1
|
Hanada T, Kobayash A, Yaguchi H, Maekawa K. Protein localization and potential function of lipocalin in Reticulitermes speratus queens. PLoS One 2024; 19:e0311836. [PMID: 39374259 PMCID: PMC11458055 DOI: 10.1371/journal.pone.0311836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
To understand the mechanisms underlying social evolution and caste development in social insects, caste-specific organs and genes should be investigated. In the rhinotermitid termite, Reticulitermes speratus, the lipocalin gene RS008881, which encodes a protein transporter, is expressed in the ovarian accessory glands of primary queens. To obtain additional data on its expression and product localization, we conducted real-time quantitative polymerase chain reaction and protein assays using a peptide antibody. Gene expression analysis of the castes revealed that RS008881 was highly expressed in female primary and secondary reproductives. Further analysis of its expression during reproductive caste differentiation showed that its expression levels increased prior to molting into reproductive individuals, even during the winged imago (alates) stage. Western blotting and fluorescent immunohistochemical staining revealed that the RS008881 product was localized in the ovary as well as the eggshells produced by female reproductives. RS008881 may play a significant role in the reproductive biology of R. speratus; protein localization in both the ovary and eggshell suggests multiple functions related to embryo protection and potential pheromone interactions.
Collapse
Affiliation(s)
- Takumi Hanada
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Anji Kobayash
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Hajime Yaguchi
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Kiyoto Maekawa
- Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| |
Collapse
|
2
|
Zhou YY, Jin Y, Liu SQ, Xu SL, Huang YX, Xu YS, Shi LG, Wang HB. Genome-wide identification and comparative analysis of lipocalin families in Lepidoptera with an emphasis on Bombyx mori. INSECT SCIENCE 2023; 30:15-30. [PMID: 35343650 DOI: 10.1111/1744-7917.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Lipocalins exhibit functional diversity, including roles in retinol transport, invertebrate cryptic coloration, and stress response. However, genome-wide identification and characterization of lipocalin in the insect lineage have not been thoroughly explored. Here, we found that a lineage-specific expansion of the lipocalin genes in Lepidoptera occurred in large part due to tandem duplication events and several lipocalin genes involving insect coloration were expanded more via tandem duplication in butterflies. A comparative analysis of conserved motifs showed both conservation and divergence of lepidopteran lipocalin family protein structures during evolution. We observe dynamic changes in tissue expression preference of paralogs in Bombyx mori, suggesting differential contribution of paralogs to specific organ functions during evolution. Subcellular localization experiments revealed that lipocalins localize to the cytoplasm, nuclear membrane, or nucleus in BmN cells. Moreover, several lipocalin genes exhibited divergent responses to abiotic and biotic stresses, and 1 lipocalin gene was upregulated by 300 fold in B. mori. These results suggest that lipocalins act as signaling components in defense responses by mediating crosstalk between abiotic and biotic stress responses. This study deepens our understanding of the comprehensive characteristics of lipocalins in insects.
Collapse
Affiliation(s)
- Yan-Yan Zhou
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yue Jin
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuai-Qi Liu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shi-Liang Xu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Xin Huang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Song Xu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lian-Gen Shi
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Bing Wang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Veenstra JA. Differential expression of some termite neuropeptides and insulin/IGF-related hormones and their plausible functions in growth, reproduction and caste determination. PeerJ 2023; 11:e15259. [PMID: 37128206 PMCID: PMC10148640 DOI: 10.7717/peerj.15259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023] Open
Abstract
Background Insulin-like growth factor (IGF) and other insulin-like peptides (ilps) are important hormones regulating growth and development in animals. Whereas most animals have a single female and male adult phenotype, in some insect species the same genome may lead to different final forms. Perhaps the best known example is the honeybee where females can either develop into queens or workers. More extreme forms of such polyphenism occur in termites, where queens, kings, workers and soldiers coexist. Both juvenile hormone and insulin-like peptides are known to regulate growth and reproduction as well as polyphenism. In termites the role of juvenile hormone in reproduction and the induction of the soldier caste is well known, but the role of IGF and other ilps in these processes remains largely unknown. Here the various termite ilps are identified and hypotheses regarding their functions suggested. Methods Genome assemblies and transcriptome short read archives (SRAs) were used to identify insulin-like peptides and neuropeptides in termites and to determine their expression in different species, tissues and castes. Results and Discussion Termites have seven different ilps, i.e. gonadulin, IGF and an ortholog of Drosophila insulin-like peptide 7 (dilp7), which are commonly present in insects, and four smaller peptides, that have collectively been called short IGF-related peptides (sirps) and individually atirpin, birpin, cirpin and brovirpin. Gonadulin is lost from the higher termites which have however amplified the brovirpin gene, of which they often have two or three paralogs. Based on differential expression of these genes it seems likely that IGF is a growth hormone and atirpin an autocrine tissue factor that is released when a tissue faces metabolic stress. Birpin seems to be responsible for growth and in the absence of juvenile hormone this may lead to reproductive adults or, when juvenile hormone is present, to soldiers. Brovirpin is expressed both by the brain and the ovary and likely stimulates vitellogenesis, while the function of cirpin is less clear.
