1
|
Pollo P, Lagisz M, Yang Y, Culina A, Nakagawa S. Synthesis of sexual selection: a systematic map of meta-analyses with bibliometric analysis. Biol Rev Camb Philos Soc 2024; 99:2134-2175. [PMID: 38982618 DOI: 10.1111/brv.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Sexual selection has been a popular subject within evolutionary biology because of its central role in explaining odd and counterintuitive traits observed in nature. Consequently, the literature associated with this field of study became vast. Meta-analytical studies attempting to draw inferences from this literature have now accumulated, varying in scope and quality, thus calling for a synthesis of these syntheses. We conducted a systematic literature search to create a systematic map with a report appraisal of meta-analyses on topics associated with sexual selection, aiming to identify the conceptual and methodological gaps in this secondary literature. We also conducted bibliometric analyses to explore whether these gaps are associated with the gender and origin of the authors of these meta-analyses. We included 152 meta-analytical studies in our systematic map. We found that most meta-analyses focused on males and on certain animal groups (e.g. birds), indicating severe sex and taxonomic biases. The topics in these studies varied greatly, from proximate (e.g. relationship of ornaments with other traits) to ultimate questions (e.g. formal estimates of sexual selection strength), although the former were more common. We also observed several common methodological issues in these studies, such as lack of detailed information regarding searches, screening, and analyses, which ultimately impairs the reliability of many of these meta-analyses. In addition, most of the meta-analyses' authors were men affiliated to institutions from developed countries, pointing to both gender and geographical authorship biases. Most importantly, we found that certain authorship aspects were associated with conceptual and methodological issues in meta-analytical studies. Many of our findings might simply reflect patterns in the current state of the primary literature and academia, suggesting that our study can serve as an indicator of issues within the field of sexual selection at large. Based on our findings, we provide both conceptual and analytical recommendations to improve future studies in the field of sexual selection.
Collapse
Affiliation(s)
- Pietro Pollo
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Yefeng Yang
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Antica Culina
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, 10000, Croatia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Pärssinen V, Simmons LW, Kvarnemo C. Mating competition among females: testing the distinction between natural and sexual selection in an insect. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240191. [PMID: 38586425 PMCID: PMC10999239 DOI: 10.1098/rsos.240191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 04/09/2024]
Abstract
In species where females compete for mates, the male often provides the female with resources in addition to gametes. A recently suggested definition of sexual selection proposed that if females only benefit from additional resources that come with each mating and not additional gametes, female intrasexual competition for mating opportunities would result in natural selection rather than sexual selection. The nuptial gift-giving bushcricket Kawanaphila nartee has dynamic sex roles and has been a textbook example of sexual selection acting on females via mating competition. We investigated whether females of this species gain fitness benefits from nuptial gifts, additional ejaculates or both by controlling the number of matings and whether the female was allowed to consume the nutritious gift (spermatophylax) at mating. We found that egg production per day of life increased with the number of additional matings, both with and without spermatophylax consumption, but consuming the spermatophylax had an additional positive effect on the number of eggs. These effects were particularly strong in females with shorter lifespans. We discuss how the recently suggested definition of sexual selection applies to nuptial-feeding insects and conclude that both natural and sexual selections influence mating competition in K. nartee females.
Collapse
Affiliation(s)
- Varpu Pärssinen
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg40530, Sweden
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley6009, Australia
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg40530, Sweden
| |
Collapse
|
3
|
Subramaniam B, Bartlett M. Re-imagining Reproduction: The Queer Possibilities of Plants. Integr Comp Biol 2023; 63:946-959. [PMID: 37024265 PMCID: PMC10563651 DOI: 10.1093/icb/icad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
How did plant sexuality come to so hauntingly resemble human sexual formations? How did plant biology come to theorize plant sexuality with binary formulations of male/female, sex/gender, sperm/egg, active males and passive females-all of which resemble western categories of sex, gender, and sexuality? Tracing the extant language of sex and sexuality in plant reproductive biology, we examine the histories of science to explore how plant reproductive biology emerged historically from formations of colonial racial and sexual politics and how evolutionary biology was premised on the imaginations of racialized heterosexual romance. Drawing on key examples, the paper aims to (un)read plant sexuality and sexual anatomy and bodies to imagine new possibilities for plant sex, sexualities, and their relationalities. In short, plant sex and sexuality are not two different objects of inquiry but are intimately related-it is their inter-relation that is the focus of this essay. One of the key impulses from the humanities that we bring to this essay is a careful consideration of how terms and terminologies are related to each other historically and culturally. In anthropomorphizing plants, if plant sexuality were modeled on human sexual formations, might a re-imagination of plant sexuality open new vistas for the biological sciences? While our definitions of plant sexuality will always be informed by contemporary society and culture, interrogating the histories of our theories and terminologies can help us reimagine a biology that allows for new and more accurate understandings of plants, plant biology, and the evolution of reproduction.
