1
|
Liu Z, Guo S, Wang T, Yan W, Baoyin T, Fry E. Phase-dependent grassland temporal stability is mediated by species and functional group asynchrony: A long-term mowing experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175445. [PMID: 39134279 DOI: 10.1016/j.scitotenv.2024.175445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2024] [Accepted: 08/09/2024] [Indexed: 08/18/2024]
Abstract
The temporal stability of grasslands plays a key role in the stable provisioning of multiple ecosystem goods and services for humankind. Despite recent progress, our knowledge on how long-term mowing influences ecosystem stability remains unclear. Using a dataset from an 18-year-long mowing experiment with different treatment intensities (no-mowing, mowing once per year, and mowing twice per year) in grasslands of Inner Mongolia, China, we aimed to determine whether and how long-term mowing influenced grassland temporal stability in a temperate steppe. We found mowing decreased ecosystem stability in the early and intermediate periods (1-12 years of treatment), but increased stability in the later period (13-18 years of treatment), indicating responses of ecosystem stability to long-term mowing were phase dependent. Bivariate correlation and structural equation modeling analyses revealed that the degree of asynchrony both at the species and functional group levels, as well as dominant species stability, played key roles in stabilizing the whole community. In addition, portfolio effects rather than diversity made significant contributions to ecosystem stability. Our results suggest the phase-dependent temporal stability of grassland under long-term mowing is mainly mediated by species and functional group asynchrony. This finding provides a new insight for understanding how dryland grassland responds to long-term anthropogenic perturbations.
Collapse
Affiliation(s)
- Zhiying Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Shuying Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tianqi Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wenbin Yan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Taogetao Baoyin
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Ellen Fry
- Department of Biology, Edge Hill University, Lancashire L39 4QP, United Kingdom
| |
Collapse
|
2
|
Sasaki T, Berdugo M, Kinugasa T, Batdelger G, Baasandai E, Eisenhauer N. Aridity-dependent shifts in biodiversity-stability relationships but not in underlying mechanisms. GLOBAL CHANGE BIOLOGY 2024; 30:e17365. [PMID: 38864217 DOI: 10.1111/gcb.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Climate change will affect the way biodiversity influences the stability of plant communities. Although biodiversity, associated species asynchrony, and species stability could enhance community stability, the understanding of potential nonlinear shifts in the biodiversity-stability relationship across a wide range of aridity (measured as the aridity index, the precipitation/potential evapotranspiration ratio) gradients and the underlying mechanisms remain limited. Using an 8-year dataset from 687 sites in Mongolia, which included 5496 records of vegetation and productivity, we found that the temporal stability of plant communities decreased more rapidly in more arid areas than in less arid areas. The result suggests that future aridification across terrestrial ecosystems may adversely affect community stability. Additionally, we identified nonlinear shifts in the effects of species richness and species synchrony on temporal community stability along the aridity gradient. Species synchrony was a primary driver of community stability, which was consistently negatively affected by species richness while being positively affected by the synchrony between C3 and C4 species across the aridity gradient. These results highlight the crucial role of C4 species in stabilizing communities through differential responses to interannual climate variations between C3 and C4 species. Notably, species richness and the synchrony between C3 and C4 species independently regulated species synchrony, ultimately affecting community stability. We propose that maintaining plant communities with a high diversity of C3 and C4 species will be key to enhancing community stability across Mongolian grasslands. Moreover, species synchrony, species stability, species richness and the synchrony between C3 and C4 species across the aridity gradient consistently mediated the impacts of aridity on community stability. Hence, strategies aimed at promoting the maintenance of biological diversity and composition will help ecosystems adapt to climate change or mitigate its adverse effects on ecosystem stability.
