilid and cocculinid limpets, but several taxa abundant at nearby ESR hydrothermal vents were rare such as the stalked barnacle Neolepas scotiaensis. Multivariate analysis of fauna at Kemp Caldera and vents in neighbouring areas indicated that the Kemp Caldera is most similar to vent fields in the previously established Southern Ocean vent biogeographic province, showing that the species composition at island-arc hydrothermal vents can be distinct from nearby seafloor-spreading systems. δ 13C and δ 15N isotope values of megafaunal species analysed from the Kemp Caldera were similar to those of the same or related species at other vent fields, but none of the fauna sampled at Kemp Caldera had δ 13C values, indicating nutritional dependence on Epsilonproteobacteria, unlike fauna at other island-arc hydrothermal vents.
Collapse
Affiliation(s)
- Katrin Linse
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Jonathan T. Copley
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton SO14 3ZH, UK
| | | | - Robert D. Larter
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - David A. Pearce
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Nick V. C. Polunin
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
| | - Alex D. Rogers
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Kanagawa Pref. Japan
| | - Andrew Clarke
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Adrian G. Glover
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | | | - Leigh Marsh
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton SO14 3ZH, UK
| | - William D. K. Reid
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
| | - C. Nicolai Roterman
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Christopher J. Sweeting
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
| | - Katrin Zwirglmaier
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Paul A. Tyler
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton SO14 3ZH, UK
| |
Collapse
|
4
|
Eilertsen MH, Georgieva MN, Kongsrud JA, Linse K, Wiklund H, Glover AG, Rapp HT. Genetic connectivity from the Arctic to the Antarctic: Sclerolinum contortum and Nicomache lokii (Annelida) are both widespread in reducing environments. Sci Rep 2018; 8:4810. [PMID: 29556042 PMCID: PMC5859262 DOI: 10.1038/s41598-018-23076-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/06/2018] [Indexed: 11/23/2022] Open
Abstract
The paradigm of large geographic ranges in the deep sea has been challenged by genetic studies, which often reveal putatively widespread species to be several taxa with more restricted ranges. Recently, a phylogeographic study revealed that the tubeworm Sclerolinum contortum (Siboglinidae) inhabits vents and seeps from the Arctic to the Antarctic. Here, we further test the conspecificity of the same populations of S. contortum with additional mitochondrial and nuclear markers. We also investigate the genetic connectivity of another species with putatively the same wide geographic range - Nicomache lokii (Maldanidae). Our results support the present range of S. contortum, and the range of N. lokii is extended from vents and seeps in the Nordic Seas to mud volcanoes in the Barbados Trench and Antarctic vents. Sclerolinum contortum shows more pronounced geographic structure than N. lokii, but whether this is due to different dispersal capacities or reflects the geographic isolation of the sampled localities is unclear. Two distinct mitochondrial lineages of N. lokii are present in the Antarctic, which may result from two independent colonization events. The environmental conditions inhabited by the two species and implications for their distinct habitat preference is discussed.
Collapse
Affiliation(s)
- Mari H Eilertsen
- Department of Biological Sciences, University of Bergen, PO Box 7800, N-5020, Bergen, Norway. .,K.G. Jebsen Centre for Deep-Sea Research, University of Bergen, PO Box 7803, N-5020, Bergen, Norway.
| | - Magdalena N Georgieva
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Jon A Kongsrud
- Department of Natural History, University Museum of Bergen, PO Box 7800, N-5020, Bergen, Norway
| | - Katrin Linse
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Helena Wiklund
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Adrian G Glover
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Hans T Rapp
- Department of Biological Sciences, University of Bergen, PO Box 7800, N-5020, Bergen, Norway.,K.G. Jebsen Centre for Deep-Sea Research, University of Bergen, PO Box 7803, N-5020, Bergen, Norway.,Uni Research, Uni Environment, PO Box 7810, N-5020, Bergen, Norway
| |
Collapse
|
5
|
Kiel S. Reply to Smith et al.: Network analysis reveals connectivity patterns in the continuum of reducing ecosystems. Proc Biol Sci 2017; 284:rspb.2017.1644. [PMID: 28954916 DOI: 10.1098/rspb.2017.1644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/23/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Steffen Kiel
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden
| |
Collapse
|