1
|
Ibáñez A, Garcia-Porta J. The scent of habitat shift: Olfactory receptor evolution is associated with environmental transitions in turtles. ZOOLOGY 2024; 168:126236. [PMID: 39709692 DOI: 10.1016/j.zool.2024.126236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 10/30/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
The transition between aquatic and terrestrial habitats leads to extreme structural changes in sensorial systems. Olfactory receptors (OR) are involved in the detection of odorant molecules both in water and on land. Therefore, ORs are affected by evolutionary habitat transitions experienced by organisms. In this study, we used turtles, a group of vertebrates which inhabit many distinct environments, to explore whether functional olfactory gene receptor repertoires are correlated to habitat. We found that the proportion of class I vs class II functional olfactory receptor genes (used for waterborne odorant detection and volatile odorant detection, respectively) was closely linked to habitat. Fully terrestrial turtles had the largest proportion of class II functional receptor genes while marine turtles had a larger proportion of class I receptor genes. Freshwater turtles had more balanced numbers of class I and class II functional receptor genes, but showed a gradient of OR type proportions likely reflecting species-specific amphibious preferences. Interestingly, freshwater turtles had by far the largest number of functional OR genes compared to those in other habitats, challenging the hypothesis that secondary adaptions to water may have reduced OR repertoires in amniotes. Our study provides novel results which shed new light on the relationship between chemical communication and habitat.
Collapse
Affiliation(s)
- Alejandro Ibáñez
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland.
| | - Joan Garcia-Porta
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Hirose A, Nakamura G, Nikaido M, Fujise Y, Kato H, Kishida T. Localized Expression of Olfactory Receptor Genes in the Olfactory Organ of Common Minke Whales. Int J Mol Sci 2024; 25:3855. [PMID: 38612665 PMCID: PMC11012115 DOI: 10.3390/ijms25073855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Baleen whales (Mysticeti) possess the necessary anatomical structures and genetic elements for olfaction. Nevertheless, the olfactory receptor gene (OR) repertoire has undergone substantial degeneration in the cetacean lineage following the divergence of the Artiodactyla and Cetacea. The functionality of highly degenerated mysticete ORs within their olfactory epithelium remains unknown. In this study, we extracted total RNA from the nasal mucosae of common minke whales (Balaenoptera acutorostrata) to investigate ORs' localized expression. All three sections of the mucosae examined in the nasal chamber displayed comparable histological structure. However, the posterior portion of the frontoturbinal region exhibited notably high OR expression. Neither the olfactory bulb nor the external skin exhibited the expression of these genes. Although this species possesses four intact non-class-2 ORs, all the ORs expressed in the nasal mucosae belong to class-2, implying the loss of aversion to specific odorants. These anatomical and genomic analyses suggest that ORs are still responsible for olfaction within the nasal region of baleen whales, enabling them to detect desirable scents such as prey and potential mating partners.
Collapse
Affiliation(s)
- Ayumi Hirose
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan;
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Gen Nakamura
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan;
| | | | - Hidehiro Kato
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
- The Institute of Cetacean Research, Tokyo 104-0055, Japan
| | - Takushi Kishida
- Museum of Natural and Environmental History, Shizuoka 422-8017, Japan;
- College of Bioresource Sciences, Nihon University, Fujisawa 252-0880, Japan
| |
Collapse
|
3
|
Ollonen J, Khannoon ER, Macrì S, Vergilov V, Kuurne J, Saarikivi J, Soukainen A, Aalto IM, Werneburg I, Diaz RE, Di-Poï N. Dynamic evolutionary interplay between ontogenetic skull patterning and whole-head integration. Nat Ecol Evol 2024; 8:536-551. [PMID: 38200368 DOI: 10.1038/s41559-023-02295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The arrangement and morphology of the vertebrate skull reflect functional and ecological demands, making it a highly adaptable structure. However, the fundamental developmental and macroevolutionary mechanisms leading to different vertebrate skull phenotypes remain unclear. Here we exploit the morphological diversity of squamate reptiles to assess the developmental and evolutionary patterns of skull variation and covariation in the whole head. Our geometric morphometric analysis of a complex squamate ontogenetic dataset (209 specimens, 169 embryos, 44 species), covering stages from craniofacial primordia to fully ossified bones, reveals that morphological differences between snake and lizard skulls arose gradually through changes in spatial relationships (heterotopy) followed by alterations in developmental timing or rate (heterochrony). Along with dynamic spatiotemporal changes in the integration pattern of skull bone shape and topology with surrounding brain tissues and sensory organs, we identify a relatively higher phenotypic integration of the developing snake head compared with lizards. The eye, nasal cavity and Jacobson's organ are pivotal in skull morphogenesis, highlighting the importance of sensory rearrangements in snake evolution. Furthermore, our findings demonstrate the importance of early embryonic, ontogenetic and tissue interactions in shaping craniofacial evolution and ecological diversification in squamates, with implications for the nature of cranio-cerebral relations across vertebrates.