Collapse
Affiliation(s)
- Takehiro Sasaki
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Institute for Multidisciplinary Sciences, Yokohama National University, Yokohama, Japan
| | - Miguel Berdugo
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
- Department of Environment Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Gantsetseg Batdelger
- Information and Research Institute of Meteorology, Hydrology and Environment (IRIMHE) of Mongolia, Ulaanbaatar, Mongolia
| | - Erdenetsetseg Baasandai
- Information and Research Institute of Meteorology, Hydrology and Environment (IRIMHE) of Mongolia, Ulaanbaatar, Mongolia
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Institute for Multidisciplinary Sciences, Yokohama National University, Yokohama, Japan
| |
Collapse
|
3
|
Zhu J, Zhang Y, Wu J, Zhang X, Yu G, Shen Z, Yang X, He Y, Jiang L, Hautier Y. Herbivore exclusion stabilizes alpine grassland biomass production across spatial scales. GLOBAL CHANGE BIOLOGY 2024; 30:e17155. [PMID: 38273528 DOI: 10.1111/gcb.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
There is growing evidence that land-use management practices such as livestock grazing can strongly impact the local diversity, functioning, and stability of grassland communities. However, whether these impacts depend on environmental condition and propagate to larger spatial scales remains unclear. Using an 8-year grassland exclosure experiment conducted at nine sites in the Tibetan Plateau covering a large precipitation gradient, we found that herbivore exclusion increased the temporal stability of alpine grassland biomass production at both the local and larger (site) spatial scales. Higher local community stability was attributed to greater stability of dominant species, whereas higher stability at the larger scale was linked to higher spatial asynchrony of productivity among local communities. Additionally, sites with higher mean annual precipitation had lower dominant species stability and lower grassland stability at both the spatial scales considered. Our study provides novel evidence that livestock grazing can impair grassland stability across spatial scales and climatic gradients.
Collapse
Affiliation(s)
- Juntao Zhu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yangjian Zhang
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jianshuang Wu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Biology, Theoretical Ecology, Freie Universität Berlin, Berlin, Germany
- Department of Geography, Geography and Geology Faculty, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | - Xianzhou Zhang
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Guirui Yu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhenxi Shen
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xian Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yunlong He
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Wang Y, Wang C, Ren F, Jing X, Ma W, He JS, Jiang L. Asymmetric response of aboveground and belowground temporal stability to nitrogen and phosphorus addition in a Tibetan alpine grassland. GLOBAL CHANGE BIOLOGY 2023; 29:7072-7084. [PMID: 37795748 DOI: 10.1111/gcb.16967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Anthropogenic eutrophication is known to impair the stability of aboveground net primary productivity (ANPP), but its effects on the stability of belowground (BNPP) and total (TNPP) net primary productivity remain poorly understood. Based on a nitrogen and phosphorus addition experiment in a Tibetan alpine grassland, we show that nitrogen addition had little impact on the temporal stability of ANPP, BNPP, and TNPP, whereas phosphorus addition reduced the temporal stability of BNPP and TNPP, but not ANPP. Significant interactive effects of nitrogen and phosphorus addition were observed on the stability of ANPP because of the opposite phosphorus effects under ambient and enriched nitrogen conditions. We found that the stability of TNPP was primarily driven by that of BNPP rather than that of ANPP. The responses of BNPP stability cannot be predicted by those of ANPP stability, as the variations in responses of ANPP and BNPP to enriched nutrient, with ANPP increased while BNPP remained unaffected, resulted in asymmetric responses in their stability. The dynamics of grasses, the most abundant plant functional group, instead of community species diversity, largely contributed to the ANPP stability. Under the enriched nutrient condition, the synchronization of grasses reduced the grass stability, while the latter had a significant but weak negative impact on the BNPP stability. These findings challenge the prevalent view that species diversity regulates the responses of ecosystem stability to nutrient enrichment. Our findings also suggest that the ecological consequences of nutrient enrichment on ecosystem stability cannot be accurately predicted from the responses of aboveground components and highlight the need for a better understanding of the belowground ecosystem dynamics.
