1
|
McCartan N, Piggott J, DiCarlo S, Luijckx P. Cold snaps lead to a 5-fold increase or a 3-fold decrease in disease proliferation depending on the baseline temperature. BMC Biol 2024; 22:250. [PMID: 39472912 PMCID: PMC11523827 DOI: 10.1186/s12915-024-02041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Climate change is driving increased extreme weather events that can impact ecology by moderating host-pathogen interactions. To date, few studies have explored how cold snaps affect disease prevalence and proliferation. Using the Daphnia magna-Ordospora colligata host-parasite system, a popular model system for environmentally transmitted diseases, the amplitude and duration of cold snaps were manipulated at four baseline temperatures, 10 days post-exposure, with O. colligata fitness recorded at the individual level. RESULTS Cold snaps induced a fivefold increase or a threefold decrease in parasite burden relative to baseline temperature, with complex nuances and varied outcomes resulting from different treatment combinations. Both amplitude and duration can interact with the baseline temperature highlighting the complexity and baseline dependence of cold snaps. Furthermore, parasite fitness, i.e., infection prevalence and burden, were simultaneously altered in opposite directions in the same cold snap treatment. CONCLUSIONS We found that cold snaps can yield complicated outcomes that are unique from other types of temperature variation (for example, heatwaves). These results underpin the challenges and complexity in understanding and predicting how climate and extreme weather may alter disease under global change.
Collapse
Affiliation(s)
- Niamh McCartan
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Jeremy Piggott
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Sadie DiCarlo
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- Carleton College, Sayles Hill Campus Center, North College Street, Northfield, MN, 55057, USA
| | - Pepijn Luijckx
- Discipline of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Halle S, Hirshberg O, Manzi F, Wolinska J, Ben-Ami F. Coinfection frequency in water flea populations is a mere reflection of parasite diversity. Commun Biol 2024; 7:559. [PMID: 38734859 PMCID: PMC11088698 DOI: 10.1038/s42003-024-06176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
In nature, parasite species often coinfect the same host. Yet, it is not clear what drives the natural dynamics of coinfection prevalence. The prevalence of coinfections might be affected by interactions among coinfecting species, or simply derive from parasite diversity. Identifying the relative impact of these parameters is crucial for understanding patterns of coinfections. We studied the occurrence and likelihood of coinfections in natural populations of water fleas (Daphnia magna). Coinfection prevalence was within the bounds expected by chance and parasite diversity had a strong positive effect on the likelihood of coinfections. Additionally, coinfection prevalence increased over the season and became as common as a single infection. Our results demonstrate how patterns of coinfection, and particularly their temporal variation, are affected by overlapping epidemics of different parasites. We suggest that monitoring parasite diversity can help predict where and when coinfection prevalence will be high, potentially leading to increased health risks to their hosts.
Collapse
Affiliation(s)
- Snir Halle
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Ofir Hirshberg
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Florent Manzi
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Frida Ben-Ami
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
3
|
O'Keeffe FE, Pendleton RC, Holland CV, Luijckx P. Increased virulence due to multiple infection in Daphnia leads to limited growth in 1 of 2 co-infecting microsporidian parasites. Parasitology 2024; 151:58-67. [PMID: 37981808 PMCID: PMC10941049 DOI: 10.1017/s0031182023001130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Recent outbreaks of various infectious diseases have highlighted the ever-present need to understand the drivers of the outbreak and spread of disease. Although much of the research investigating diseases focuses on single infections, natural systems are dominated by multiple infections. These infections may occur simultaneously, but are often acquired sequentially, which may alter the outcome of infection. Using waterfleas (Daphnia magna) as a model organism, we examined the outcome of sequential and simultaneous multiple infections with 2 microsporidian parasites (Ordospora colligata and Hamiltosporidium tvaerminnensis) in a fully factorial design with 9 treatments and 30 replicates. We found no differences between simultaneous and sequential infections. However, H. tvaerminnensis fitness was impeded by multiple infection due to increased host mortality, which gave H. tvaerminnensis less time to grow. Host fecundity was also reduced across all treatments, but animals infected with O. colligata at a younger age produced the fewest offspring. As H. tvaerminnensis is both horizontally and vertically transmitted, this reduction in offspring may have further reduced H. tvaerminnensis fitness in co-infected treatments. Our findings suggest that in natural populations where both species co-occur, H. tvaerminnensis may evolve to higher levels of virulence following frequent co-infection by O. colligata.
