1
|
Marlétaz F, de la Calle-Mustienes E, Acemel RD, Paliou C, Naranjo S, Martínez-García PM, Cases I, Sleight VA, Hirschberger C, Marcet-Houben M, Navon D, Andrescavage A, Skvortsova K, Duckett PE, González-Rajal Á, Bogdanovic O, Gibcus JH, Yang L, Gallardo-Fuentes L, Sospedra I, Lopez-Rios J, Darbellay F, Visel A, Dekker J, Shubin N, Gabaldón T, Nakamura T, Tena JJ, Lupiáñez DG, Rokhsar DS, Gómez-Skarmeta JL. The little skate genome and the evolutionary emergence of wing-like fins. Nature 2023; 616:495-503. [PMID: 37046085 PMCID: PMC10115646 DOI: 10.1038/s41586-023-05868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/21/2023] [Indexed: 04/14/2023]
Abstract
Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| | - Elisa de la Calle-Mustienes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
- Epigenetics and Sex Development Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Christina Paliou
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Victoria A Sleight
- Department of Zoology, University of Cambridge, Cambridge, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Dina Navon
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | - Ali Andrescavage
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | - Ksenia Skvortsova
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Edward Duckett
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Álvaro González-Rajal
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Johan H Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Ismael Sospedra
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Neil Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA.
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain.
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| |
Collapse
|
2
|
Gillis JA, Bennett S, Criswell KE, Rees J, Sleight VA, Hirschberger C, Calzarette D, Kerr S, Dasen J. Big insight from the little skate: Leucoraja erinacea as a developmental model system. Curr Top Dev Biol 2022; 147:595-630. [PMID: 35337464 DOI: 10.1016/bs.ctdb.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The vast majority of extant vertebrate diversity lies within the bony and cartilaginous fish lineages of jawed vertebrates. There is a long history of elegant experimental investigation of development in bony vertebrate model systems (e.g., mouse, chick, frog and zebrafish). However, studies on the development of cartilaginous fishes (sharks, skates and rays) have, until recently, been largely descriptive, owing to the challenges of embryonic manipulation and culture in this group. This, in turn, has hindered understanding of the evolution of developmental mechanisms within cartilaginous fishes and, more broadly, within jawed vertebrates. The little skate (Leucoraja erinacea) is an oviparous cartilaginous fish and has emerged as a powerful and experimentally tractable developmental model system. Here, we discuss the collection, husbandry and management of little skate brood stock and eggs, and we present an overview of key stages of skate embryonic development. We also discuss methods for the manipulation and culture of skate embryos and illustrate the range of tools and approaches available for studying this system. Finally, we summarize a selection of recent studies on skate development that highlight the utility of this system for inferring ancestral anatomical and developmental conditions for jawed vertebrates, as well as unique aspects of cartilaginous fish biology.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; Marine Biological Laboratory, Woods Hole, MA, United States.
| | - Scott Bennett
- Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Jenaid Rees
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Dan Calzarette
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Sarah Kerr
- Wesleyan University, Middletown, CT, United States
| | - Jeremy Dasen
- Department of Neuroscience and Physiology, NYU School of Medicine, Neuroscience Institute, NY, United States
| |
Collapse
|
3
|
Kusakabe R, Tanaka M, Kuratani S. Developmental Evolution of Hypaxial Muscles: Insights From Cyclostomes and Chondrichthyans. Front Cell Dev Biol 2021; 9:760366. [PMID: 34650989 PMCID: PMC8505881 DOI: 10.3389/fcell.2021.760366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Jawed vertebrates possess two distinct groups of muscles in the trunk (epaxial and hypaxial muscles) primarily defined by the pattern of motor innervation from the spinal cord. Of these, the hypaxial group includes muscles with highly differentiated morphology and function, such as the muscles associated with paired limbs, shoulder girdles and tongue/infrahyoid (hypobranchial) muscles. Here we summarize the latest findings on the evolutionary mechanisms underlying the morphological variety of hypaxial musculature, with special reference to the molecular insights obtained from several living species that diverged early in vertebrate evolution. Lampreys, extant jawless vertebrates, lack many of derived traits characteristic of the gnathostomes, such as jaws, paired fins and epaxial/hypaxial distinction of the trunk skeletal musculatures. However, these animals possess the primitive form of the hypobranchial muscle. Of the gnathostomes, the elasmobranchs exhibit developmental mode of hypaxial muscles that is not identical to that of other gnathostomes in that the muscle primordia relocate as coherent cell aggregates. Comparison of expression of developmental genes, including Lbx genes, has delineated the temporal order of differentiation of various skeletal muscles, such as the hypobranchial, posterior pharyngeal and cucullaris (trapezius) muscles. We have proposed that the sequential addition of distal muscles, associated with expression of duplicated Lbx genes, promoted the elaboration of skeletal musculature. These analyses have revealed the framework of an evolutionary pathway that gave rise to the morphological complexity and diversity of vertebrate body patterns.