Collapse
Affiliation(s)
- Yonghui Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Chao Wang
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Fei Ren
- Key Laboratory of Restoration Ecology for Cold Regions in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jin-Sheng He
- Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Suonan J, Lu X, Li X, Hautier Y, Wang C. Nitrogen addition strengthens the stabilizing effect of biodiversity on productivity by increasing plant trait diversity and species asynchrony in the artificial grassland communities. FRONTIERS IN PLANT SCIENCE 2023; 14:1301461. [PMID: 38053765 PMCID: PMC10694273 DOI: 10.3389/fpls.2023.1301461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Background and aims Nitrogen (N) enrichment usually weakens the stabilizing effect of biodiversity on productivity. However, previous studies focused on plant species richness and thus largely ignored the potential contributions of plant functional traits to stability, even though evidence is increasing that functional traits are stronger predictors than species richness of ecosystem functions. Methods We conducted a common garden experiment manipulating plant species richness and N addition levels to quantify effects of N addition on relations between species richness and functional trait identity and diversity underpinning the 'fast-slow' economics spectrum and community stability. Results Nitrogen addition had a minor effect on community stability but increased the positive effects of species richness on community stability. Increasing community stability was found in the species-rich communities dominated by fast species due to substantially increasing temporal mean productivity relative to its standard deviation. Furthermore, enhancement in 'fast-slow' functional diversity in species-rich communities dominated by fast species under N addition increased species asynchrony, resulting in a robust biodiversity-stability relationship under N addition the artificial grassland communities. Conclusion The findings demonstrate mechanistic links between plant species richness, 'fast-slow' functional traits, and community stability under N addition, suggesting that dynamics of biodiversity-stability relations under global changes are the results of species-specific responses of 'fast-slow' traits on the plant economics spectrum.
Collapse
Affiliation(s)
- Ji Suonan
- College of Life Sciences, Qinghai Normal University, Xining, China
| | - Xuwei Lu
- College of Life Sciences, Qinghai Normal University, Xining, China
| | - Xiaona Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Chao Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
6
|
Xie J, Liu X, Luo M, Liu F, Liu S, Zhao Y, Zhang X, Zhao W, Wu F. Ethnobotanical study of traditional forage plants in the Gansu-Ningxia-Inner Mongolia junction zone: conservation and sustainable utilization for animal husbandry. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:53. [PMID: 37968695 PMCID: PMC10652598 DOI: 10.1186/s13002-023-00625-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION This study aims to safeguard the ethnobotanical knowledge pertaining to traditional forage plants within the ethnically diverse Gansu-Ningxia-Inner Mongolia junction zone. It seeks to establish a foundation for the sustainable utilization of these traditional resources for animal husbandry. METHODS A combination of literature research, village interviews, participatory observation, and ethnobotanical quantitative evaluation methods was employed to investigate and study the traditional knowledge of wild forage plants used by local residents in the study area. RESULTS Local residents provided information on 73 forage plants, which were identified as 116 distinct wild forage plant species. These plants belong to 22 families and play an active role in the lives of the local inhabitants. Notably, the families Poaceae, Fabaceae, and Asteraceae are prominent, comprising the most abundant and widely utilized wild forage plants. Bing Cao (collectively referring to plants of the Agropyron, Leymus, and Psammochloa), Suo Cao (collectively referring to plants of the genus Stipa), and Ku Cai (encompassing Lactuca tatarica (L.) C.A.Mey. and Ixeris polycephala Cass.) emerge as the most representative and vital wild forage plants for animal husbandry. Additionally, plants within the Astragalus (referred to collectively as NiaoZi by local residents) in the Fabaceae family, as well as plants from the Amaranthaceae family, exhibit notable significance. CONCLUSION Animal husbandry assumes a pivotal role in the local agricultural economy, and the 116 wild forage plants investigated hold substantial importance in its development. Among these, 59 and 103 plant resources display high developmental potential, making them prospective candidates for high-quality cultivated forage grasses. Additionally, extensive grazing practices have resulted in significant ecological degradation within this already fragile ecosystem. The cultivation of forage grasses and the practice of pen-based animal husbandry may emerge as crucial strategies for sustainable development in this area.