Collapse
Affiliation(s)
- Banu Subramaniam
- Department of Women, Gender, Sexuality Studies, UMass Amherst, 130 Hicks Way, Amherst, MA 01003, USA
| | - Madelaine Bartlett
- Department of Biology, UMass Amherst, 611 N Pleasant St, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Barbot E, Dufaÿ M, Tonnabel J, Godé C, De Cauwer I. On the function of flower number: disentangling fertility from pollinator-mediated selection. Proc Biol Sci 2022; 289:20221987. [PMID: 36448279 PMCID: PMC9709571 DOI: 10.1098/rspb.2022.1987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
In animal-pollinated angiosperms, the 'male-function' hypothesis claims that male reproductive success (RS) should benefit from large floral displays, through pollinator attraction, while female RS is expected to be mainly limited by resource availability. As appealing as this theory might be, studies comparing selection strength on flower number in both sexes rarely document the expected asymmetry. This discrepancy could arise because flower number impacts both pollinator attraction and overall gamete number. In this study, we artificially manipulate floral displays to disentangle the fertility versus pollinator attraction components of selection, both in terms of mating and RS. In females, flower number was under strong fertility selection, as predicted in the absence of pollen limitation. By contrast, in males, flower number was mainly under sexual selection, which in turn increased male RS. However, these selection patterns were not different in males with artificially increased floral displays. This suggests that sexual selection acting on flower number in males does not occur because flower number increases pollinator attraction, but rather because more pollen is available to disperse on more mates. Our study illustrates the power of disentangling various components of selection with potentially sex-specific effects for understanding the evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Estelle Barbot
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
- ISEM, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Mathilde Dufaÿ
- CEFE, Univ. Montpellier, CNRS, Univ. Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Jeanne Tonnabel
- ISEM, Univ. Montpellier, CNRS, IRD, Montpellier, France
- CEFE, Univ. Montpellier, CNRS, Univ. Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
5
|
Ah-King M. The history of sexual selection research provides insights as to why females are still understudied. Nat Commun 2022; 13:6976. [PMID: 36379954 PMCID: PMC9666445 DOI: 10.1038/s41467-022-34770-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
While it is widely acknowledged that Darwin's descriptions of females were gender-biased, gender bias in current sexual selection research is less recognized. An examination of the history of sexual selection research shows prevalent male precedence-that research starts with male-centered investigations or explanations and thereafter includes female-centered equivalents. In comparison, the incidence of female precedence is low. Furthermore, a comparison between the volume of publications focusing on sexual selection in males versus in females shows that the former far outnumber the latter. This bias is not only a historical pattern; sexual selection theory and research are still male-centered-due to conspicuous traits, practical obstacles, and continued gender bias. Even the way sexual selection is commonly defined contributes to this bias. This history provides an illustrative example by which we can learn to recognize biases and identify gaps in knowledge. I conclude with a call for the scientific community to interrogate its own biases and suggest strategies for alleviating biases in this field and beyond.
Collapse
Affiliation(s)
- Malin Ah-King
- Department of Ethnology, History of Religions and Gender Studies, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
6
|
Pollo P, Kasumovic MM. Let's talk about sex roles: what affects perceptions of sex differences in animal behaviour? Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
OUP accepted manuscript. Hum Reprod Update 2022; 28:457-479. [DOI: 10.1093/humupd/dmac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/17/2022] [Indexed: 11/12/2022] Open
|
8
|
Shuker DM, Kvarnemo C. The definition of sexual selection: a response to comments on Shuker and Kvarnemo. Behav Ecol 2021; 32:801-802. [PMID: 34690543 PMCID: PMC8528490 DOI: 10.1093/beheco/arab085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- David M Shuker
- School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews KY16 9TH, UK
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Shuker DM, Kvarnemo C. The definition of sexual selection. Behav Ecol 2021; 32:781-794. [PMID: 34695172 PMCID: PMC8528540 DOI: 10.1093/beheco/arab055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Sexual selection is a key component of evolutionary biology. However, from the very formulation of sexual selection by Darwin, the nature and extent of sexual selection have been controversial. Recently, such controversy has led back to the fundamental question of just what sexual selection is. This has included how we incorporate female-female reproductive competition into sexual or natural selection. In this review, we do four things. First, we examine what we want a definition to do. Second, we define sexual selection: sexual selection is any selection that arises from fitness differences associated with nonrandom success in the competition for access to gametes for fertilization. An important outcome of this is that as mates often also offer access to resources, when those resources are the targets of the competition, rather than their gametes, the process should be considered natural rather than sexual selection. We believe this definition encapsulates both much of Darwin's original thinking about sexual selection, and much of how contemporary biologists use the concept of sexual selection. Third, we address alternative definitions, focusing in some detail on the role of female reproductive competition. Fourth, we challenge our definition with a number of scenarios, for instance where natural and sexual selection may align (as in some forms of endurance rivalry), or where differential allocation means teasing apart how fecundity and access to gametes influence fitness. In conclusion, we emphasize that whilst the ecological realities of sexual selection are likely to be complex, the definition of sexual selection is rather simple.
