1
|
Prokopenko CM, Ellington EH, Robitaille A, Aubin JA, Balluffi-Fry J, Laforge M, Webber QMR, Zabihi-Seissan S, Vander Wal E. Friends because of foes: synchronous movement within predator-prey domains. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230374. [PMID: 39230459 PMCID: PMC11449165 DOI: 10.1098/rstb.2023.0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/18/2024] [Accepted: 06/10/2024] [Indexed: 09/05/2024] Open
Abstract
For prey, movement synchrony represents a potent antipredator strategy. Prey, however, must balance the costs and benefits of using conspecifics to mediate risk. Thus, the emergent patterns of risk-driven sociality depend on variation in space and in the predators and prey themselves. We applied the concept of predator-prey habitat domain, the space in which animals acquire food resources, to test the conditions under which individuals synchronize their movements relative to predator and prey habitat domains. We tested the response of movement synchrony of prey to predator-prey domains in two populations of ungulates that vary in their gregariousness and predator community: (i) elk, which are preyed on by wolves; and (ii) caribou, which are preyed on by coyotes and black bears. Prey in both communities responded to cursorial predators by increasing synchrony during seasons of greater predation pressure. Elk moved more synchronously in the wolf habitat domain during winter and caribou moved more synchronously in the coyote habitat domains during spring. In the winter, caribou increased movement synchrony when coyote and caribou domains overlapped. By integrating habitat domains with movement ecology, we provide a compelling argument for social behaviours and collective movement as an antipredator response. This article is part of the theme issue 'The spatial-social interface: A theoretical and empirical integration'.
Collapse
Affiliation(s)
- Christina M Prokopenko
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave , St. John's, NL A1B 3X9, Canada
| | - E Hance Ellington
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave , St. John's, NL A1B 3X9, Canada
- Range Cattle Research and Education Center, University of Florida, 3401 Experiment Station Rd , Ona, FL, USA
| | - Alec Robitaille
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave , St. John's, NL A1B 3X9, Canada
| | - Jaclyn A Aubin
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's , NL, Canada
| | - Juliana Balluffi-Fry
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave , St. John's, NL A1B 3X9, Canada
| | - Michel Laforge
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave , St. John's, NL A1B 3X9, Canada
| | - Quinn M R Webber
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's , NL, Canada
| | - Sana Zabihi-Seissan
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave , St. John's, NL A1B 3X9, Canada
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave , St. John's, NL A1B 3X9, Canada
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's , NL, Canada
| |
Collapse
|
2
|
Taylor M, Brook B, Johnson C, de Little S. Wildlife Conservation on Private Land: A Social-Ecological Systems Study. ENVIRONMENTAL MANAGEMENT 2024; 73:1049-1071. [PMID: 38520553 PMCID: PMC11024003 DOI: 10.1007/s00267-024-01962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
As human activity accelerates the global crisis facing wildlife populations, private land conservation provides an example of wildlife management challenges in social-ecological systems. This study reports on the research phase of 'WildTracker' - a co-created citizen science project, involving 160 landholders across three Tasmanian regions. This was a transdisciplinary collaboration between an environmental organisation, university researchers, and local landholders. Focusing on mammal and bird species, the project integrated diverse data types and technologies: social surveys, quantitative ecology, motion sensor cameras, acoustic recorders, and advanced machine-learning analytics. An iterative analytical methodology encompassed Pearson and point-biserial correlation for interrelationships, Non-Metric Multidimensional Scaling (NMDS) for clustering, and Random Forest machine learning for variable importance and prediction. Taken together, these analyses revealed complex relationships between wildlife populations and a suite of ecological, socio-economic, and land management variables. Both site-scale habitat characteristics and landscape-scale vegetation patterns were useful predictors of mammal and bird activity, but these relationships were different for mammals and birds. Four focal mammal species showed variation in their response to ecological and land management drivers. Unexpectedly, threatened species, such as the eastern quoll (Dasyurus viverrinus), favoured locations where habitat was substantially modified by human activities. The research provides actionable insights for landowners, and highlights the importance of 'messy,' ecologically heterogeneous, mixed agricultural landscapes for wildlife conservation. The identification of thresholds in habitat fragmentation reinforced the importance of collaboration across private landscapes. Participatory research models such as WildTracker can complement efforts to address the wicked problem of wildlife conservation in the Anthropocene.
