1
|
Davis AK, Croy JR, Snyder WE. Dramatic recent declines in the size of monarch butterfly ( Danaus plexippus) roosts during fall migration. Proc Natl Acad Sci U S A 2024; 121:e2410410121. [PMID: 39405357 PMCID: PMC11513899 DOI: 10.1073/pnas.2410410121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 10/30/2024] Open
Abstract
The conservation status of monarch butterflies in North America is a topic of intense scrutiny and debate. It is clear that winter colonies in Mexico are declining, yet some recent studies suggest that summer breeding populations are relatively stable and similar to historical abundances. One possible explanation for these discordant patterns is that fall migration success has been recently disrupted. Here, we use a relatively unexplored citizen-scientist dataset on the size of monarch "roosts," which are resting aggregations on vegetation, to infer changes in monarch abundance along the fall migration route over the last 17 y. We found that the timing of migration remained relatively unchanged while the flyway has generally become warmer and greener. Warmer and greener conditions were associated with larger roosts, yet we found steady, dramatic declines in roost sizes through time that were independent of climate and landscape factors. Roost sizes have declined as much as 80%, with losses increasing from north to south along the migration route. These findings suggest that failure during the fall migration could explain the apparent drop in monarch numbers from summer breeding to overwintering populations. This in turn suggests that conservation efforts that support fall migration success are most needed, such as providing high quality nectar plants along the migration route or limiting the planting of nonnative milkweeds that enhance monarch parasite loads. Overall, it appears the fall migration of monarch butterflies is under imminent threat, even if the species' overall survival is not.
Collapse
Affiliation(s)
- Andrew K. Davis
- Odum School of Ecology, University of Georgia, Athens, GA30602
| | - Jordan R. Croy
- Department of Entomology, University of Georgia, Athens, GA30602
| | | |
Collapse
|
2
|
James DG. Monarch Butterflies in Western North America: A Holistic Review of Population Trends, Ecology, Stressors, Resilience and Adaptation. INSECTS 2024; 15:40. [PMID: 38249046 PMCID: PMC10817040 DOI: 10.3390/insects15010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Monarch butterfly populations in western North America suffered a substantial decline, from millions of butterflies overwintering in California in the 1980s to less than 400,000 at the beginning of the 21st century. The introduction of neonicotinoid insecticides in the mid-1990s and their subsequent widespread use appears to be the most likely major factor behind this sudden decline. Habitat loss and unfavorable climates (high temperatures, aridity, and winter storms) have also played important and ongoing roles. These factors kept overwintering populations stable but below 300,000 during 2001-2017. Late winter storm mortality and consequent poor spring reproduction drove winter populations to less than 30,000 butterflies during 2018-2019. Record high temperatures in California during the fall of 2020 appeared to prematurely terminate monarch migration, resulting in the lowest overwintering population (1899) ever recorded. Many migrants formed winter-breeding populations in urban areas. Normal seasonal temperatures in the autumns of 2021 and 2022 enabled overwintering populations to return to around the 300,000 level, characteristic of the previous two decades. Natural enemies (predators, parasitoids, parasites, and pathogens) may be important regional or local drivers at times but they are a consistent and fundamental part of monarch ecology. Human interference (capture, rearing) likely has the least impact on monarch populations. The rearing of monarch caterpillars, particularly by children, is an important human link to nature that has positive ramifications for insect conservation beyond monarch butterflies and should be encouraged.
Collapse
Affiliation(s)
- David G James
- Department of Entomology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350, USA
| |
Collapse
|
3
|
Tenger-Trolander A. Environmental and genetic effects of captivity - are there lessons for monarch butterfly conservation? CURRENT OPINION IN INSECT SCIENCE 2023; 59:101088. [PMID: 37500011 DOI: 10.1016/j.cois.2023.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Rearing monarch butterflies in captivity for later release is a popular but contentious activity due to concerns about its potential negative effects on the wild population. In this review, I discuss how captive rearing and breeding could impact monarch fitness in the wild, the current evidence for such impacts in monarchs and other captive-reared/released organisms, and how this should inform our efforts to conserve monarchs and other species.