Collapse
|
4
|
Comparison of gene expression profiles among caste differentiations in the termite Reticulitermes speratus. Sci Rep 2022; 12:11947. [PMID: 35831400 PMCID: PMC9279399 DOI: 10.1038/s41598-022-15984-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Termite castes express specialized phenotypes for their own tasks and are a good example of insect polyphenism. To understand the comprehensive gene expression profiles during caste differentiation, RNA-seq analysis based on the genome data was performed during the worker, presoldier, and nymphoid molts in Reticulitermes speratus. In this species, artificial induction methods for each molt have already been established, and the time scale has been clarified. Three different periods (before the gut purge (GP), during the GP, and after the molt) were discriminated in each molt, and two body parts (head and other body regions) were separately sampled. The results revealed that many differentially expressed genes (head: 2884, body: 2579) were identified in each molt. Based on the independent real-time quantitative PCR analysis, we confirmed the different expression patterns of seven out of eight genes in the presoldier molt. Based on the GO and KEGG enrichment analyses, the expressions of genes related to juvenile hormone titer changes (e.g., JH acid methyltransferase), nutrition status (e.g., Acyl-CoA Delta desaturase), and cell proliferation (e.g., insulin receptor), were shown to specifically fluctuate in each molt. These differences may have a crucial impact on caste differentiation. These data are important resources for future termite sociogenomics.
Collapse
|
5
|
Pelosi P, Knoll W. Odorant-binding proteins of mammals. Biol Rev Camb Philos Soc 2022; 97:20-44. [PMID: 34480392 DOI: 10.1111/brv.12787] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Odorant-binding proteins (OBPs) of vertebrates belong to the lipocalin superfamily and perform a dual function: solubilizing and ferrying volatile pheromones to the olfactory receptors, and complexing the same molecules in specialized glands and assisting their release into the environment. Within vertebrates, to date they have been reported only in mammals, apart from two studies on amphibians. Based on the small number of OBPs expressed in each species, on their sites of production outside the olfactory area and their presence in biological fluids known to be pheromone carriers, such as urine, saliva and sexual secretions, we conclude that OBPs of mammals are specifically dedicated to pheromonal communication. This assumption is further supported by the observation that some OBPs present in biological secretions are endowed with their own pheromonal activity, adding renewed interest to these proteins. Another novel piece of evidence is the recent discovery that glycosylation and phosphorylation can modulate the binding activity of these proteins, improving their affinity to pheromones and narrowing their specificity. A comparison with insects and other arthropods shows a completely different scenario. While mammalian OBPs are specifically tuned to pheromones, those of insects, which are completely different in sequence and structure, include carriers for general odorants in addition to those dedicated to pheromones. Additionally, whereas mammals adopted a single family of carrier proteins for chemical communication, insects and other arthropods are endowed with several families of semiochemical-binding proteins. Here, we review the literature on the structural and functional properties of vertebrate OBPs, summarize the most interesting new findings and suggest possible exciting future developments.