Collapse
Affiliation(s)
- Matthew Taylor
- College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia.
| | - Barry Brook
- College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Christopher Johnson
- College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia
| | | |
Collapse
|
3
|
Bell O, Jones ME, Ruiz-Aravena M, Hamilton DG, Comte S, Hamer R, Hamede RK, Newton J, Bearhop S, McDonald RA. Human habitat modification, not apex scavenger decline, drives isotopic niche variation in a carnivore community. Oecologia 2024; 204:943-957. [PMID: 38619585 PMCID: PMC11062984 DOI: 10.1007/s00442-024-05544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Top carnivores can influence the structure of ecological communities, primarily through competition and predation; however, communities are also influenced by bottom-up forces such as anthropogenic habitat disturbance. Top carnivore declines will likely alter competitive dynamics within and amongst sympatric carnivore species. Increasing intraspecific competition is generally predicted to drive niche expansion and/or individual specialisation, while interspecific competition tends to constrain niches. Using stable isotope analysis of whiskers, we studied the effects of Tasmanian devil Sarcophilus harrisii declines upon the population- and individual-level isotopic niches of Tasmanian devils and sympatric spotted-tailed quolls Dasyurus maculatus subsp. maculatus. We investigated whether time since the onset of devil decline (a proxy for severity of decline) and landscape characteristics affected the isotopic niche breadth and overlap of devil and quoll populations. We quantified individual isotopic niche breadth for a subset of Tasmanian devils and spotted-tailed quolls and assessed whether between-site population niche variation was driven by individual-level specialisation. Tasmanian devils and spotted-tailed quolls demonstrated smaller population-level isotopic niche breadths with increasing human-modified habitat, while time since the onset of devil decline had no effect on population-level niche breadth or interspecific niche overlap. Individual isotopic niche breadths of Tasmanian devils and spotted-tailed quolls were narrower in human-modified landscapes, likely driving population isotopic niche contraction, however, the degree of individuals' specialisation relative to one another remained constant. Our results suggest that across varied landscapes, mammalian carnivore niches can be more sensitive to the bottom-up forces of anthropogenic habitat disturbance than to the top-down effects of top carnivore decline.
Collapse
Affiliation(s)
- Olivia Bell
- Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7005, Australia.
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, 14850, USA
| | - David G Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
- Tasmanian Land Conservancy, 183 Macquarie Street, Hobart, TAS, 7007, Australia
| | - Sebastien Comte
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, 1447 Forest Road, Orange, NSW, 2800, Australia
| | - Rowena Hamer
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Rodrigo K Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Jason Newton
- National Environmental Isotope Facility, Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, UK
| | - Stuart Bearhop
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Robbie A McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK.
| |
Collapse
|
4
|
Chiu‐Werner A, Jones M. Human land-use changes the diets of sympatric native and invasive mammal species. Ecol Evol 2023; 13:e10800. [PMID: 38077517 PMCID: PMC10700046 DOI: 10.1002/ece3.10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/26/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
The consequences of biological invasions and habitat degradation for native biodiversity depend on how species cope with the individual and synergetic challenges these processes present. To assess the impact of anthropogenic land-use on the food web architecture of an invaded community, we examine the diets of nine native and two highly invasive mammal species at different trophic levels, inhabiting different land-uses across six biogeographic regions in Tasmania, Australia. We use two complementary methods, environmental DNA metabarcoding analysis (eDNA) of faeces and stable isotope analysis (SIA) of nitrogen (N) and carbon (C) in whole blood, to account for the high interindividual and temporal variability in the diets of multiple species simultaneously. eDNA showed regionalisation in the diet of smaller species, with land-use further defining dietary taxa within each region. SIA revealed that bioregion and land-use influence the δ13C values of all carnivore species and omnivores, whereas the δ15N values of these species are influenced only by land-use and not bioregion. Including multiple species showed that native rats are changing their diet in response to the presence of invasive rats, an impact that would have otherwise been attributed to land-use. Our findings demonstrate that human activities and invasive species are moulding the diets of invaded communities, raising questions about the potential impacts that dietary modifications will have on the life-history traits and the evolutionary consequences these modifications might have on the survival of native species. This highlights the urgency of including human activities in ecological studies and the importance of targeting multispecies assemblages to gain a better understanding of synergetic impacts on native biodiversity.