Collapse
Affiliation(s)
- Joni Ollonen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eraqi R Khannoon
- Biology Department, College of Science, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Simone Macrì
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vladislav Vergilov
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jaakko Kuurne
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jarmo Saarikivi
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Arttu Soukainen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ida-Maria Aalto
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls Universität, Tübingen, Germany
- Fachbereich Geowissenschaften, Eberhard Karls Universität, Tübingen, Germany
| | - Raul E Diaz
- Department of Biological Sciences, California State University, Los Angeles, CA, USA
- Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Policarpo M, Baldwin MW, Casane D, Salzburger W. Diversity and evolution of the vertebrate chemoreceptor gene repertoire. Nat Commun 2024; 15:1421. [PMID: 38360851 PMCID: PMC10869828 DOI: 10.1038/s41467-024-45500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Chemoreception - the ability to smell and taste - is an essential sensory modality of most animals. The number and type of chemical stimuli that animals can perceive depends primarily on the diversity of chemoreceptors they possess and express. In vertebrates, six families of G protein-coupled receptors form the core of their chemosensory system, the olfactory/pheromone receptor gene families OR, TAAR, V1R and V2R, and the taste receptors T1R and T2R. Here, we study the vertebrate chemoreceptor gene repertoire and its evolutionary history. Through the examination of 1,527 vertebrate genomes, we uncover substantial differences in the number and composition of chemoreceptors across vertebrates. We show that the chemoreceptor gene families are co-evolving, highly dynamic, and characterized by lineage-specific expansions (for example, OR in tetrapods; TAAR, T1R in teleosts; V1R in mammals; V2R, T2R in amphibians) and losses. Overall, amphibians, followed by mammals, are the vertebrate clades with the largest chemoreceptor repertoires. While marine tetrapods feature a convergent reduction of chemoreceptor numbers, the number of OR genes correlates with habitat in mammals and birds and with migratory behavior in birds, and the taste receptor repertoire correlates with diet in mammals and with aquatic environment in fish.
Collapse
Affiliation(s)
- Maxime Policarpo
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
- Université Paris Cité, UFR Sciences du Vivant, Paris, France
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Courcelle M, Fabre PH, Douzery EJP. Phylogeny, Ecology, and Gene Families Covariation Shaped the Olfactory Subgenome of Rodents. Genome Biol Evol 2023; 15:evad197. [PMID: 37972291 PMCID: PMC10653590 DOI: 10.1093/gbe/evad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/19/2023] Open
Abstract
Olfactory receptor (OR) genes represent the largest multigenic family in mammalian genomes and encode proteins that bind environmental odorant molecules. The OR repertoire is extremely variable among species and is subject to many gene duplications and losses, which have been linked to ecological adaptations in mammals. Although they have been studied on a broad taxonomic scale (i.e., placental), finer sampling has rarely been explored in order to better capture the mechanisms that drove the evolution of the OR repertoire. Among placental mammals, rodents are well-suited for this task, as they exhibit diverse life history traits, and genomic data are available for most major families and a diverse array of lifestyles. In this study, 53 rodent published genomes were mined for their OR subgenomes. We retrieved more than 85,000 functional and pseudogene OR sequences that were subsequently classified into phylogenetic clusters. Copy number variation among rodents is similar to that of other mammals. Using our OR counts along with comparative phylogenetic approaches, we demonstrated that ecological niches such as diet, period of activity, and a fossorial lifestyle strongly impacted the proportion of OR pseudogenes. Within the OR subgenome, phylogenetic inertia was the main factor explaining the relative variations of the 13 OR gene families. However, a striking exception was a convergent 10-fold expansion of the OR family 14 among the phylogenetically divergent subterranean mole-rat lineages belonging to Bathyergidae and Spalacidae families. This study illustrates how the diversity of the OR repertoire has evolved among rodents, both shaped by selective forces stemming from species life history traits and neutral evolution along the rodent phylogeny.
Collapse
Affiliation(s)
- Maxime Courcelle
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Pierre-Henri Fabre
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, United Kingdom
- Institut Universitaire de France (IUF), Section Biologie-Médecine-Santé, Paris, France
| | - Emmanuel J P Douzery
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
6
|
Burbrink FT, Harrington SM, Bobo D, Myers EA. Considering admixture when producing draft genomes: an example in North American ratsnakes (Pantherophis alleghaniensis/Pantherophis obsoletus). G3 (BETHESDA, MD.) 2023; 13:jkad113. [PMID: 37228097 PMCID: PMC10411579 DOI: 10.1093/g3journal/jkad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
The number of reference genomes of snakes lags behind several other vertebrate groups (e.g. birds and mammals). However, in the last two years, a concerted effort by researchers from around the world has produced new genomes of snakes representing members from several new families. Here, we present a high-quality, annotated genome of the central ratsnake (Pantherophis alleghaniensis), a member of the most diverse snake lineage, Colubroidea. Pantherophis alleghaniensis is found in the central part of the Nearctic, east of the Mississippi River. This genome was sequenced using 10X Chromium synthetic long reads and polished using Illumina short reads. The final genome assembly had an N50 of 21.82 Mb and an L50 of 22 scaffolds with a maximum scaffold length of 82.078 Mb. The genome is composed of 49.24% repeat elements dominated by long interspersed elements. We annotated this genome using transcriptome assemblies from 14 tissue types and recovered 28,368 predicted proteins. Finally, we estimated admixture proportions between two species of ratsnakes and discovered that this specimen is an admixed individual containing genomes from the western (Pantherophis obsoletus) and central ratsnakes (P. alleghaniensis). We discuss the importance of considering interspecific admixture in downstream approaches for inferring demography and phylogeny.