Collapse
Affiliation(s)
- Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Masako Tanaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| |
Collapse
|
4
|
Mika K, Okamoto AS, Shubin NH, Mark Welch DB. Bacterial community dynamics during embryonic development of the little skate (Leucoraja erinacea). Anim Microbiome 2021; 3:72. [PMID: 34645528 PMCID: PMC8513177 DOI: 10.1186/s42523-021-00136-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023] Open
Abstract
Background Microbial transmission from parent to offspring is hypothesized to be widespread in vertebrates. However, evidence for this is limited as many evolutionarily important clades remain unexamined. There is currently no data on the microbiota associated with any Chondrichthyan species during embryonic development, despite the global distribution, ecological importance, and phylogenetic position of this clade. In this study, we take the first steps towards filling this gap by investigating the microbiota associated with embryonic development in the little skate, Leucoraja erinacea, a common North Atlantic species and popular system for chondrichthyan biology. Methods To assess the potential for bacterial transmission in an oviparous chondrichthyan, we used 16S rRNA amplicon sequencing to characterize the microbial communities associated with the skin, gill, and egg capsule of the little skate, at six points during ontogeny. Community composition was analyzed using the QIIME2 pipeline and microbial continuity between stages was tracked using FEAST. Results We identify site-specific and stage-specific microbiota dominated by the bacterial phyla Proteobacteria and Bacteroidetes. This composition is similar to, but distinct from, that of previously published data on the adult microbiota of other chondrichthyan species. Our data reveal that the skate egg capsule harbors a highly diverse bacterial community–particularly on the internal surface of the capsule–and facilitates intergenerational microbial transfer to the offspring. Embryonic skin and external gill tissues host similar bacterial communities; the skin and gill communities later diverge as the internal gills and skin denticles develop. Conclusions Our study is the first exploration of the chondrichthyan microbiota throughout ontogeny and provides the first evidence of vertical transmission in this group. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00136-x.
Collapse
Affiliation(s)
- Katelyn Mika
- Organismal Biology and Anatomy, University of Chicago, 900 E 57th St, Culver Hall 108 OBA, Chicago, IL, 60637-1428, USA. .,Genetic Medicine, University of Chicago, Chicago, USA.
| | | | - Neil H Shubin
- Organismal Biology and Anatomy, University of Chicago, 900 E 57th St, Culver Hall 108 OBA, Chicago, IL, 60637-1428, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
5
|
Wimberly AN, Slater GJ, Granatosky MC. Evolutionary history of quadrupedal walking gaits shows mammalian release from locomotor constraint. Proc Biol Sci 2021; 288:20210937. [PMID: 34403640 PMCID: PMC8370795 DOI: 10.1098/rspb.2021.0937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2021] [Indexed: 02/04/2023] Open
Abstract
Vertebrates employ an impressive range of strategies for coordinating their limb movements while walking. Although this gait variation has been quantified and hypotheses for its origins tested in select tetrapod lineages, a comprehensive understanding of gait evolution in a macroevolutionary context is currently lacking. We used freely available internet videos to nearly double the number of species with quantitative gait data, and used phylogenetic comparative methods to test key hypotheses about symmetrical gait origin and evolution. We find strong support for an ancestral lateral-sequence diagonal-couplet gait in quadrupedal gnathostomes, and this mode is remarkably conserved throughout tetrapod phylogeny. Evolutionary rate analyses show that mammals overcame this ancestral constraint, resulting in a greater range of phase values than any other tetrapod lineage. Diagonal-sequence diagonal-couplet gaits are significantly associated with arboreality in mammals, though this relationship is not recovered for other tetrapod lineages. Notably, the lateral-sequence lateral-couplet gait, unique to mammals among extant tetrapods, is not associated with any traditional explanations. The complex drivers of gait diversification in mammals remain unclear, but our analyses suggest that their success was due, in part, to release from a locomotor constraint that has probably persisted in other extant tetrapod lineages for over 375 Myr.
Collapse
Affiliation(s)
- Alexa N. Wimberly
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Graham J. Slater
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Michael C. Granatosky
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
- Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| |
Collapse
|
6
|
Hirasawa T, Cupello C, Brito PM, Yabumoto Y, Isogai S, Hoshino M, Uesugi K. Development of the Pectoral Lobed Fin in the Australian Lungfish Neoceratodus forsteri. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.679633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The evolutionary transition from paired fins to limbs involved the establishment of a set of limb muscles as an evolutionary novelty. In parallel, there was a change in the topography of the spinal nerves innervating appendicular muscles, so that distinct plexuses were formed at the bases of limbs. However, the key developmental changes that brought about this evolutionary novelty have remained elusive due to a lack of data on the development of lobed fins in sarcopterygian fishes. Here, we observed the development of the pectoral fin in the Australian lungfish Neoceratodus forsteri (Sarcopterygii) through synchrotron radiation X-ray microtomography. Neoceratodus forsteri is a key taxon for understanding the fin-to-limb transition due to its close phylogenetic relationships to tetrapods and well-developed lobed fins. At the onset of the fin bud in N. forsteri, there is no mesenchyme at the junction between the axial body wall and the fin bud, which corresponds to the embryonic position of the brachial plexus formed in the mesenchyme in tetrapods. Later, concurrent with the cartilage formation in the fin skeleton, the fin adductor and abductor muscles become differentiated within the surface ectoderm of the fin bud. Subsequently, the girdle muscle, which is homologous to the tetrapod serratus muscle, newly develops at the junction between the axial body wall and the fin. Our study suggests that the acquisition of embryonic mesenchyme at the junction between the axial body wall and the appendicular bud opened the door to the formation of the brachial plexus and the specialization of individual muscles in the lineage that gave rise to tetrapods.
