1
|
Heimeier D, Garland EC, Eichenberger F, Garrigue C, Vella A, Baker CS, Carroll EL. A pan-cetacean MHC amplicon sequencing panel developed and evaluated in combination with genome assemblies. Mol Ecol Resour 2024; 24:e13955. [PMID: 38520161 DOI: 10.1111/1755-0998.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 03/25/2024]
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic gene family that is crucial in immunity, and its diversity can be effectively used as a fitness marker for populations. Despite this, MHC remains poorly characterised in non-model species (e.g., cetaceans: whales, dolphins and porpoises) as high gene copy number variation, especially in the fast-evolving class I region, makes analyses of genomic sequences difficult. To date, only small sections of class I and IIa genes have been used to assess functional diversity in cetacean populations. Here, we undertook a systematic characterisation of the MHC class I and IIa regions in available cetacean genomes. We extracted full-length gene sequences to design pan-cetacean primers that amplified the complete exon 2 from MHC class I and IIa genes in one combined sequencing panel. We validated this panel in 19 cetacean species and described 354 alleles for both classes. Furthermore, we identified likely assembly artefacts for many MHC class I assemblies based on the presence of class I genes in the amplicon data compared to missing genes from genomes. Finally, we investigated MHC diversity using the panel in 25 humpback and 30 southern right whales, including four paternity trios for humpback whales. This revealed copy-number variable class I haplotypes in humpback whales, which is likely a common phenomenon across cetaceans. These MHC alleles will form the basis for a cetacean branch of the Immuno-Polymorphism Database (IPD-MHC), a curated resource intended to aid in the systematic compilation of MHC alleles across several species, to support conservation initiatives.
Collapse
Affiliation(s)
- Dorothea Heimeier
- School of Biological Sciences, University of Auckland-Waipapa Taumata Rau, Auckland, New Zealand
| | - Ellen C Garland
- Sea Mammal Research Unit, School of Biology, University of St. Andrews, Fife, UK
| | - Franca Eichenberger
- Sea Mammal Research Unit, School of Biology, University of St. Andrews, Fife, UK
| | - Claire Garrigue
- UMR ENTROPIE, (IRD, Université de La Réunion, Université de la Nouvelle-Calédonie, IFREMER, CNRS, Laboratoire d'Excellence-CORAIL), Nouméa, New Caledonia
- Opération Cétacés, Nouméa, New Caledonia
| | - Adriana Vella
- Conservation Biology Research Group, Department of Biology, University of Malta, Msida, Malta
| | - C Scott Baker
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Corvallis, Oregon, USA
| | - Emma L Carroll
- School of Biological Sciences, University of Auckland-Waipapa Taumata Rau, Auckland, New Zealand
| |
Collapse
|
2
|
Million KM, Proffit MR, Reese SJ. Response to MHC-based olfactory cues in a mate choice context in two species of darter (Percidae: Etheostoma). Ecol Evol 2024; 14:e11025. [PMID: 38384826 PMCID: PMC10880076 DOI: 10.1002/ece3.11025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 02/23/2024] Open
Abstract
Mate choice is hypothesized to play an important role in maintaining high diversity at major histocompatibility complex (MHC) genes in vertebrates. Many studies have revealed that females across taxa prefer the scent of males with MHC genotypes different to their own. In this study we tested the "opposites-attract" hypothesis in two species of darter with known differences in female criteria used in mate choice: in the fantail darters (a paternal-care species), females prefer males with visual traits related to nest guarding and egg tending, while in rainbow darters (not a paternal-care species) female mate choice criteria are unknown. In dichotomous mate-choice trials, we presented females of both species with the scents of conspecific males with MHC class IIb genotypes that were either similar or dissimilar to that of the focal female. We evaluated the proportion of time each female spent with each male and calculated the average strength of female preference for both species. Female fantail darters demonstrated a preference for the scent of males with similar (rather than dissimilar) MHC genotypes, but this result was not statistically significant. Rainbow darter females showed no preference for the scent of males with similar or dissimilar MHC genotypes. Our results do not support the "opposites-attract" hypothesis in darters.