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology, American Museum of Natural History, New York, NY 10024, USA
| | - Sean M Harrington
- Department of Herpetology, American Museum of Natural History, New York, NY 10024, USA
- INBRE Data Science Core, University of Wyoming, Laramie, WY 82071, USA
| | - Dean Bobo
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Edward A Myers
- Department of Herpetology, American Museum of Natural History, New York, NY 10024, USA
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
7
|
Xie W, Chen M, Shen Y, Liu Y, Zhang H, Weng Q. Vomeronasal Receptors Associated with Circulating Estrogen Processing Chemosensory Cues in Semi-Aquatic Mammals. Int J Mol Sci 2023; 24:10724. [PMID: 37445898 DOI: 10.3390/ijms241310724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
In numerous animals, one essential chemosensory organ that detects chemical signals is the vomeronasal organ (VNO), which is involved in species-specific behaviors, including social and sexual behaviors. The purpose of this study is to investigate the mechanism underlying the processing of chemosensory cues in semi-aquatic mammals using muskrats as the animal model. Muskrat (Ondatra zibethicus) has a sensitive VNO system that activates seasonal breeding behaviors through receiving specific substances, including pheromones and hormones. Vomeronasal organ receptor type 1 (V1R) and type 2 (V2R) and estrogen receptor α and β (ERα and ERβ) were found in sensory epithelial cells, non-sensory epithelial cells and lamina propria cells of the female muskrats' VNO. V2R and ERα mRNA levels in the VNO during the breeding period declined sharply, in comparison to those during the non-breeding period, while V1R and ERβ mRNA levels were detected reversely. Additionally, transcriptomic study in the VNO identified that differently expressed genes might be related to estrogen signal and metabolic pathways. These findings suggested that the seasonal structural and functional changes in the VNO of female muskrats with different reproductive status and estrogen was regulated through binding to ERα and ERβ in the female muskrats' VNO.
Collapse
Affiliation(s)
- Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meiqi Chen
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuyao Shen
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
8
|
A high-quality genome of the dobsonfly Neoneuromus ignobilis reveals molecular convergences in aquatic insects. Genomics 2022; 114:110437. [PMID: 35902070 DOI: 10.1016/j.ygeno.2022.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Neoneuromus ignobilis is an archaic holometabolous aquatic predatory insect. However, a lack of genomic resources hinders the use of whole genome sequencing to explore their genetic basis and molecular mechanisms for adaptive evolution. Here, we provided a high-contiguity, chromosome-level genome assembly of N. ignobilis using high coverage Nanopore and PacBio reads with the Hi-C technique. The final assembly is 480.67 MB in size, containing 12 telomere-ended pseudochromosomes with only 17 gaps. We compared 42 hexapod species genomes including six independent lineages comprising 11 aquatic insects, and found convergent expansions of long wavelength-sensitive and blue-sensitive opsins, thermal stress response TRP channels, and sulfotransferases in aquatic insects, which may be related to their aquatic adaptation. We also detected strong nonrandom signals of convergent amino acid substitutions in aquatic insects. Collectively, our comparative genomic analysis revealed the evidence of molecular convergences in aquatic insects during both gene family evolution and convergent amino acid substitutions.
Collapse
|
9
|
Ryerson WG, Schwenk K. The kinematics and functional significance of chemosensory tongue-flicking in northern water snakes (Nerodia sipedon) on land, in water, and in between. Integr Comp Biol 2022; 62:852-864. [PMID: 35657730 DOI: 10.1093/icb/icac077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
As organisms transition between different environments, they must do more than simply move through that transition and those environments. Changes in the environment must be detected via the senses. The types of sensory information and the mechanisms of collecting that information may also change as an individual moves through different environments. We use tongue-flicking in northern water snakes, Nerodia sipedon, to examine the mechanics of sensory behavior as snakes move from terrestrial to aquatic habitats. A combination of high-speed video and mesocosm experiment revealed that water snakes will alter the mechanics of tongue-flicking in the context of their environment. Tongue-flicks on land are distinctive, with multiple oscillations, large protrusion distance, and high velocities. Comparatively, tongue-flicks under water are much shorter events, with reduced protrusion and fewer oscillations. At the surface of the water, in the presence of potential anuran prey, water snakes will tap the tips of the tongue on the surface of the water, without undergoing the full oscillations observed on land or underwater. We attribute the differences in the aerial and underwater tongue-flicks to trade-offs in the physical and chemical properties of the environment. The surface tapping behavior we observed is likely snakes altering their behavior to maximize the encounter and collection of frog-specific chemical cues, which are known to travel on the water's surface. Given the ecological transitions and distinctive biogeographical patterns rooted in water snake ecology, there are likely more examples of changing sensory mechanics to be discovered upon further investigation. All our knowledge begins with the senses. (Immanuel Kant, Critique of Pure Reason, 1781).