Collapse
Affiliation(s)
- Jian Xie
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoqi Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Mingxia Luo
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Fusong Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Sha Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yongxia Zhao
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xingsheng Zhang
- Agricultural and Rural Bureau of Pingchuan District, Baiyin, 730900, China
| | - Wenji Zhao
- Sichuan Academy of Grassland Sciences, Chengdu, 611731, China.
| | - Faming Wu
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
7
|
Zhang Z, Bao T, Hautier Y, Yang J, Liu Z, Qing H. Intra-annual growing season climate variability drives the community intra-annual stability of a temperate grassland by altering intra-annual species asynchrony and richness in Inner Mongolia, China. Ecol Evol 2022; 12:e9385. [PMID: 36225823 PMCID: PMC9532246 DOI: 10.1002/ece3.9385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 11/14/2022] Open
Abstract
Understanding the factors that regulate the functioning of our ecosystems in response to environmental changes can help to maintain the stable provisioning of ecosystem services to mankind. This is especially relevant given the increased variability of environmental conditions due to human activities. In particular, maintaining a stable production and plant biomass during the growing season (intra-annual stability) despite pervasive and directional changes in temperature and precipitation through time can help to secure food supply to wild animals, livestock, and humans. Here, we conducted a 29-year field observational study in a temperate grassland to explore how the intra-annual stability of primary productivity is influenced by biotic and abiotic variables through time. We found that intra-annual precipitation variability in the growing season indirectly influenced the community intra-annual biomass stability by its negative effect on intra-annual species asynchrony. While the intra-annual temperature variability in the growing season indirectly altered community intra-annual biomass stability through affecting the intra-annual species richness. At the same time, although the intra-annual biomass stability of the dominant species and the dominant functional group were insensitive to climate variability, they also promoted the stable community biomass to a certain extent. Our results indicate that ongoing intra-annual climate variability affects community intra-annual biomass stability in the temperate grassland, which has important theoretical significance for us to take active measures to deal with climate change.
Collapse
Affiliation(s)
- Ze Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian PlateauInner Mongolia UniversityHohhotChina
- Inner Mongolia Key Laboratory of Grassland EcologySchool of Ecology and Environment, Inner Mongolia UniversityHohhotChina
| | - Tiejun Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian PlateauInner Mongolia UniversityHohhotChina
- Inner Mongolia Key Laboratory of Grassland EcologySchool of Ecology and Environment, Inner Mongolia UniversityHohhotChina
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of BiologyUtrecht UniversityUtrechtNetherlands
| | - Jie Yang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian PlateauInner Mongolia UniversityHohhotChina
- Inner Mongolia Key Laboratory of Grassland EcologySchool of Ecology and Environment, Inner Mongolia UniversityHohhotChina
| | - Zhongling Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian PlateauInner Mongolia UniversityHohhotChina
- Inner Mongolia Key Laboratory of Grassland EcologySchool of Ecology and Environment, Inner Mongolia UniversityHohhotChina
| | - Hua Qing
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian PlateauInner Mongolia UniversityHohhotChina
- Inner Mongolia Key Laboratory of Grassland EcologySchool of Ecology and Environment, Inner Mongolia UniversityHohhotChina
| |
Collapse
|
8
|
Wang Y, Wang S, Zhao L, Liang C, Miao B, Zhang Q, Niu X, Ma W, Schmid B. Stability and asynchrony of local communities but less so diversity increase regional stability of Inner Mongolian grassland. eLife 2022; 11:74881. [PMID: 36206306 PMCID: PMC9545536 DOI: 10.7554/elife.74881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/26/2022] [Indexed: 01/10/2023] Open
Abstract
Extending knowledge on ecosystem stability to larger spatial scales is urgently needed because present local-scale studies are generally ineffective in guiding management and conservation decisions of an entire region with diverse plant communities. We investigated stability of plant productivity across spatial scales and hierarchical levels of organization and analyzed impacts of dominant species, species diversity, and climatic factors using a multisite survey of Inner Mongolian grassland. We found that regional stability across distant local communities was related to stability and asynchrony of local communities. Using only dominant instead of all-species dynamics explained regional stability almost equally well. The diversity of all or only dominant species had comparatively weak effects on stability and synchrony, whereas a lower mean and higher variation of precipitation destabilized regional and local communities by reducing population stability and synchronizing species dynamics. We demonstrate that, for semi-arid temperate grassland with highly uneven species abundances, the stability of regional communities is increased by stability and asynchrony of local communities and these are more affected by climate rather than species diversity. Reduced amounts and increased variation of precipitation in the future may compromise the sustainable provision of ecosystem services to human well-being in this region.