Collapse
Affiliation(s)
- Kara M. Million
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
| | - Melissa R. Proffit
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
- Present address:
Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Sierra J. Reese
- Department of BiologyIndiana UniversityBloomingtonIndianaUSA
- Present address:
Department of BiologyUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
3
|
Veilleux CC, Dominy NJ, Melin AD. The sensory ecology of primate food perception, revisited. Evol Anthropol 2022; 31:281-301. [PMID: 36519416 DOI: 10.1002/evan.21967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/06/2022] [Accepted: 10/23/2022] [Indexed: 12/23/2022]
Abstract
Twenty years ago, Dominy and colleagues published "The sensory ecology of primate food perception," an impactful review that brought new perspectives to understanding primate foraging adaptations. Their review synthesized information on primate senses and explored how senses informed feeding behavior. Research on primate sensory ecology has seen explosive growth in the last two decades. Here, we revisit this important topic, focusing on the numerous new discoveries and lines of innovative research. We begin by reviewing each of the five traditionally recognized senses involved in foraging: audition, olfaction, vision, touch, and taste. For each sense, we provide an overview of sensory function and comparative ecology, comment on the state of knowledge at the time of the original review, and highlight advancements and lingering gaps in knowledge. Next, we provide an outline for creative, multidisciplinary, and innovative future research programs that we anticipate will generate exciting new discoveries in the next two decades.
Collapse
Affiliation(s)
- Carrie C Veilleux
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Cubaynes S, Brandell EE, Stahler DR, Smith DW, Almberg ES, Schindler S, Wayne RK, Dobson AP, vonHoldt BM, MacNulty DR, Cross PC, Hudson PJ, Coulson T. Disease outbreaks select for mate choice and coat color in wolves. Science 2022; 378:300-303. [PMID: 36264784 DOI: 10.1126/science.abi8745] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We know much about pathogen evolution and the emergence of new disease strains, but less about host resistance and how it is signaled to other individuals and subsequently maintained. The cline in frequency of black-coated wolves (Canis lupus) across North America is hypothesized to result from a relationship with canine distemper virus (CDV) outbreaks. We tested this hypothesis using cross-sectional data from wolf populations across North America that vary in the prevalence of CDV and the allele that makes coats black, longitudinal data from Yellowstone National Park, and modeling. We found that the frequency of CDV outbreaks generates fluctuating selection that results in heterozygote advantage that in turn affects the frequency of the black allele, optimal mating behavior, and black wolf cline across the continent.
Collapse
Affiliation(s)
- Sarah Cubaynes
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, 34090 Montpellier, France
| | - Ellen E Brandell
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Daniel R Stahler
- Yellowstone Center for Resources, Yellowstone National Park, WY 82190, USA
| | - Douglas W Smith
- Yellowstone Center for Resources, Yellowstone National Park, WY 82190, USA
| | - Emily S Almberg
- Wildlife Division, Montana Fish Wildlife & Park, Bozeman, MT 59718, USA
| | - Susanne Schindler
- School of Biological Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.,Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Daniel R MacNulty
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Paul C Cross
- US Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT 59715, USA
| | - Peter J Hudson
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Tim Coulson
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|
5
|
Dewan A. Olfactory signaling via trace amine-associated receptors. Cell Tissue Res 2020; 383:395-407. [PMID: 33237477 DOI: 10.1007/s00441-020-03331-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/28/2020] [Indexed: 01/30/2023]
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors that function as odorant receptors in the main olfactory system of vertebrates. TAARs are monoallelically expressed in primary sensory neurons where they couple to the same transduction cascade as canonical olfactory receptors and are mapped onto glomeruli within a specific region of the olfactory bulb. TAARs have a high affinity for volatile amines, a class of chemicals that are generated during the decomposition of proteins and are ubiquitous physiological metabolites that are found in body fluids. Thus, amines are proposed to play an important role in intra- and interspecific communication such as signaling the sex of the conspecific, the quality of the food source, or even the proximity of a predator. TAARs have a crucial role in the perception of these behaviorally relevant compounds as the genetic deletion of all or even individual olfactory TAARs can alter the behavioral response and reduce the sensitivity to amines. The small size of this receptor family combined with the ethological relevance of their ligands makes the TAARs an attractive model system for probing olfactory perception. This review will summarize the current knowledge on the olfactory TAARs and discuss whether they represent a unique subsystem within the main olfactory system.