Collapse
Affiliation(s)
- David M Shuker
- School of Biology, Harold Mitchell Building, University of St. Andrews, St. Andrews, UK
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE, Sweden
| |
Collapse
|
10
|
Bull L. On the Emergence of Intersexual Selection: Arbitrary Trait Preference Improves Female-Male Coevolution. ARTIFICIAL LIFE 2021; 27:15-25. [PMID: 34529754 DOI: 10.1162/artl_a_00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sexual selection is a fundamental aspect of evolution for all eukaryotic organisms with mating types. This article suggests intersexual selection is best viewed as a mechanism with which to compensate for the unavoidable dynamics of coevolution between sexes that emerge with isogamy. Using the NKCS model it is shown by varying fitness landscape size, ruggedness, and connectedness, how a purely arbitrary trait preference sexual selection mechanism proves beneficial with high dependence between the sexes. This is found to be the case whether one or both sexes exploit such intersexual selection.
Collapse
Affiliation(s)
- Larry Bull
- University of the West of England, Department of Computer Science & Creative Technologies.
| |
Collapse
|
11
|
Higham JP, Kimock CM, Mandalaywala TM, Heistermann M, Cascio J, Petersdorf M, Winters S, Allen WL, Dubuc C. Female ornaments: is red skin color attractive to males and related to condition in rhesus macaques? Behav Ecol 2021; 32:236-247. [PMID: 33814977 PMCID: PMC7995641 DOI: 10.1093/beheco/araa121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 11/14/2022] Open
Abstract
Sexual selection produces extravagant male traits, such as colorful ornaments, via female mate choice. More rarely, in mating systems in which males allocate mating effort between multiple females, female ornaments may evolve via male mate choice. Females of many anthropoid primates exhibit ornaments that indicate intraindividual cyclical fertility, but which have also been proposed to function as interindividual quality signals. Rhesus macaque females are one such species, exhibiting cyclical facial color variation that indicates ovulatory status, but in which the function of interindividual variation is unknown. We collected digital images of the faces of 32 rhesus macaque adult females. We assessed mating rates, and consortship by males, according to female face coloration. We also assessed whether female coloration was linked to physical (skinfold fat, body mass index) or physiological (fecal glucocorticoid metabolite [fGCM], urinary C-peptide concentrations) condition. We found that redder-faced females were mated more frequently, and consorted for longer periods by top-ranked males. Redder females had higher fGCM concentrations, perhaps related to their increased mating activity and consequent energy mobilization, and blood flow. Prior analyses have shown that female facial redness is a heritable trait, and that redder-faced females have higher annual fecundity, while other evidence suggests that color expression is likely to be a signal rather than a cue. Collectively, the available evidence suggests that female coloration has evolved at least in part via male mate choice. Its evolution as a sexually selected ornament attractive to males is probably attributable to the high female reproductive synchrony found in this species.