Collapse
|
4
|
Beetz MJ, Kraus C, El Jundi B. Neural representation of goal direction in the monarch butterfly brain. Nat Commun 2023; 14:5859. [PMID: 37730704 PMCID: PMC10511513 DOI: 10.1038/s41467-023-41526-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Neural processing of a desired moving direction requires the continuous comparison between the current heading and the goal direction. While the neural basis underlying the current heading is well-studied, the coding of the goal direction remains unclear in insects. Here, we used tetrode recordings in tethered flying monarch butterflies to unravel how a goal direction is represented in the insect brain. While recording, the butterflies maintained robust goal directions relative to a virtual sun. By resetting their goal directions, we found neurons whose spatial tuning was tightly linked to the goal directions. Importantly, their tuning was unaffected when the butterflies changed their heading after compass perturbations, showing that these neurons specifically encode the goal direction. Overall, we here discovered invertebrate goal-direction neurons that share functional similarities to goal-direction cells reported in mammals. Our results give insights into the evolutionarily conserved principles of goal-directed spatial orientation in animals.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Christian Kraus
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Basil El Jundi
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Tenger‐Trolander A, Julick CR, Lu W, Green DA, Montooth KL, Kronforst MR. Seasonal plasticity in morphology and metabolism differs between migratory North American and resident Costa Rican monarch butterflies. Ecol Evol 2023; 13:e9796. [PMID: 36844673 PMCID: PMC9943933 DOI: 10.1002/ece3.9796] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/24/2023] Open
Abstract
Environmental heterogeneity in temperate latitudes is expected to maintain seasonally plastic life-history strategies that include the tuning of morphologies and metabolism that support overwintering. For species that have expanded their ranges into tropical latitudes, it is unclear the extent to which the capacity for plasticity will be maintained or will erode with disuse. The migratory generations of the North American (NA) monarch butterfly Danaus plexippus lead distinctly different lives from their summer generation NA parents and their tropical descendants living in Costa Rica (CR). NA migratory monarchs postpone reproduction, travel thousands of kilometers south to overwinter in Mexico, and subsist on little food for months. Whether recently dispersed populations of monarchs such as those in Costa Rica, which are no longer subject to selection imposed by migration, retain ancestral seasonal plasticity is unclear. To investigate the differences in seasonal plasticity, we reared the NA and CR monarchs in summer and autumn in Illinois, USA, and measured the seasonal reaction norms for aspects of morphology and metabolism related to flight. NA monarchs were seasonally plastic in forewing and thorax size, increasing wing area and thorax to body mass ratio in autumn. While CR monarchs increased thorax mass in autumn, they did not increase the area of the forewing. NA monarchs maintained similar resting and maximal flight metabolic rates across seasons. However, CR monarchs had elevated metabolic rates in autumn. Our findings suggest that the recent expansion of monarchs into habitats that support year-round breeding may be accompanied by (1) the loss of some aspects of morphological plasticity as well as (2) the underlying physiological mechanisms that maintain metabolic homeostasis in the face of temperature heterogeneity.
Collapse
Affiliation(s)
- Ayşe Tenger‐Trolander
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinoisUSA
- Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Cole R. Julick
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Wei Lu
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinoisUSA
| | | | - Kristi L. Montooth
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | | |
Collapse
|
6
|
Peller T, Guichard F, Altermatt F. The significance of partial migration for food web and ecosystem dynamics. Ecol Lett 2023; 26:3-22. [PMID: 36443028 DOI: 10.1111/ele.14143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/30/2022] [Indexed: 11/30/2022]
Abstract
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.
Collapse
Affiliation(s)
- Tianna Peller
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Eawag: Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
7
|
Parlin AF, Stratton SM, Guerra PA. Oriented migratory flight at night: Consequences of nighttime light pollution for monarch butterflies. iScience 2022; 25:104310. [PMID: 35573206 PMCID: PMC9097705 DOI: 10.1016/j.isci.2022.104310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022] Open
Abstract
We show that light trespass—a form of nighttime light pollution (NLP)—elicits normal daytime clock-mediated migratory behavior in fall monarch butterflies during their night-cycle. In controlled indoor flight simulator studies isolating the role of NLP on the expression of oriented migratory flight using a time-compensated sun compass,a full-spectrum light source consistent with lights used outdoors at night by the public,triggered proper fall directional flight at night in monarchs. Monarchs remained quiescent when initially placed in the flight simulator in the dark, but flight was immediately triggered when our light source was turned on. This nighttime behavior was identical to that seen in outdoor free-flying fall conspecifics during the day. The light source provided directional cues equivalent to those provided by the sun and could either phase-advance or phase-delay monarchs. Our study highlights the negative consequences of NLP on diurnal animals, especially those that rely on clock-mediated behavior. Nighttime light pollution can disturb diurnal migratory monarch butterflies Exposure to this pollution induces abnormal activity in normally quiescent monarchs This pollution acts as sensory noise that perturbs the circadian clock of monarchs Conservation should consider susceptibility of habitat to nighttime light pollution
Collapse
Affiliation(s)
- Adam F. Parlin
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
| | - Samuel M. Stratton