Collapse
Affiliation(s)
- Adam Dewan
- Department of Psychology, Florida State University, 1107 W. Call St, Tallahassee, FL, 32306, USA.
| |
Collapse
|
6
|
DeAngelis RS, Hofmann HA. Neural and molecular mechanisms underlying female mate choice decisions in vertebrates. ACTA ACUST UNITED AC 2020; 223:223/17/jeb207324. [PMID: 32895328 DOI: 10.1242/jeb.207324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Female mate choice is a dynamic process that allows individuals to selectively mate with those of the opposite sex that display a preferred set of traits. Because in many species males compete with each other for fertilization opportunities, female mate choice can be a powerful agent of sexual selection, often resulting in highly conspicuous traits in males. Although the evolutionary causes and consequences of the ornamentation and behaviors displayed by males to attract mates have been well studied, embarrassingly little is known about the proximate neural mechanisms through which female choice occurs. In vertebrates, female mate choice is inherently a social behavior, and although much remains to be discovered about this process, recent evidence suggests the neural substrates and circuits underlying other fundamental social behaviors (such as pair bonding, aggression and parental care) are likely similarly recruited during mate choice. Notably, female mate choice is not static, as social and ecological environments can shape the brain and, consequently, behavior in specific ways. In this Review, we discuss how social and/or ecological influences mediate female choice and how this occurs within the brain. We then discuss our current understanding of the neural substrates underlying female mate choice, with a specific focus on those that also play a role in regulating other social behaviors. Finally, we propose several promising avenues for future research by highlighting novel model systems and new methodological approaches, which together will transform our understanding of the causes and consequences of female mate choice.
Collapse
Affiliation(s)
- Ross S DeAngelis
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA .,Institute for Neuroscience, The University of Texas, Austin, TX 78712, USA.,Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| |
Collapse
|
7
|
Biedrzycka A, Konopiński M, Hoffman E, Trujillo A, Zalewski A. Comparing raccoon major histocompatibility complex diversity in native and introduced ranges: Evidence for the importance of functional immune diversity for adaptation and survival in novel environments. Evol Appl 2020; 13:752-767. [PMID: 32211065 PMCID: PMC7086054 DOI: 10.1111/eva.12898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
The adaptive potential of invasive species is related to the genetic diversity of the invader, which is influenced by genetic drift and natural selection. Typically, the genetic diversity of invaders is studied with neutral genetic markers; however, the expectation of reduced diversity has not been consistently supported by empirical studies. Here, we describe and interpret genetic diversity at both neutral microsatellite loci and the immune-related MHC-DRB locus of native and invasive populations of raccoon to better understand of how drift and selection impact patterns of genetic diversity during the invasion process. We found that despite the loss of many MHC (major histocompatibility complex) alleles in comparison with native populations, functional MHC supertypes are preserved in the invasive region. In the native raccoon population, the number of supertypes within individuals was higher than expected under a neutral model. The high level of individual functional divergence may facilitate the adaptation to local conditions in the invasive range. In the invasive populations, we also detected increased population structure at microsatellites compared to the MHC locus, further suggesting that balancing selection is acting on adaptively important regions of the raccoon genome. Finally, we found that alleles known to exhibit resistance to rabies in the native range, Prlo-DRB*4, Prlo-DRB*16 and Prlo-DRB*102, were the most common alleles in the European populations, suggesting directional selection is acting on this locus. Our research shows empirical support for the importance of functional immune diversity for adaptation and survival in novel environments.
Collapse
Affiliation(s)
| | - Maciej Konopiński
- Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| | - Eric Hoffman
- Department of BiologyUniversity of Central FloridaOrlandoFLUSA
| | - Alexa Trujillo
- Department of BiologyUniversity of Central FloridaOrlandoFLUSA
| | - Andrzej Zalewski
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| |
Collapse
|
8
|
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors (GPCRs) that are evolutionarily conserved in vertebrates. The first discovered TAAR1 is mainly expressed in the brain, and is able to detect low abundant trace amines. TAAR1 is also activated by several synthetic compounds and psychostimulant drugs like amphetamine. Activation of TAAR1 by specific agonists can regulate the classical monoaminergic systems in the brain. Further studies have revealed that other TAAR family members are highly expressed in the olfactory system which are termed olfactory TAARs. In vertebrates, olfactory TAARs can specifically recognize volatile or water-soluble amines. Some of these TAAR agonists are produced by decarboxylation of amino acids. In addition, some TAAR agonists are ethological odors that mediate animal innate behaviors. In this study, we provide a comprehensive review of TAAR agonists, including their structures, biosynthesis pathways, and functions.