Collapse
Affiliation(s)
- James P Higham
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Clare M Kimock
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Tara M Mandalaywala
- Department of Psychological and Brain Sciences, 135 Hicks Way/Tobin Hall, University of Massachusetts Amherst, Amherst, MA, USA
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Research Center (DPZ), Kellnerweg, Göttingen, Germany
| | - Julie Cascio
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Megan Petersdorf
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Sandra Winters
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - William L Allen
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Constance Dubuc
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
12
|
Rodríguez RL. Back to the Basics of Mate Choice: The Evolutionary Importance of Darwin’s Sense of Beauty. THE QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/711781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Madjidian JA, Smith HG, Andersson S, Lankinen Å. Direct and indirect selection on mate choice during pollen competition: Effects of male and female sexual traits on offspring performance following two-donor crosses. J Evol Biol 2020; 33:1452-1467. [PMID: 33463845 PMCID: PMC7589368 DOI: 10.1111/jeb.13684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
Mate choice in plants is poorly understood, in particular its indirect genetic benefits, but also the direct benefits of avoiding harmful matings. In the herb Collinsia heterophylla, delayed stigma receptivity has been suggested to enhance pollen competition, potentially functioning as a female mate choice trait. Previous studies show that this trait can mitigate the cost of early fertilization caused by pollen, thus providing a direct benefit. We performed two-donor pollinations during successive floral stages to assess how this stigma receptivity trait and two pollen traits known to affect siring success influence indirect benefits in terms of offspring performance. We also investigated differential resource allocation by studying the influence of sibling performance in the same capsule. Offspring performance in terms of flower number was mainly affected by parental identities and differential resource allocation. Offspring seed production showed some influence of resource allocation, but was also affected by pollen donor identity and varied positively with late stigma receptivity. However, the effect of late stigma receptivity on offspring seed production was weakened in matings with pollen that advanced stigma receptivity. In conclusion, delayed stigma receptivity may be selected through both direct and indirect fitness effects in C. heterophylla, where pollen-based delay on stigma receptivity might act as a cue for mate choice. However, selection may also be counteracted by antagonistic selection on pollen to advance stigma receptivity. Our results highlight the challenges of studying indirect genetic benefits and other factors that influence mate choice in plants.
Collapse
Affiliation(s)
- Josefin A. Madjidian
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Center for Environmental and Climate ResearchLund UniversityLundSweden
| | - Henrik G. Smith
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Center for Environmental and Climate ResearchLund UniversityLundSweden
| | | | - Åsa Lankinen
- BiodiversityDepartment of BiologyLund UniversityLundSweden
- Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
14
|
Abstract
AbstractMany organisms studied by evolutionary biologists have different sexes, and the evolution of separate sexes and sexual dimorphisms in morphology and behaviour are central questions in evolutionary biology. Considering scientists to be embedded in a social and cultural context, we are also subjected to the risk of gender-biased assumptions and stereotypical thinking to appear when working on topics related to sexual reproduction and sexual dimorphism. Here we present, for continued discussion, a set of good-practice guidelines aimed at (1) helping to improve researchers’ awareness of gender-biased assumptions underlying language use, generalizations, and interpretation of observations; and (2) providing recommendations to increase transparency, avoid problematic terminology, and improve study designs.
Collapse
|
15
|
Carvajal-Rodríguez A. Multi-model inference of non-random mating from an information theoretic approach. Theor Popul Biol 2019; 131:38-53. [PMID: 31756362 DOI: 10.1016/j.tpb.2019.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/17/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
Non-random mating has a significant impact on the evolution of organisms. Here, I developed a modelling framework for discrete traits (with any number of phenotypes) to explore different models connecting the non-random mating causes (mate competition and/or mate choice) and their consequences (sexual selection and/or assortative mating). I derived the formulaefor the maximum likelihood estimates of each model and used information criteria to perform multi-model inference. Simulation results showed a good performance of both model selection and parameter estimation. The methodology was applied to ecotypes data of the marine gastropod Littorina saxatilis from Galicia (Spain), to show that the mating pattern is better described by models with two parameters that involve both mate choice and competition, generating positive assortative mating plus female sexual selection. As far as I know, this is the first standardized methodology for model selection and multi-model inference of mating parameters for discrete traits. The advantages of this framework include the ability of setting up models from which the parameters connect causes, as mate competition and mate choice, with their outcome in the form of data patterns of sexual selection and assortative mating. For some models, the parameters may have a double effect i.e. they produce sexual selection and assortative mating, while for others there are separated parameters for one kind of pattern or another. From an empirical point of view, it is much easier to study patterns than processes and, for this reason, the causal mechanisms of sexual selection are not so well known as the patterns they produce. The goal of the present work is to propose a new tool that helps to distinguish among different alternative processes behind the observed mating pattern. The full methodology was implemented in a software called InfoMating (available at http://acraaj.webs6.uvigo.es/InfoMating/Infomating.htm).
Collapse
Affiliation(s)
- A Carvajal-Rodríguez
- Departamento de Bioquímica, Genética e Inmunología. Universidad de Vigo, 36310 Vigo, Spain.
| |
Collapse
|