Collapse
Affiliation(s)
- William G Ryerson
- Biology Department, Saint Anselm College. 100 Saint Anselm Drive, Manchester, NH 03102.,Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043
| | - Kurt Schwenk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043
| |
Collapse
|
10
|
Peng ZL, Wu W, Tang CY, Ren JL, Jiang D, Li JT. Transcriptome Analysis Reveals Olfactory System Expression Characteristics of Aquatic Snakes. Front Genet 2022; 13:825974. [PMID: 35154285 PMCID: PMC8829814 DOI: 10.3389/fgene.2022.825974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Animal olfactory systems evolved with changes in habitat to detect odor cues from the environment. The aquatic environment, as a unique habitat, poses a formidable challenge for olfactory perception in animals, since the higher density and viscosity of water. The olfactory system in snakes is highly specialized, thus providing the opportunity to explore the adaptive evolution of such systems to unique habitats. To date, however, few studies have explored the changes in gene expression features in the olfactory systems of aquatic snakes. In this study, we carried out RNA sequencing of 26 olfactory tissue samples (vomeronasal organ and olfactory bulb) from two aquatic and two non-aquatic snake species to explore gene expression changes under the aquatic environment. Weighted gene co-expression network analysis showed significant differences in gene expression profiles between aquatic and non-aquatic habitats. The main olfactory systems of the aquatic and non-aquatic snakes were regulated by different genes. Among these genes, RELN may contribute to exploring gene expression changes under the aquatic environment by regulating the formation of inhibitory neurons in the granular cell layer and increasing the separation of neuronal patterns to correctly identify complex chemical information. The high expression of TRPC2 and V2R family genes in the accessory olfactory systems of aquatic snakes should enhance their ability to bind water-soluble odor molecules, and thus obtain more information in hydrophytic habitats. This work provides an important foundation for exploring the olfactory adaptation of snakes in special habitats.
Collapse
Affiliation(s)
- Zhong-Liang Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Yang Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jin-Long Ren
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dechun Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin Nay Pyi Taw, Myanmar
- *Correspondence: Jia-Tang Li,
| |
Collapse
|
11
|
Hu X, Jiang Z, Ming Y, Jian J, Jiang S, Zhang D, Zhang J, Zheng S, Fang X, Yang Y, Zheng R. A chromosomal level genome sequence for Quasipaa spinosa (Dicroglossidae) reveals chromosomal evolution and population diversity. Mol Ecol Resour 2021; 22:1545-1558. [PMID: 34837460 DOI: 10.1111/1755-0998.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Quasipaa spinosa is an Asian commercial Dicroglossidae species noted for its spiny chest found in adult males. Here, we report the first chromosomal level Q. spinosa genome employing PacBio long read sequencing and high-resolution chromosome conformation capture (Hi-C) technology. The total length of the final assembled genome was 2,839,292,578 bp, with contig N50 of 3.79 Mb and scaffold N50 of 327.44 Mb. Approximately 99.30% of the length of the assembled genome sequences were anchored to 13 chromosomes with the assistance of Hi-C reads. A total of 26,173 protein-coding genes were predicted, and 95.98% of the genes were functionally annotated. The annotated genes covered a total of 92.10% of the complete vertebrate core gene set according to the BUSCO pipeline evaluation. Approximately 41 million years ago, Q. spinosa began to diverge from its dicroglossid sister taxon Nanorana parkeri. The Q. spinosa genome revealed obvious chromosomal fissions compared with Xenopus tropicalis, which probably represented a specific chromosome evolutionary history within frogs. Population analysis showed that Chinese Q. spinosa could be divided into eastern and western genetic clusters, with the western population showing higher diversity than the eastern population. The effective population size of Q. spinosa showed a continuously decreasing trend from one million years ago to 10,000 years ago. In summary, this study sheds light on Q. spinosa evolution and population differentiation, providing a valuable genomic resource for further biological and genetic studies on this species, and other closely related frog taxa.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China.,Xinzhi College, Zhejiang Normal University, Jinhua, China
| | - Zeyuan Jiang
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yao Ming
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China
| | - Jianbo Jian
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sanjie Jiang
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China
| | - Dandan Zhang
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jiayong Zhang
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Shanjian Zheng
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xiaodong Fang
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China
| | - Yulan Yang
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China
| | - Rongquan Zheng
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China.,Xinzhi College, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
12
|