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 N University Avenue, Ann Arbor, MI 48109, USA
| | - Patrick A. Guerra
- Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA
- Corresponding author
| |
Collapse
|
8
|
Villa SM, Kelly KP, Hollimon MG, Protil KJ, de Roode JC. Lack of inbreeding avoidance during mate selection in migratory monarch butterflies. Behav Processes 2022; 198:104630. [PMID: 35381312 PMCID: PMC10375862 DOI: 10.1016/j.beproc.2022.104630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
Inbreeding is generally thought to have negative consequences for organismal health. However, despite the potential fitness effects, it remains surprisingly common among wild populations. In many cases, the complex factors that underlie mating dynamics make predicting whether individuals should or do avoid inbreeding quite challenging. One reason inbreeding may persist among species is that the likelihood of encountering relatives can be rare. Thus, even if inbreeding has severe consequences, selection to avoid mating with kin will be weak in species that are highly dispersed. Here we investigated if migratory monarch butterflies (Danaus plexippus), which are famous for their dispersal ability, actively avoid inbreeding. We found that neither female nor male monarchs choose mates based on relatedness. These results support the hypothesis that movement ecology can mask the deleterious effects of inbreeding and relax selection for active inbreeding avoidance behaviors. Overall, our data add to the growing list of studies showing that inbreeding avoidance is not the behavioral "default" for most species. We also highlight the implications that inbreeding may have on the declining populations of this iconic butterfly.
Collapse
|
9
|
Pocius VM, Majewska AA, Freedman MG. The Role of Experiments in Monarch Butterfly Conservation: A Review of Recent Studies and Approaches. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2022; 115:10-24. [PMID: 35069967 PMCID: PMC8764570 DOI: 10.1093/aesa/saab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 06/14/2023]
Abstract
Monarch butterflies (Danaus plexippus) (Lepidoptera Danaidae Danaus plexippus (Linnaeus)) are an iconic species of conservation concern due to declines in the overwintering colonies over the past twenty years. Because of this downward trend in overwintering numbers in both California and Mexico, monarchs are currently considered 'warranted-but-precluded' for listing under the Endangered Species Act. Monarchs have a fascinating life history and have become a model system in chemical ecology, migration biology, and host-parasite interactions, but many aspects of monarch biology important for informing conservation practices remain unresolved. In this review, we focus on recent advances using experimental and genetic approaches that inform monarch conservation. In particular, we emphasize three areas of broad importance, which could have an immediate impact on monarch conservation efforts: 1) breeding habitat and host plant use, 2) natural enemies and exotic caterpillar food plants, and 3) the utility of genetic and genomic approaches for understanding monarch biology and informing ongoing conservation efforts. We also suggest future studies in these areas that could improve our understanding of monarch behavior and conservation.
Collapse
Affiliation(s)
- Victoria M Pocius
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | | | - Micah G Freedman
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Davis AK. Captive-reared migratory monarchs fly in the wrong direction: a critique of Wilcox et al. CONSERVATION PHYSIOLOGY 2021; 9:coab063. [PMID: 34413978 PMCID: PMC8372217 DOI: 10.1093/conphys/coab063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/30/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Andrew K Davis
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Freedman MG, Roode JC, Forister ML, Kronforst MR, Pierce AA, Schultz CB, Taylor OR, Crone EE. Are eastern and western monarch butterflies distinct populations? A review of evidence for ecological, phenotypic, and genetic differentiation and implications for conservation. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Micah G. Freedman
- Department of Ecology & Evolution University of Chicago Chicago Illinois USA
- Center for Population Biology University of California, Davis Davis California USA
| | | | | | - Marcus R. Kronforst
- Department of Ecology & Evolution University of Chicago Chicago Illinois USA
| | - Amanda A. Pierce
- United States Environmental Protection Agency Washington District of Columbia USA
| | - Cheryl B. Schultz
- School of Biological Sciences, Washington State University Vancouver Washington USA
| | - Orley R. Taylor
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas USA
| | | |
Collapse
|
12
|
Abstract
AbstractUnderstanding the genetic architecture of complex trait adaptation in natural populations requires the continued development of tractable models that explicitly confront organismal and environmental complexity. A decade of high-throughput sequencing-based investigations into the genomic basis of migration points to an integrative framework that incorporates quantitative genetics, evolutionary developmental biology, phenotypic plasticity, and epigenetics to explain migration evolution. In this perspective, I argue that the transcontinental migration of the monarch butterfly (Danaus plexippus) can serve as a compelling system to study the mechanism of evolutionary lability of a complex trait. Monarchs show significant phenotypic and genotypic diversity across their global range, with phenotypic switching that allows for explicit study of evolutionary lability. A developmental approach for elucidating how migratory traits are generated and functionally integrated will be important for understanding the evolution of monarch migration traits. I propose a plasticity threshold model to describe migration lability, and I describe novel functional techniques that will help resolve open questions and model assumptions. I conclude by considering the relationships between adaptive genetic architecture, anthropogenic climate change, and conservation management practice and the timeliness of the monarch migration model to illuminate these connections given the rapid decline of the North American migration.