Collapse
|
7
|
Kusakabe R, Higuchi S, Tanaka M, Kadota M, Nishimura O, Kuratani S. Novel developmental bases for the evolution of hypobranchial muscles in vertebrates. BMC Biol 2020; 18:120. [PMID: 32907560 PMCID: PMC7488077 DOI: 10.1186/s12915-020-00851-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Vertebrates are characterized by possession of hypobranchial muscles (HBMs). Cyclostomes, or modern jawless vertebrates, possess a rudimentary and superficial HBM lateral to the pharynx, whereas the HBM in jawed vertebrates is internalized and anteroposteriorly specified. Precursor cells of the HBM, marked by expression of Lbx1, originate from somites and undergo extensive migration before becoming innervated by the hypoglossal nerve. How the complex form of HBM arose in evolution is relevant to the establishment of the vertebrate body plan, but despite having long been assumed to be similar to that of limb muscles, modification of developmental mechanisms of HBM remains enigmatic. RESULTS Here we characterize the expression of Lbx genes in lamprey and hagfish (cyclostomes) and catshark (gnathostome; jawed vertebrates). We show that the expression patterns of the single cyclostome Lbx homologue, Lbx-A, do not resemble the somitic expression of mammalian Lbx1. Disruption of Lbx-A revealed that LjLbx-A is required for the formation of both HBM and body wall muscles, likely due to the insufficient extension of precursor cells rather than to hindered muscle differentiation. Both homologues of Lbx in the catshark were expressed in the somitic muscle primordia, unlike in amniotes. During catshark embryogenesis, Lbx2 is expressed in the caudal HBM as well as in the abdominal rectus muscle, similar to lamprey Lbx-A, whereas Lbx1 marks the rostral HBM and pectoral fin muscle. CONCLUSIONS We conclude that the vertebrate HBM primarily emerged as a specialized somatic muscle to cover the pharynx, and the anterior internalized HBM of the gnathostomes is likely a novelty added rostral to the cyclostome-like HBM, for which duplication and functionalization of Lbx genes would have been a prerequisite.
Collapse
Affiliation(s)
- Rie Kusakabe
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Shinnosuke Higuchi
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Masako Tanaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, 650-0047, Japan
| |
Collapse
|
8
|
Enny A, Flaherty K, Mori S, Turner N, Nakamura T. Developmental constraints on fin diversity. Dev Growth Differ 2020; 62:311-325. [PMID: 32396685 PMCID: PMC7383993 DOI: 10.1111/dgd.12670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
The fish fin is a breathtaking repository full of evolutionary diversity, novelty, and convergence. Over 500 million years, the adaptation to novel habitats has provided landscapes of fin diversity. Although comparative anatomy of evolutionarily divergent patterns over centuries has highlighted the fundamental architectures and evolutionary trends of fins, including convergent evolution, the developmental constraints on fin evolution, which bias the evolutionary trajectories of fin morphology, largely remain elusive. Here, we review the evolutionary history, developmental mechanisms, and evolutionary underpinnings of paired fins, illuminating possible developmental constraints on fin evolution. Our compilation of anatomical and genetic knowledge of fin development sheds light on the canalized and the unpredictable aspects of fin shape in evolution. Leveraged by an arsenal of genomic and genetic tools within the working arena of spectacular fin diversity, evolutionary developmental biology embarks on the establishment of conceptual framework for developmental constraints, previously enigmatic properties of evolution.
Collapse
Affiliation(s)
- Alyssa Enny
- Department of GeneticsRutgers the State University of New JerseyPiscatawayNJUSA
| | - Kathleen Flaherty
- Rutgers Animal CareRutgers the State University of New JerseyPiscatawayNJUSA
| | - Shunsuke Mori
- Department of GeneticsRutgers the State University of New JerseyPiscatawayNJUSA
| | - Natalie Turner
- Department of GeneticsRutgers the State University of New JerseyPiscatawayNJUSA
| | - Tetsuya Nakamura
- Department of GeneticsRutgers the State University of New JerseyPiscatawayNJUSA
| |
Collapse
|