Galbraith JD, Ludington AJ, Sanders KL, Suh A, Adelson DL. Horizontal transfer and subsequent explosive expansion of a DNA transposon in sea kraits ( Laticauda). Biol Lett 2021; 17:20210342. [PMID: 34464541 PMCID: PMC8437027 DOI: 10.1098/rsbl.2021.0342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) are self-replicating genetic sequences and are often described as important 'drivers of evolution'. This driving force is because TEs promote genomic novelty by enabling rearrangement, and through exaptation as coding and regulatory elements. However, most TE insertions potentially lead to neutral or harmful outcomes, therefore host genomes have evolved machinery to suppress TE expansion. Through horizontal transposon transfer (HTT) TEs can colonize new genomes, and since new hosts may not be able to regulate subsequent replication, these TEs may proliferate rapidly. Here, we describe HTT of the Harbinger-Snek DNA transposon into sea kraits (Laticauda), and its subsequent explosive expansion within Laticauda genomes. This HTT occurred following the divergence of Laticauda from terrestrial Australian elapids approximately 15-25 Mya. This has resulted in numerous insertions into introns and regulatory regions, with some insertions into exons which appear to have altered UTRs or added sequence to coding exons. Harbinger-Snek has rapidly expanded to make up 8-12% of Laticauda spp. genomes; this is the fastest known expansion of TEs in amniotes following HTT. Genomic changes caused by this rapid expansion may have contributed to adaptation to the amphibious-marine habitat.
Collapse
Affiliation(s)
- James D. Galbraith
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Kate L. Sanders
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala SE-752 36, Sweden
| | - David L. Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
13
|
Crowe-Riddell JM, Jolly CJ, Goiran C, Sanders KL. The sex life aquatic: sexually dimorphic scale mechanoreceptors and tactile courtship in a sea snake Emydocephalus annulatus (Elapidae: Hydrophiinae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Evolutionary transitions from terrestrial to aquatic habitats involve major selective shifts in animal signalling systems. Entirely marine snakes face two challenges during underwater social interactions: (1) finding mates when pheromones are diffused by water currents; and, once a mate is located, (2) maintaining contact and co-ordinating mating when tactile cues are diminished by buoyancy force. We explore the potential tactile roles of scale protuberances in the mating of turtle-headed sea snakes [Emydocephalus annulatus (Hydrophiinae)] by investigating sexual dimorphism in museum specimens (N = 59). In addition to the previously noted rostral spine on the snout, we found that mature males have enlarged structures located on the chin (genial knobs) and near the cloaca (anal knobs). Ultrastructural data indicates that the rostral spine is comprised of thickened epidermal and dermal layers, similar to rugosities on the body, and likely provide stimulation to the female during prodding by the male. In contrast, the genial and anal knobs have dermally derived central cells indicative of enlarged scale mechanoreceptors (i.e. sensilla). We suggest that these mechanoreceptors are critical to mating success: genial knobs may help amorous males orient to the direction of female motion; whereas, and anal knobs likely give somatosensory feedback for cloacal alignment
Collapse
Affiliation(s)
- Jenna M Crowe-Riddell
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor MI, USA
| | - Chris J Jolly
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- Museum & Art Gallery of the Northern Territory, Darwin, NT, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW, Australia
| | - Claire Goiran
- LabEx Corail and ISEA, Université de La Nouvelle-Calédonie, BP R4, Nouméa Cedex, New Caledonia
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
14
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
15
|
Calvete JJ, Lomonte B, Saviola AJ, Bonilla F, Sasa M, Williams DJ, Undheim EA, Sunagar K, Jackson TN. Mutual enlightenment: A toolbox of concepts and methods for integrating evolutionary and clinical toxinology via snake venomics and the contextual stance. Toxicon X 2021; 9-10:100070. [PMID: 34195606 PMCID: PMC8234350 DOI: 10.1016/j.toxcx.2021.100070] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease that may claim over 100,000 human lives annually worldwide. Snakebite occurs as the result of an interaction between a human and a snake that elicits either a defensive response from the snake or, more rarely, a feeding response as the result of mistaken identity. Snakebite envenoming is therefore a biological and, more specifically, an ecological problem. Snake venom itself is often described as a "cocktail", as it is a heterogenous mixture of molecules including the toxins (which are typically proteinaceous) responsible for the pathophysiological consequences of envenoming. The primary function of venom in snake ecology is pre-subjugation, with defensive deployment of the secretion typically considered a secondary function. The particular composition of any given venom cocktail is shaped by evolutionary forces that include phylogenetic constraints associated with the snake's lineage and adaptive responses to the snake's ecological context, including the taxa it preys upon and by which it is predated upon. In the present article, we describe how conceptual frameworks from ecology and evolutionary biology can enter into a mutually enlightening relationship with clinical toxinology by enabling the consideration of snakebite envenoming from an "ecological stance". We detail the insights that may emerge from such a perspective and highlight the ways in which the high-fidelity descriptive knowledge emerging from applications of -omics era technologies - "venomics" and "antivenomics" - can combine with evolutionary explanations to deliver a detailed understanding of this multifactorial health crisis.