Collapse
Affiliation(s)
- Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| |
Collapse
|
6
|
Genomic and transcriptomic analyses of the subterranean termite Reticulitermes speratus: Gene duplication facilitates social evolution. Proc Natl Acad Sci U S A 2022; 119:2110361119. [PMID: 35042774 PMCID: PMC8785959 DOI: 10.1073/pnas.2110361119] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
Gene duplication is a major source of evolutionary innovation and is associated with the increases in biological complexity and adaptive radiation. Termites are model social organisms characterized by a sophisticated caste system. We analyzed the genome of the Japanese subterranean termite, an ecologically and economically important insect acting as a destructive pest. The analyses revealed the significance of gene duplication in social evolution. Gene duplication associated with caste-biased gene expression was prevalent in the termite genome. Many of the duplicated genes were related to social functions, such as chemical communication, social immunity, and defense, and they were often expressed in caste-specific organs. We propose that gene duplication facilitates social evolution through regulatory diversification leading to caste-biased expression and functional specialization. Termites are model social organisms characterized by a polyphenic caste system. Subterranean termites (Rhinotermitidae) are ecologically and economically important species, including acting as destructive pests. Rhinotermitidae occupies an important evolutionary position within the clade representing a transitional taxon between the higher (Termitidae) and lower (other families) termites. Here, we report the genome, transcriptome, and methylome of the Japanese subterranean termite Reticulitermes speratus. Our analyses highlight the significance of gene duplication in social evolution in this termite. Gene duplication associated with caste-biased gene expression was prevalent in the R. speratus genome. The duplicated genes comprised diverse categories related to social functions, including lipocalins (chemical communication), cellulases (wood digestion and social interaction), lysozymes (social immunity), geranylgeranyl diphosphate synthase (social defense), and a novel class of termite lineage–specific genes with unknown functions. Paralogous genes were often observed in tandem in the genome, but their expression patterns were highly variable, exhibiting caste biases. Some of the assayed duplicated genes were expressed in caste-specific organs, such as the accessory glands of the queen ovary and the frontal glands of soldier heads. We propose that gene duplication facilitates social evolution through regulatory diversification, leading to caste-biased expression and subfunctionalization and/or neofunctionalization conferring caste-specialized functions.
Collapse
|
7
|
Zhu J, Iannucci A, Dani FR, Knoll W, Pelosi P. Lipocalins in Arthropod Chemical Communication. Genome Biol Evol 2021; 13:6261314. [PMID: 33930146 PMCID: PMC8214410 DOI: 10.1093/gbe/evab091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Lipocalins represent one of the most successful superfamilies of proteins. Most of them are extracellular carriers for hydrophobic ligands across aqueous media, but other functions have been reported. They are present in most living organisms including bacteria. In animals they have been identified in mammals, molluscs, and arthropods; sequences have also been reported for plants. A subgroup of lipocalins, referred to as odorant-binding proteins (OBPs), mediate chemical communication in mammals by ferrying specific pheromones to the vomeronasal organ. So far, these proteins have not been reported as carriers of semiochemicals in other living organisms; instead chemical communication in arthropods is mediated by other protein families structurally unrelated to lipocalins. A search in the databases has revealed extensive duplication and differentiation of lipocalin genes in some species of insects, crustaceans, and chelicerates. Their large numbers, ranging from a handful to few dozens in the same species, their wide divergence, both within and between species, and their expression in chemosensory organs suggest that such expansion may have occurred under environmental pressure, thus supporting the hypothesis that lipocalins may be involved in chemical communication in arthropods.
Collapse
Affiliation(s)
- Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria.,Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Alessio Iannucci
- Departement of Biology, University of Firenze, Sesto Fiorentino, Italy
| | | | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| | - Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| |
Collapse
|
8
|
Miura T, Maekawa K. The making of the defensive caste: Physiology, development, and evolution of the soldier differentiation in termites. Evol Dev 2020; 22:425-437. [PMID: 32291940 DOI: 10.1111/ede.12335] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/11/2020] [Accepted: 03/08/2020] [Indexed: 12/29/2022]
Abstract
Termites (Blattodea, Termitoidea, or Isoptera) constitute one of the major lineages of eusocial insects. In termite societies, multiple types of functional individuals, that is, castes, perform divisions of labors to coordinate social behaviors. Among other castes, the soldier caste is distinctive since it is sterile and exclusively specialized into defensive behavior with largely modified morphological features. Therefore, many of the previous studies have been focused on soldiers, in terms of ecology, behavior, and evolution as well as developmental and physiological mechanisms. This article overviews the accumulation of studies especially focusing on the developmental and physiological mechanisms underlying the soldier differentiation in termites. Furthermore, the evolutionary trajectories that have led the acquisition of soldier caste and have diversified the soldier characteristics in association with the social evolution are discussed.
Collapse
Affiliation(s)
- Toru Miura
- Department of Biological Sciences, Misaki Marine Biological Station, School of Science, The University of Tokyo, Japan
| | - Kiyoto Maekawa
- Department of Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
9
|
Methoprene-Induced Genes in Workers of Formosan Subterranean Termites ( Coptotermes formosanus Shiraki). INSECTS 2020; 11:insects11020071. [PMID: 31973177 PMCID: PMC7074503 DOI: 10.3390/insects11020071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 11/30/2022]
Abstract
Termites have a distinct polyphenism controlled by concise hormonal and molecular mechanisms. Workers undergo double molts to transform into soldiers (worker–presoldier–soldier). Juvenile hormone analogs, such as methoprene, can induce workers to transform into presoldiers. However, the molecular mechanism underlying the worker-to-presoldier transformation in Coptotermes formosanus Shiraki is still not clear. We sequenced the transcriptome of workers four days after they had fed on methoprene-treated filter paper and control group workers, which fed on acetone-treated filter paper. The transcriptome of C. formosanus was assembled using the de novo assembly method. Expression levels of unigenes in the methoprene-treated group and the control group were compared. The differentially expressed genes were further analyzed by Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Tetrapyrrole binding, oxidoreductase activity, and metal ion binding were the only three enriched GO terms. Juvenile hormone synthesis was the first ranked enriched pathway. Carbohydrate, amino acid, and lipid metabolism pathways were also enriched. These three pathways may be related to fat body development, which is critical for presoldier formation. Our results have demonstrated the significance of JH synthesis pathways, and pathways related to fat body development in the artificial induction of presoldiers.