Collapse
|
13
|
James DG, Kappen L. Further Insights on the Migration Biology of Monarch Butterflies, Danaus plexippus (Lepidoptera: Nymphalidae) from the Pacific Northwest. INSECTS 2021; 12:161. [PMID: 33672834 PMCID: PMC7917764 DOI: 10.3390/insects12020161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
The fall migration of monarch butterflies, Danaus plexippus (L.), in the Pacific Northwest was studied during 2017-2019 by tagging 14,040 captive-reared and 450 wild monarchs. One hundred and twenty-two captive-reared monarchs (0.87%) were recovered at distances averaging 899.9 ± 98.6 km for Washington-released and 630.5 ± 19.9 km for Oregon-released monarchs. The greatest straight-line release to recovery distance was 1392.1 km. A mean travel rate of 20.7 ± 2.2 km/day and maximum travel of 46.1 km/day were recorded. Recovery rates were greater for Oregon-released monarchs (0.92%) than Washington-released (0.34%) or Idaho-released monarchs (0.30%). Most monarchs (106/122) were recovered SSW-S-SSE in California, with 82 at 18 coastal overwintering sites. Two migrants from Oregon were recovered just weeks after release ovipositing in Santa Barbara and Palo Alto, CA. Two migrants released in central Washington recovered up to 360.0 km to the SE, and recoveries from Idaho releases to the S and SE suggests that some Pacific Northwest migrants fly to an alternative overwintering destination. Monarchs released in southern Oregon into smoky, poor quality air appeared to be as successful at reaching overwintering sites and apparently lived just as long as monarchs released into non-smoky, good quality air. Migration and lifespan for monarchs infected with the protozoan parasite, Ophryocystis elektroscirrha (McLaughlin and Myers), appeared to be similar to the migration and survival of uninfected monarchs, although data are limited. Our data improve our understanding of western monarch migration, serving as a basis for further studies and providing information for conservation planning.
Collapse
Affiliation(s)
- David G. James
- Irrigated Agriculture Research and Extension Center, Department of Entomology, Washington State University, Prosser, WA 99350, USA;
| | | |
Collapse
|
14
|
Wilcox AAE, Newman AEM, Raine NE, Mitchell GW, Norris DR. Captive-reared migratory monarch butterflies show natural orientation when released in the wild. CONSERVATION PHYSIOLOGY 2021; 9:coab032. [PMID: 34386237 PMCID: PMC8355447 DOI: 10.1093/conphys/coab032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/27/2021] [Accepted: 04/14/2021] [Indexed: 05/08/2023]
Abstract
Eastern North American migratory monarch butterflies (Danaus plexippus) have faced sharp declines over the past two decades. Captive rearing of monarch butterflies is a popular and widely used approach for both public education and conservation. However, recent evidence suggests that captive-reared monarchs may lose their capacity to orient southward during fall migration to their Mexican overwintering sites, raising questions about the value and ethics of this activity undertaken by tens of thousands of North American citizens, educators, volunteers and conservationists each year. We raised offspring of wild-caught monarchs on swamp milkweed (Asclepias incarnata) indoors at 29°C during the day and 23°C at night (~77% RH, 18L:6D), and after eclosion, individuals were either tested in a flight simulator or radio tracked in the wild using an array of automated telemetry towers. While 26% (10/39) of monarchs tested in the flight simulator showed a weakly concentrated southward orientation, 97% (28/29) of the radio-tracked individuals that could be reliably detected by automated towers flew in a south to southeast direction from the release site and were detected at distances of up to 200 km away. Our results suggest that, although captive rearing of monarch butterflies may cause temporary disorientation, proper orientation is likely established after exposure to natural skylight cues.
Collapse
Affiliation(s)
- Alana A E Wilcox
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Corresponding author: Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Greg W Mitchell
- Wildlife Research Division, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - D Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Nature Conservancy of Canada, 245 Eglington Avenue East, Toronto, Ontario, M4P 3J1, Canada
| |
Collapse
|