Collapse
Affiliation(s)
- Juan J. Calvete
- Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Unidad de Proteómica, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fabián Bonilla
- Laboratorio de Investigación en Animales Peligrosos (LIAP), Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mahmood Sasa
- Laboratorio de Investigación en Animales Peligrosos (LIAP), Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Museo de Zoología, Centro de Investigaciones en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, Costa Rica
| | | | - Eivind A.B. Undheim
- Centre for Biodiversity Dynamics, Department of Biology, NTNU, Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Timothy N.W. Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Vassetzky NS, Kosushkin SA, Korchagin VI, Ryskov AP. New Ther1-derived SINE Squam3 in scaled reptiles. Mob DNA 2021; 12:10. [PMID: 33752750 PMCID: PMC7983390 DOI: 10.1186/s13100-021-00238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND SINEs comprise a significant part of animal genomes and are used to study the evolution of diverse taxa. Despite significant advances in SINE studies in vertebrates and higher eukaryotes in general, their own evolution is poorly understood. RESULTS We have discovered and described in detail a new Squam3 SINE specific for scaled reptiles (Squamata). The subfamilies of this SINE demonstrate different distribution in the genomes of squamates, which together with the data on similar SINEs in the tuatara allowed us to propose a scenario of their evolution in the context of reptilian evolution. CONCLUSIONS Ancestral SINEs preserved in small numbers in most genomes can give rise to taxa-specific SINE families. Analysis of this aspect of SINEs can shed light on the history and mechanisms of SINE variation in reptilian genomes.
Collapse
Affiliation(s)
- Nikita S Vassetzky
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Sergei A Kosushkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vitaly I Korchagin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexey P Ryskov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
17
|
Abstract
Amniotes originated on land, but aquatic/amphibious groups emerged multiple times independently in amniotes. On becoming aquatic, species with different phylogenetic backgrounds and body plans have to adapt themselves to handle similar problems inflicted by their new environment, and this makes aquatic adaptation of amniotes one of the greatest natural experiments. Particularly, evolution of the sense of smell upon aquatic adaptation is of great interest because receptors required for underwater olfaction differ remarkably from those for terrestrial olfaction. Here, I review the olfactory capabilities of aquatic/amphibious amniotes, especially those of cetaceans and sea snakes. Most aquatic/amphibious amniotes show reduced olfactory organs, receptor gene repertoires, and olfactory capabilities. Remarkably, cetaceans and sea snakes show extreme examples: cetaceans have lost the vomeronasal system, and furthermore, toothed whales have lost all of their olfactory nervous systems. Baleen whales can smell in the air, but their olfactory capability is limited. Fully aquatic sea snakes have lost the main olfactory system but they retain the vomeronasal system for sensing underwater. Amphibious species show an intermediate status between terrestrial and aquatic species, implying their importance on understanding the process of aquatic adaptation. The olfactory capabilities of aquatic amniotes are diverse, reflecting their diverse phylogenetic backgrounds and ecology.
Collapse
|
18
|
Seiko T, Kishida T, Toyama M, Hariyama T, Okitsu T, Wada A, Toda M, Satta Y, Terai Y. Visual adaptation of opsin genes to the aquatic environment in sea snakes. BMC Evol Biol 2020; 20:158. [PMID: 33243140 PMCID: PMC7690139 DOI: 10.1186/s12862-020-01725-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary transitions from terrestrial to aquatic life history cause drastic changes in sensory systems. Indeed, the drastic changes in vision have been reported in many aquatic amniotes, convergently. Recently, the opsin genes of the full-aquatic sea snakes have been reported. However, those of the amphibious sea snakes have not been examined in detail. RESULTS Here, we investigated opsin genes and visual pigments of sea snakes. We determined the sequences of SWS1, LWS, and RH1 genes from one terrestrial, three amphibious and four fully-aquatic elapids. Amino acid replacements at four and one spectra-tuning positions were found in LWS and RH1, respectively. We measured or predicted absorption of LWS and RH1 pigments with A1-derived retinal. During their evolution, blue shifts of LWS pigments have occurred stepwise in amphibious sea snakes and convergently in both amphibious and fully-aquatic species. CONCLUSIONS Blue shifted LWS pigments may have adapted to deep water or open water environments dominated by blue light. The evolution of opsins differs between marine mammals (cetaceans and pinnipeds) and sea snakes in two fundamental ways: (1) pseudogenization of opsins in marine mammals; and (2) large blue shifts of LWS pigments in sea snakes. It may be possible to explain these two differences at the level of photoreceptor cell composition given that cone and rod cells both exist in mammals whereas only cone cells exist in fully-aquatic sea snakes. We hypothesize that the differences in photoreceptor cell compositions may have differentially affected the evolution of opsins in divergent amniote lineages.
