1
|
Van Stan JT, Allen ST, Aubrey DP, Berry ZC, Biddick M, Coenders-Gerrits MAMJ, Giordani P, Gotsch SG, Gutmann ED, Kuzyakov Y, Magyar D, Mella VSA, Mueller KE, Ponette-González AG, Porada P, Rosenfeld CE, Simmons J, Sridhar KR, Stubbins A, Swanson T. Shower thoughts: why scientists should spend more time in the rain. Bioscience 2023; 73:441-452. [PMID: 37397836 PMCID: PMC10308363 DOI: 10.1093/biosci/biad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 07/04/2023] Open
Abstract
Stormwater is a vital resource and dynamic driver of terrestrial ecosystem processes. However, processes controlling interactions during and shortly after storms are often poorly seen and poorly sensed when direct observations are substituted with technological ones. We discuss how human observations complement technological ones and the benefits of scientists spending more time in the storm. Human observation can reveal ephemeral storm-related phenomena such as biogeochemical hot moments, organismal responses, and sedimentary processes that can then be explored in greater resolution using sensors and virtual experiments. Storm-related phenomena trigger lasting, oversized impacts on hydrologic and biogeochemical processes, organismal traits or functions, and ecosystem services at all scales. We provide examples of phenomena in forests, across disciplines and scales, that have been overlooked in past research to inspire mindful, holistic observation of ecosystems during storms. We conclude that technological observations alone are insufficient to trace the process complexity and unpredictability of fleeting biogeochemical or ecological events without the shower thoughts produced by scientists' human sensory and cognitive systems during storms.
Collapse
Affiliation(s)
| | - Scott T Allen
- Department of Natural Resources and Environmental Science at the University of Nevada-Reno, Reno, Nevada, United States
| | - Douglas P Aubrey
- Savannah River Ecology Lab and with the Warnell School of Forestry at the University of Georgia, Athens, Georgia, United States
| | - Z Carter Berry
- Department of Biology at Wake Forest University, Winston-Salem, North Carolina, United States
| | - Matthew Biddick
- Terrestrial Ecology Research Group at the Technical University of Munich, Freising, Germany
| | | | - Paolo Giordani
- Dipartimento di Farmacia at the University of Genoa, Genoa, Italy
| | - Sybil G Gotsch
- Department of Forestry and Natural Resources at the University of Kentucky, Lexington, Kentucky, United States
| | - Ethan D Gutmann
- Research Applications Laboratory, at the National Center for Atmospheric Research, Boulder, Colorado, United States
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Systems, Agricultural Soil Science, at Georg-August-Universität, Göttingen, Germany
- Peoples Friendship University of Russia, Moscow, Russia
| | - Donát Magyar
- National Public Health Center, Budapest, Hungary
| | - Valentina S A Mella
- Sydney School of Veterinary Science, at the University of Sydney, Sydney, New South Wales, Australia
| | - Kevin E Mueller
- Department of Biological, Geological, and Environmental Sciences at Cleveland State University, Cleveland, Ohio, United States
| | - Alexandra G Ponette-González
- Department of City and Metropolitan Planning and with the Natural History Museum of Utah at the University of Utah, Salt Lake City, Utah, United States
| | - Philipp Porada
- Department of Biology at Universität Hamburg, Hamburg, Germany
| | - Carla E Rosenfeld
- Department of Minerals and Earth Sciences at the Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, United States
| | - Jack Simmons
- Department of Philosophy and Religious Studies at Georgia Southern University, Statesboro, Georgia, United States
| | - Kandikere R Sridhar
- Department of Biosciences at Mangalore University, Konaje, Mangaluru, Karnataka, India
| | - Aron Stubbins
- Departments of Marine and Environmental Science, Civil and Environmental Engineering, and Chemistry and Chemical Biology at Northeastern University, Boston, Massachusetts, United States
| | | |
Collapse
|
2
|
Burns KC. On the selective advantage of coloniality in staghorn ferns ( Platycerium bifurcatum, Polypodiaceae). PLANT SIGNALING & BEHAVIOR 2021; 16:1961063. [PMID: 34338155 PMCID: PMC8525959 DOI: 10.1080/15592324.2021.1961063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The staghorn fern (Platycerium bifurcatum, Polypodiaceae) is an epiphyte from Australasia that displays many life history characteristics commonly associated with eusocial animals. Here, I hypothesize about the selective advantage of living in cooperative groups by comparing the morphological characteristics of colonies to their solitary congeners.
Collapse
Affiliation(s)
- Kevin C. Burns
- Te Kura Mātauranga Koiora, School of Biological Sciences, Te Herenga Waka, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
3
|
Biddick M, Hutton I, Burns KC. An alternative water transport system in land plants. Proc Biol Sci 2018; 285:rspb.2018.0995. [PMID: 30068676 DOI: 10.1098/rspb.2018.0995] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/09/2018] [Indexed: 11/12/2022] Open
Abstract
The evolution of vascular tissue is a key innovation enabling plants to inhabit terrestrial environments. Here, we demonstrate extra-vascular water transport in a giant, prop-rooted monocot from Lord Howe Island. Pandanus forsteri (Pandanaceae) produces gutter-like leaves that capture rainwater, which is then couriered along a network of channels to the tips of aerial roots, where it is stored by absorptive tissue. This passive mechanism of water acquisition, transport and storage is critical to the growth of aerial prop roots that cannot yet attain water via vascular conduction. This species therefore sheds light on the elaborate means by which plants have evolved to attain water.
Collapse
Affiliation(s)
- M Biddick
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - I Hutton
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - K C Burns
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| |
Collapse
|