Collapse
Affiliation(s)
- Yonghui Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University
| | - Liqing Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Bailing Miao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Qing Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Xiaxia Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich
| |
Collapse
|
9
|
Jiang LM, Sattar K, Lü GH, Hu D, Zhang J, Yang XD. Different contributions of plant diversity and soil properties to the community stability in the arid desert ecosystem. FRONTIERS IN PLANT SCIENCE 2022; 13:969852. [PMID: 36092411 PMCID: PMC9453452 DOI: 10.3389/fpls.2022.969852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
As a one of the focuses of ecological research, understanding the regulation of plant diversity on community stability is helpful to reveal the adaption of plant to environmental changes. However, the relationship between plant diversity and community stability is still controversial due to the scale effect of its influencing factors. In this study, we compared the changes in community stability and different plant diversity (i.e., species, functional, and phylogenetic diversities) between three communities (i.e., riparian forest, ecotone community, and desert shrubs), and across three spatial scales (i.e., 100, 400, and 2500 m2), and then quantified the contribution of soil properties and plant diversity to community stability by using structural equation model (SEM) in the Ebinur Lake Basin Nature Reserve of the Xinjiang Uygur Autonomous Region in the NW China. The results showed that: (1) community stability differed among three communities (ecotone community > desert shrubs > riparian forest). The stability of three communities all decreased with the increase of spatial scale (2) species diversity, phylogenetic richness and the mean pairwise phylogenetic distance were higher in ecotone community than that in desert shrubs and riparian forest, while the mean nearest taxa distance showed as riparian forest > ecotone community > desert shrubs. (3) Soil ammonium nitrogen and total phosphorus had the significant direct negative and positive effects on the community stability, respectively. Soil ammonium nitrogen and total phosphorus also indirectly affected community stability by adjusting plant diversity. The interaction among species, functional and phylogenetic diversities also regulated the variation of community stability across the spatial scales. Our results suggested that the effect of plant diversities on community stability were greater than that of soil factors. The asynchronous effect caused by the changes in species composition and functional traits among communities had a positive impact on the stability. Our study provided a theoretical support for the conservation and management of biodiversity and community functions in desert areas.
Collapse
Affiliation(s)
- La-Mei Jiang
- College of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Kunduz Sattar
- Xinjiang Uygur Autonomous Region Forestry Planning Institute, Ürümqi, China
| | - Guang-Hui Lü
- College of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Dong Hu
- College of Life Science, Northwest University, Xi’an, China
| | - Jie Zhang
- College of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China
| | - Xiao-Dong Yang
- College of Geography and Tourism Culture, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Zhang Z, Hautier Y, Bao T, Yang J, Qing H, Liu Z, Wang M, Li T, Yan M, Zhang G. Species richness and asynchrony maintain the stability of primary productivity against seasonal climatic variability. FRONTIERS IN PLANT SCIENCE 2022; 13:1014049. [PMID: 36388500 PMCID: PMC9650401 DOI: 10.3389/fpls.2022.1014049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/12/2022] [Indexed: 05/14/2023]
Abstract
The stability of grassland communities informs us about the ability of grasslands to provide reliable services despite environmental fluctuations. There is large evidence that higher plant diversity and asynchrony among species stabilizes grassland primary productivity against interannual climate variability. Whether biodiversity and asynchrony among species and functional groups stabilize grassland productivity against seasonal climate variability remains unknown. Here, using 29-year monitoring of a temperate grassland, we found lower community temporal stability with higher seasonal climate variability (temperature and precipitation). This was due to a combination of processes including related species richness, species asynchrony, functional group asynchrony and dominant species stability. Among those processes, functional group asynchrony had the strongest contribution to community compensatory dynamics and community stability. Based on a long-term study spanning 29 years, our results indicate that biodiversity and compensatory dynamics a key for the stable provision of grassland function against increasing seasonal climate variability.