Collapse
Affiliation(s)
- Antje Chiu‐Werner
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Menna Jones
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
5
|
Hamer RP, Gardiner RZ, Proft KM, Johnson CN, Jones ME. Correction to: 'A triple threat: high population density, high foraging intensity and flexible habitat preferences explain high impact of feral cats on prey' (2021) by Hamer et al.. Proc Biol Sci 2022; 289:20221985. [PMID: 36382530 PMCID: PMC9667366 DOI: 10.1098/rspb.2022.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024] Open
Affiliation(s)
- Rowena P Hamer
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
- Tasmanian Land Conservancy, Hobart, Tasmania 7005, Australia
| | - Riana Z Gardiner
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Kirstin M Proft
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Christopher N Johnson
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| |
Collapse
|
6
|
Estimating density of leopard (Panthera pardus fusca) using spatially explicit capture recapture framework in Gir Protected Area, Gujarat, India. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Fleming PA, Stobo-Wilson AM, Crawford HM, Dawson SJ, Dickman CR, Doherty TS, Fleming PJS, Newsome TM, Palmer R, Thompson JA, Woinarski JCZ. Distinctive diets of eutherian predators in Australia. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220792. [PMID: 36312571 PMCID: PMC9554524 DOI: 10.1098/rsos.220792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/16/2022] [Indexed: 06/01/2023]
Abstract
Introduction of the domestic cat and red fox has devastated Australian native fauna. We synthesized Australian diet analyses to identify traits of prey species in cat, fox and dingo diets, which prey were more frequent or distinctive to the diet of each predator, and quantified dietary overlap. Nearly half (45%) of all Australian terrestrial mammal, bird and reptile species occurred in the diets of one or more predators. Cat and dingo diets overlapped least (0.64 ± 0.27, n = 24 location/time points) and cat diet changed little over 55 years of study. Cats were more likely to have eaten birds, reptiles and small mammals than foxes or dingoes. Dingo diet remained constant over 53 years and constituted the largest mammal, bird and reptile prey species, including more macropods/potoroids, wombats, monotremes and bandicoots/bilbies than cats or foxes. Fox diet had greater overlap with both cats (0.79 ± 0.20, n = 37) and dingoes (0.73 ± 0.21, n = 42), fewer distinctive items (plant material, possums/gliders) and significant spatial and temporal heterogeneity over 69 years, suggesting the opportunity for prey switching (especially of mammal prey) to mitigate competition. Our study reinforced concerns about mesopredator impacts upon scarce/threatened species and the need to control foxes and cats for fauna conservation. However, extensive dietary overlap and opportunism, as well as low incidence of mesopredators in dingo diets, precluded resolution of the debate about possible dingo suppression of foxes and cats.
Collapse
Affiliation(s)
- Patricia A. Fleming
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Alyson M. Stobo-Wilson
- NESP Threatened Species Recovery Hub, Charles Darwin University, Casuarina, Northern Territory 0909, Australia
- CSIRO Land and Water, PMB 44, Winnellie, Northern Territory 0822, Australia
| | - Heather M. Crawford
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Stuart J. Dawson
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, Western Australia 6151, Australia
| | - Chris R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building A08, Camperdown, New South Wales 2006, Australia
| | - Tim S. Doherty
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building A08, Camperdown, New South Wales 2006, Australia
| | - Peter J. S. Fleming
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange Agricultural Institute, 1447 Forest Road, Orange, New South Wales 2800, Australia
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
- Institute for Agriculture and the Environment, Centre for Sustainable Agricultural Systems, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.