Collapse
Affiliation(s)
- Takashi Seiko
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193 Japan
| | - Takushi Kishida
- Wildlife Research Center, Kyoto University, 2-24 Tanaka Sekiden-cho, Sakyo, Kyoto 606-8203 Japan
| | - Mina Toyama
- Department of Biology, Faculty of Medicine, Hamamatsu University School of Medicine, Handayama, Hamamatsu Japan
| | - Takahiko Hariyama
- Department of Biology, Faculty of Medicine, Hamamatsu University School of Medicine, Handayama, Hamamatsu Japan
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada, Kobe, 658-8558 Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada, Kobe, 658-8558 Japan
| | - Mamoru Toda
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213 Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193 Japan
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193 Japan
| |
Collapse
|
19
|
Population history and genomic admixture of sea snakes of the genus Laticauda in the West Pacific. Mol Phylogenet Evol 2020; 155:107005. [PMID: 33160037 DOI: 10.1016/j.ympev.2020.107005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022]
Abstract
Speciation in the open ocean has long been studied, but it remains largely elusive what factors promote or inhibit speciation in such an open environment. Marine amniotes, which evolved from terrestrial ancestors, provide valuable opportunities for studying speciation in the ocean because of their evident aquatic origins. Sea snakes are phylogenetically related to terrestrial elapid snakes and consist of two monophyletic groups (Hydrophiini and Laticaudini). These two groups migrated from land to water almost at the same time, but species diversities are remarkably different: there are approx. 60 species in 16 genera described for hydrophiins, whereas only eight species in the genus Laticauda are described for laticaudins. Here, we provide a high-quality reference genome assembly of a laticaudin L. colubrina with a scaffold N50 value of 40 Mbp, and focused on laticaudins to consider why they have seldom speciated. We performed whole-genome shotgun sequencing of several species of laticaudins sampled in their southmost (Vanuatu) and northmost (Ryukyu) habitats. Demographic histories of Vanuatu and Ryukyu populations suggest that populations of broadly distributed major species are geographically structured. Each species is genetically clearly distinguished, but there is a considerable amount of gene flow between two sibling species distributed sympatrically in Vanuatu. In addition, inter-species genomic admixture is ubiquitously observed among laticaudins even between phylogenetically distant species. Broad distribution of major species combined with such genetic mixability might have prevented laticaudins from genetic isolation and speciation.
Collapse
|
20
|
Galbraith JD, Ludington AJ, Suh A, Sanders KL, Adelson DL. New Environment, New Invaders-Repeated Horizontal Transfer of LINEs to Sea Snakes. Genome Biol Evol 2020; 12:2370-2383. [PMID: 33022046 PMCID: PMC7846101 DOI: 10.1093/gbe/evaa208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Although numerous studies have found horizontal transposon transfer (HTT) to be widespread across metazoans, few have focused on HTT in marine ecosystems. To investigate potential recent HTTs into marine species, we searched for novel repetitive elements in sea snakes, a group of elapids which transitioned to a marine habitat at most 18 Ma. Our analysis uncovered repeated HTTs into sea snakes following their marine transition. The seven subfamilies of horizontally transferred LINE retrotransposons we identified in the olive sea snake (Aipysurus laevis) are transcribed, and hence are likely still active and expanding across the genome. A search of 600 metazoan genomes found all seven were absent from other amniotes, including terrestrial elapids, with the most similar LINEs present in fish and marine invertebrates. The one exception was a similar LINE found in sea kraits, a lineage of amphibious elapids which independently transitioned to a marine environment 25 Ma. Our finding of repeated horizontal transfer events into marine snakes greatly expands past findings that the marine environment promotes the transfer of transposons. Transposons are drivers of evolution as sources of genomic sequence and hence genomic novelty. We identified 13 candidate genes for HTT-induced adaptive change based on internal or neighboring HTT LINE insertions. One of these, ADCY4, is of particular interest as a part of the KEGG adaptation pathway “Circadian Entrainment.” This provides evidence of the ecological interactions between species influencing evolution of metazoans not only through specific selection pressures, but also by contributing novel genomic material.