Collapse
Affiliation(s)
- Ze Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan, Utrecht, Netherlands
| | - Tiejun Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jie Yang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Hua Qing
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- *Correspondence: Hua Qing,
| | - Zhongling Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Min Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Taoke Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Mei Yan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Guanglin Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
11
|
Wang S, Loreau M, de Mazancourt C, Isbell F, Beierkuhnlein C, Connolly J, Deutschman DH, Doležal J, Eisenhauer N, Hector A, Jentsch A, Kreyling J, Lanta V, Lepš J, Polley HW, Reich PB, van Ruijven J, Schmid B, Tilman D, Wilsey B, Craven D. Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. Ecology 2021; 102:e03332. [PMID: 33705570 PMCID: PMC8244107 DOI: 10.1002/ecy.3332] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/06/2020] [Accepted: 01/11/2021] [Indexed: 01/09/2023]
Abstract
Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of β diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors. Our results show that higher β diversity generates more asynchronous dynamics among local communities and thereby contributes to the stability of ecosystem productivity at larger spatial scales. We further quantify the relative contributions of α and β diversity to ecosystem stability and find a relatively stronger effect of α diversity, possibly due to the limited spatial scale of our experiments. The stabilizing effects of both α and β diversity lead to a positive diversity–stability relationship at the landscape scale. Our findings demonstrate the destabilizing effect of biotic homogenization and suggest that biodiversity should be conserved at multiple spatial scales to maintain the stability of ecosystem functions and services.
Collapse
Affiliation(s)
- Shaopeng Wang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, 09200, France
| | - Claire de Mazancourt
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, 09200, France
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Carl Beierkuhnlein
- Department of Biogeography, BayCEER, University of Bayreuth, Bayreuth, 95440, Germany
| | - John Connolly
- UCD School of Mathematics and Statistics, University College Dublin, Dublin 4, Ireland.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany.,Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle (Saale), 06108, Germany
| | - Douglas H Deutschman
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Jiří Doležal
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, 37005, Czech Republic.,Department of Functional Ecology, Institute of Botany, Czech Academy of Sciences, Třeboň, 37901, Czech Republic
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany.,Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Andy Hector
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Anke Jentsch
- Department of Disturbance Ecology, BayCEER, University of Bayreuth, Bayreuth, 95440, Germany
| | - Jürgen Kreyling
- Experimental Plant Ecology, Institute of Botany and Landscape Ecology, Greifswald University, Greifswald, 17487, Germany
| | - Vojtech Lanta
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, 37005, Czech Republic.,Department of Functional Ecology, Institute of Botany, Czech Academy of Sciences, Třeboň, 37901, Czech Republic
| | - Jan Lepš
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, 37005, Czech Republic.,Institute of Entomology, Biology Centre CAS, České Budějovice, 37005, Czech Republic
| | - H Wayne Polley
- Agricultural Research Service, Grassland, Soil & Water Research Laboratory, U.S. Department of Agriculture, Temple, Texas, 76502, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, 55108, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, 6700 AA, The Netherlands
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - David Tilman
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Brian Wilsey
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Dylan Craven
- Centro de Modelación y Monitoreo de Ecosistemas, Facultad de Ciencias, Universidad Mayor, José Toribio Molina 29, Santiago, 8340589, Chile
| |
Collapse
|
12
|
Wang Y, Niu X, Zhao L, Liang C, Miao B, Zhang Q, Zhang J, Schmid B, Ma W. Biotic stability mechanisms in Inner Mongolian grassland. Proc Biol Sci 2020; 287:20200675. [PMID: 32486982 DOI: 10.1098/rspb.2020.0675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biotic mechanisms associated with species diversity are expected to stabilize communities in theoretical and experimental studies but may be difficult to detect in natural communities exposed to large environmental variation. We investigated biotic stability mechanisms in a multi-site study across Inner Mongolian grassland characterized by large spatial variations in species richness and composition and temporal fluctuations in precipitation. We used a new additive-partitioning method to separate species synchrony and population dynamics within communities into different species-abundance groups. Community stability was independent of species richness but was regulated by species synchrony and population dynamics, especially of abundant species. Precipitation fluctuations synchronized population dynamics within communities, reducing their stability. Our results indicate generality of biotic stability mechanisms in natural ecosystems and suggest that for accurate predictions of community stability in changing environments uneven species composition should be considered by partitioning stabilizing mechanisms into different species-abundance groups.
Collapse
Affiliation(s)
- Yonghui Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xiaxia Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Liqing Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Bailing Miao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qing Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Jinghui Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Bernhard Schmid
- Department of Geography, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|