| | - Thomas M. Newsome
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building A08, Camperdown, New South Wales 2006, Australia
| | - Russell Palmer
- Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia
| | - Jim A. Thompson
- Queensland Museum Network, PO Box 3300, South Brisbane BC, Queensland 4101, Australia
| | - John C. Z. Woinarski
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory 0909, Australia
| |
Collapse
|
8
|
Mo M, Mo E. Frequency and Distribution of Reports of Free-living Green Iguanas (Iguana iguana) in Hong Kong. CURRENT HERPETOLOGY 2022. [DOI: 10.5358/hsj.41.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Hernandez‐Santin L, Goldizen AW, Fisher DO. Northern quolls in the Pilbara persist in high‐quality habitat, despite a decline trajectory consistent with range eclipse by feral cats. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Lorna Hernandez‐Santin
- School of Biological Sciences University of Queensland St. Lucia Queensland Australia
- Centre for Mined Land Rehabilitation Sustainable Minerals Institute, University of Queensland St. Lucia Queensland Australia
| | - Anne W. Goldizen
- School of Biological Sciences University of Queensland St. Lucia Queensland Australia
| | - Diana O. Fisher
- School of Biological Sciences University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
10
|
Allmert T, Jeschke JM, Evans T. An assessment of the environmental and socio-economic impacts of alien rabbits and hares. AMBIO 2022; 51:1314-1329. [PMID: 34709588 PMCID: PMC8931149 DOI: 10.1007/s13280-021-01642-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/09/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Directly comparable data on the environmental and socio-economic impacts of alien species informs the effective prioritisation of their management. We used two frameworks, the Environmental Impact Classification for Alien Taxa (EICAT) and Socio-Economic Impact Classification for Alien Taxa (SEICAT), to create a unified dataset on the severity and type of impacts caused by alien leporids (rabbits and hares). Literature was reviewed to collate impact data, which was categorised following EICAT and SEICAT guidelines. We aimed to use these data to identify: (1) alien leporid species with severe impacts, (2) their impact mechanisms, (3) the native species and local communities vulnerable to impacts and (4) knowledge gaps. Native species from a range of taxonomic groups were affected by environmental impacts which tended to be more damaging than socio-economic impacts. Indirect environmental impacts were particularly damaging and underreported. No impact data were found for several alien leporid species.
Collapse
Affiliation(s)
- Tom Allmert
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
- Present Address: Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | - Jonathan M. Jeschke
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | - Thomas Evans
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| |
Collapse
|
11
|
Rendall AR, Sutherland DR, Cooke R, White JG. Does the foraging ecology of feral cats change after the eradication of foxes? Biol Invasions 2022. [DOI: 10.1007/s10530-021-02718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Harrison PA, Davidson NJ, Bailey TG, Jones M, Gilfedder L, Bridle K, Bowman DMJS, Baker TP, Richardson BJ, Wallis L, Potts BM. A decade of restoring a temperate woodland: Lessons learned and future directions. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Jones ME, Bain GC, Hamer RP, Proft KM, Gardiner RZ, Dixon KJ, Kittipalawattanapol K, Zepeda de Alba AL, Ranyard CE, Munks SA, Barmuta LA, Burridge CP, Johnson CN, Davidson NJ. Research supporting restoration aiming to make a fragmented landscape ‘functional’ for native wildlife. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Davidson NJ, Bailey TG, Burgess S. Restoring the Midlands of Tasmania: An introduction. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Davidson NJ, Bailey TG, Burgess S, Potts BM. New approaches for revegetating agricultural landscapes to provide connectivity for wildlife: The example of the Tasmanian Midlands, Australia. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Kittipalawattanapol K, Jones ME, Barmuta LA, Bain G. Assessing the value of restoration plantings for wildlife in a temperate agricultural landscape. Restor Ecol 2021. [DOI: 10.1111/rec.13470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Menna E. Jones
- School of Natural Sciences University of Tasmania Hobart Tasmania 7005 Australia
| | - Leon A. Barmuta
- School of Natural Sciences University of Tasmania Hobart Tasmania 7005 Australia
| | - Glen Bain
- School of Natural Sciences University of Tasmania Hobart Tasmania 7005 Australia
| |
Collapse
|
17
|
Hamer RP, Andersen GE, Hradsky BA, Troy SN, Gardiner RZ, Johnson CN, Jones ME. Differing effects of productivity on home-range size and population density of a native and an invasive mammalian carnivore. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr20134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|