Collapse
|
10
|
Suzuki R, Yaguchi H, Maekawa K. Histone modifying genes are involved in the molting period during soldier differentiation in Zootermopsis nevadensis. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103892. [PMID: 31170409 DOI: 10.1016/j.jinsphys.2019.103892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/05/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Caste differentiation in eusocial insects is an outstanding example of phenotypic plasticity. Recent studies indicate that epigenetic regulation, including DNA methylation and histone modification, play a role in the morphological and behavioral polyphenism observed in the caste differentiation of hymenopteran insects. The role of epigenetic regulation in termite caste differentiation, however, is still obscure. In this study, we performed a functional analysis of epigenetic-related genes during soldier differentiation in Zootermopsis nevadensis, for which the entire genome sequence is available. In an incipient colony of this species, the oldest 3rd instar larva (No. 1 larva) always differentiates into a presoldier (intermediate stage of soldier), and the next-oldest 3rd instar larva (No. 2 larva) molts into a 4th instar (which functions as a worker). First, we detected seven epigenetic-related genes with significantly increased expression levels in the soldier-destined No. 1 larvae using RNA-seq data. Second, RNA interference (RNAi) of these seven genes was performed in the No. 1 larvae. RNAi of three histone modifying genes extended the presoldier molting period. Furthermore, these RNAi treatments reduced the expression levels of genes involved in juvenile hormone (JH) synthesis, binding and signaling. These results indicate that epigenetic-related genes do not directly affect termite soldier differentiation; nonetheless, some histone modifying genes have an effect on molting periods, possibly due to the regulation of JH action during soldier differentiation.
Collapse
Affiliation(s)
- Ryutaro Suzuki
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Hajime Yaguchi
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan; Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Japan
| | - Kiyoto Maekawa
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan.
| |
Collapse
|
11
|
Yaguchi H, Suzuki R, Matsunami M, Shigenobu S, Maekawa K. Transcriptomic changes during caste development through social interactions in the termite Zootermopsis nevadensis. Ecol Evol 2019; 9:3446-3456. [PMID: 30962904 PMCID: PMC6434549 DOI: 10.1002/ece3.4976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
One of the most striking examples of phenotypic plasticity is the different phenotypes (i.e., castes) within a same nest of social insects. Castes usually derive from a single genotype initially by receiving social cues among individuals during development. Specific gene expression changes may be involved in caste differentiation, and thus, the regulatory mechanism of these changes should be clarified in order to understand social maintenance and evolution. The damp-wood termite Zootermopsis nevadensis is one of the most important model termite species, due to not only the availability of genomic, transcriptomic, and epigenomic information but also evidence that soldier- and worker-destined individuals can be identified in natural conditions. Given that the nutritional intakes via social interactions are crucial for caste differentiation in this species, there is a possibility that transcriptomic changes are influenced by the nutritional difference among these individuals. Here, whole body RNA-seq analysis of 3rd-instar larvae with biological replications and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted. We found the drastic expression differences during caste developments between soldier- and worker-destined individuals. The results indicated that there are several key signaling pathways responsible for caste formations, which are involved in developments and social interactions. Particularly, the nutritional sensitive signaling was upregulated in soldier-destined individuals, while some metabolic pathways were identified in worker-destined individuals. These bioinformatic data obtained should be utilized to examine the molecular mechanisms of caste determination in social insects.
Collapse
Affiliation(s)
- Hajime Yaguchi
- Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
- Tropical Biosphere Research CenterUniversity of the RyukyusNishiharaJapan
| | - Ryutaro Suzuki
- Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
| | | | - Shuji Shigenobu
- Functional Genomics FacilityNational Institute for Basic BiologyOkazakiJapan
| | - Kiyoto Maekawa
- Graduate School of Science and EngineeringUniversity of ToyamaToyamaJapan
| |
Collapse
|