Collapse
Affiliation(s)
| | | | - Alexander Suh
- Department of Ecology and Genetics-Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden.,Department of Organismal Biology-Systematic Biology, Evolutionary Biology Centre, Uppsala University, Sweden.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Kate L Sanders
- School of Biological Sciences, University of Adelaide, Australia
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, Australia
| |
Collapse
|
21
|
Udyawer V, Goiran C, Chateau O, Shine R. Swim with the tide: Tactics to maximize prey detection by a specialist predator, the greater sea snake (Hydrophis major). PLoS One 2020; 15:e0239920. [PMID: 33002087 PMCID: PMC7529233 DOI: 10.1371/journal.pone.0239920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
The fitness of a predator depends upon its ability to locate and capture prey; and thus, increasing dietary specialization should favor the evolution of species-specific foraging tactics tuned to taxon-specific habitats and cues. Within marine environments, prey detectability (e.g., via visual or chemical cues) is affected by environmental conditions (e.g., water clarity and tidal flow), such that specialist predators would be expected to synchronize their foraging activity with cyclic variation in such conditions. In the present study, we combined behavioral-ecology experiments on captive sea snakes and their prey (catfish) with acoustic tracking of free-ranging sea snakes, to explore the use of waterborne chemical cues in this predator-prey interaction. In coral-reef ecosystems of New Caledonia, the greater sea snake (Hydrophis major) feeds only upon striped eel catfish (Plotosus lineatus). Captive snakes became more active after exposure to waterborne chemical cues from catfish, whereas catfish did not avoid chemical cues from snakes. Movement patterns of tracked snakes showed that individuals were most active on a rapidly falling tide, which is the time when chemical cues from hidden catfish are likely to be most readily available to a foraging predator. By synchronizing foraging effort with the tidal cycle, greater sea snakes may be able to exploit the availability of chemical cues during a rapidly falling tide to maximize efficiency in locating and capturing prey.
Collapse
Affiliation(s)
- Vinay Udyawer
- Australian Institute of Marine Science, Darwin, Northern Territory, Australia
| | - Claire Goiran
- LabEx Corail & ISEA, Université de la Nouvelle-Calédonie, Nouméa Cedex, New Caledonia
| | - Olivier Chateau
- Laboratory of Marine Biology and Ecology, Aquarium des Lagons, Nouméa, New Caledonia
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
22
|
Convergent evolution of olfactory and thermoregulatory capacities in small amphibious mammals. Proc Natl Acad Sci U S A 2020; 117:8958-8965. [PMID: 32253313 DOI: 10.1073/pnas.1917836117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Olfaction and thermoregulation are key functions for mammals. The former is critical to feeding, mating, and predator avoidance behaviors, while the latter is essential for homeothermy. Aquatic and amphibious mammals face olfactory and thermoregulatory challenges not generally encountered by terrestrial species. In mammals, the nasal cavity houses a bony system supporting soft tissues and sensory organs implicated in either olfactory or thermoregulatory functions. It is hypothesized that to cope with aquatic environments, amphibious mammals have expanded their thermoregulatory capacity at the expense of their olfactory system. We investigated the evolutionary history of this potential trade-off using a comparative dataset of three-dimensional (3D) CT scans of 189 skulls, capturing 17 independent transitions from a strictly terrestrial to an amphibious lifestyle across small mammals (Afrosoricida, Eulipotyphla, and Rodentia). We identified rapid and repeated loss of olfactory capacities synchronously associated with gains in thermoregulatory capacity in amphibious taxa sampled from across mammalian phylogenetic diversity. Evolutionary models further reveal that these convergences result from faster rates of turbinal bone evolution and release of selective constraints on the thermoregulatory-olfaction trade-off in amphibious species. Lastly, we demonstrated that traits related to vital functions evolved faster to the optimum compared to traits that are not related to vital functions.
Collapse
|
23
|
Kishida T, Go Y, Tatsumoto S, Tatsumi K, Kuraku S, Toda M. Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes. Proc Biol Sci 2019; 286:20191828. [PMID: 31506057 DOI: 10.1098/rspb.2019.1828] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Marine amniotes, a polyphyletic group, provide an excellent opportunity for studying convergent evolution. Their sense of smell tends to degenerate, but this process has not been explored by comparing fully aquatic species with their amphibious relatives in an evolutionary context. Here, we sequenced the genomes of fully aquatic and amphibious sea snakes and identified repertoires of chemosensory receptor genes involved in olfaction. Snakes possess large numbers of the olfactory receptor (OR) genes and the type-2 vomeronasal receptor (V2R) genes, and expression profiling in the olfactory tissues suggests that snakes use the ORs in the main olfactory system (MOS) and the V2Rs in the vomeronasal system (VNS). The number of OR genes has decreased in sea snakes, and fully aquatic species lost MOS which is responsible for detecting airborne odours. By contrast, sea snakes including fully aquatic species retain a number of V2R genes and a well-developed VNS for smelling underwater. This study suggests that the sense of smell also degenerated in sea snakes, particularly in fully aquatic species, but their residual olfactory capability is distinct from that of other fully aquatic amniotes. Amphibious species show an intermediate status between terrestrial and fully aquatic snakes, implying their importance in understanding the process of aquatic adaptation.
Collapse
Affiliation(s)
- Takushi Kishida
- Wildlife Research Center, Kyoto University, 2-24 Tanaka Sekiden-cho, Sakyo, Kyoto 606-8203, Japan
| | - Yasuhiro Go
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,National Institute for Physiological Science, Okazaki, Aichi 444-8585, Japan
| | - Shoji Tatsumoto
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,National Institute for Physiological Science, Okazaki, Aichi 444-8585, Japan
| | - Kaori Tatsumi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Shigehiro Kuraku
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Mamoru Toda
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|