Collapse
Affiliation(s)
- Zhengrong Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qian Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| |
Collapse
|
9
|
Thavornkanlapachai R, Mills HR, Ottewell K, Dunlop J, Sims C, Morris K, Donaldson F, Kennington WJ. Mixing Genetically and Morphologically Distinct Populations in Translocations: Asymmetrical Introgression in A Newly Established Population of the Boodie ( Bettongia lesueur). Genes (Basel) 2019; 10:E729. [PMID: 31546973 PMCID: PMC6770996 DOI: 10.3390/genes10090729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 11/22/2022] Open
Abstract
The use of multiple source populations provides a way to maximise genetic variation and reduce the impacts of inbreeding depression in newly established translocated populations. However, there is a risk that individuals from different source populations will not interbreed, leading to population structure and smaller effective population sizes than expected. Here, we investigate the genetic consequences of mixing two isolated, morphologically distinct island populations of boodies (Bettongia lesueur) in a translocation to mainland Australia over three generations. Using 18 microsatellite loci and the mitochondrial D-loop region, we monitored the released animals and their offspring between 2010 and 2013. Despite high levels of divergence between the two source populations (FST = 0.42 and ϕST = 0.72), there was clear evidence of interbreeding between animals from different populations. However, interbreeding was non-random, with a significant bias towards crosses between the genetically smaller-sized Barrow Island males and the larger-sized Dorre Island females. This pattern of introgression was opposite to the expectation that male-male competition or female mate choice would favour larger males. This study shows how mixing diverged populations can bolster genetic variation in newly established mammal populations, but the ultimate outcome can be difficult to predict, highlighting the need for continued genetic monitoring to assess the long-term impacts of admixture.
Collapse
Affiliation(s)
- Rujiporn Thavornkanlapachai
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Harriet R Mills
- Centre for Ecosystem Management, School of Science, Edith Cowan University, Joondalup, Western Australia 6027, Australia.
| | - Kym Ottewell
- Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6152, Australia.
| | - Judy Dunlop
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.
- Department of Biodiversity, Conservation and Attractions, PO Box 51, Wanneroo, Western Australia 6946, Australia.
| | - Colleen Sims
- Department of Biodiversity, Conservation and Attractions, PO Box 51, Wanneroo, Western Australia 6946, Australia.
| | - Keith Morris
- Department of Biodiversity, Conservation and Attractions, PO Box 51, Wanneroo, Western Australia 6946, Australia.
| | - Felicity Donaldson
- 360 Environmental, 10 Bermondsey Street, West Leederville, Western Australia 6007, Australia.
| | - W Jason Kennington
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
10
|
Qurkhuli T, Schwensow N, Brändel SD, Tschapka M, Sommer S. Can extreme MHC class I diversity be a feature of a wide geographic range? The example of Seba's short-tailed bat (Carollia perspicillata). Immunogenetics 2019; 71:575-587. [PMID: 31520134 PMCID: PMC7079943 DOI: 10.1007/s00251-019-01128-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
The major histocompatibility complex (MHC) is one of the most diverse genetic regions under pathogen-driven selection because of its central role in antigen binding and immunity. The highest MHC variability, both in terms of the number of individual alleles and gene copies, has so far been found in passerine birds; this is probably attributable to passerine adaptation to both a wide geographic range and a diverse array of habitats. If extraordinary high MHC variation and duplication rates are adaptive features under selection during the evolution of ecologically and taxonomically diverse species, then similarly diverse MHC architectures should be found in bats. Bats are an extremely species-rich mammalian group that is globally widely distributed. Many bat species roost in multitudinous groups and have high contact rates with pathogens, conspecifics, and allospecifics. We have characterized the MHC class I diversity in 116 Panamanian Seba's short-tailed bats (Carollia perspicillata), a widely distributed, generalist, neotropical species. We have detected a remarkable individual and population-level diversity of MHC class I genes, with between seven and 22 alleles and a unique genotype in each individual. This diversity is comparable with that reported in passerine birds and, in both taxonomic groups, further variability has evolved through length polymorphisms. Our findings support the hypothesis that, for species with a geographically broader range, high MHC class I variability is particularly adaptive. Investigation of the details of the underlying adaptive processes and the role of the high MHC diversity in pathogen resistance are important next steps for a better understanding of the role of bats in viral evolution and as carriers of several deadly zoonotic viruses.
Collapse
Affiliation(s)
- Tamar Qurkhuli
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Nina Schwensow
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Stefan Dominik Brändel
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panamá, República de Panamá
| | - Marco Tschapka
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panamá, República de Panamá
| | - Simone Sommer
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany.
| |
Collapse
|