Collapse
Affiliation(s)
- Floriane E. O'Keeffe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Rebecca C. Pendleton
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Pepijn Luijckx
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Shocket MS. Fluctuating temperatures have a surprising effect on disease transmission. PLoS Biol 2023; 21:e3002288. [PMID: 37703528 PMCID: PMC10491394 DOI: 10.1371/journal.pbio.3002288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Theory predicts that temperature fluctuations should reduce performance near an organism's thermal optimum. A new study in PLOS Biology found fluctuations increased parasite transmission instead, highlighting questions about how climate change will impact infectious diseases.
Collapse
Affiliation(s)
- Marta S. Shocket
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
5
|
Ismail S, Farner J, Couper L, Mordecai E, Lyberger K. Temperature and intraspecific variation affect host-parasite interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554680. [PMID: 37662401 PMCID: PMC10473705 DOI: 10.1101/2023.08.24.554680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Parasites play key roles in regulating aquatic ecosystems, yet the impact of climate warming on their ecology and disease transmission remains poorly understood. Isolating the effect of warming is challenging as transmission involves multiple interacting species and potential intraspecific variation in temperature responses of one or more of these species. Here, we leverage a wide-ranging mosquito species and its facultative parasite as a model system to investigate the impact of temperature on host-parasite interactions and disease transmission. We conducted a common garden experiment measuring parasite growth and infection rates at seven temperatures using 12 field-collected parasite populations and a single mosquito population. We find that both free-living growth rates and infection rates varied with temperature, which were highest at 18-24.5°C and 13°C, respectively. Further, we find intraspecific variation in peak performance temperature reflecting patterns of local thermal adaptation-parasite populations from warmer source environments typically had higher thermal optima for free-living growth rates. For infection rates, we found a significant interaction between parasite population and nonlinear effects of temperature. These findings underscore the need to consider both host and parasite thermal responses, as well as intraspecific variation in thermal responses, when predicting the impacts of climate change on disease in aquatic ecosystems.
Collapse
|
6
|
Rogers LA, Moore Z, Daigle A, Luijckx P, Krkošek M. Experimental evidence of size-selective harvest and environmental stochasticity effects on population demography, fluctuations and non-linearity. Ecol Lett 2023; 26:586-596. [PMID: 36802095 DOI: 10.1111/ele.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 02/21/2023]
Abstract
Theory and analyses of fisheries data sets indicate that harvesting can alter population structure and destabilise non-linear processes, which increases population fluctuations. We conducted a factorial experiment on the population dynamics of Daphnia magna in relation to size-selective harvesting and stochasticity of food supply. Harvesting and stochasticity treatments both increased population fluctuations. Timeseries analysis indicated that fluctuations in control populations were non-linear, and non-linearity increased substantially in response to harvesting. Both harvesting and stochasticity induced population juvenescence, but harvesting did so via the depletion of adults, whereas stochasticity increased the abundance of juveniles. A fitted fisheries model indicated that harvesting shifted populations towards higher reproductive rates and larger-magnitude damped oscillations that amplify demographic noise. These findings provide experimental evidence that harvesting increases the non-linearity of population fluctuations and that both harvesting and stochasticity increase population variability and juvenescence.
Collapse
Affiliation(s)
- Luke A Rogers
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zachary Moore
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Abby Daigle
- Gulf Fisheries Centre, Fisheries and Oceans Canada, Moncton, New Brunswick, Canada
| | - Pepijn Luijckx
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, College Green, Dublin 2, Dublin, Ireland
| | - Martin Krkošek
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Hector TE, Gehman ALM, King KC. Infection burdens and virulence under heat stress: ecological and evolutionary considerations. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220018. [PMID: 36744570 PMCID: PMC9900716 DOI: 10.1098/rstb.2022.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/17/2022] [Indexed: 02/07/2023] Open
Abstract
As a result of global change, hosts and parasites (including pathogens) are experiencing shifts in their thermal environment. Despite the importance of heat stress tolerance for host population persistence, infection by parasites can impair a host's ability to cope with heat. Host-parasite eco-evolutionary dynamics will be affected if infection reduces host performance during heating. Theory predicts that within-host parasite burden (replication rate or number of infecting parasites per host), a key component of parasite fitness, should correlate positively with virulence-the harm caused to hosts during infection. Surprisingly, however, the relationship between within-host parasite burden and virulence during heating is often weak. Here, we describe the current evidence for the link between within-host parasite burden and host heat stress tolerance. We consider the biology of host-parasite systems that may explain the weak or absent link between these two important host and parasite traits during hot conditions. The processes that mediate the relationship between parasite burden and host fitness will be fundamental in ecological and evolutionary responses of host and parasites in a warming world. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- T. E. Hector
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - A.-L. M. Gehman
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC Canada, V0N 1M0
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC Canada, V6T 1Z4
| | - K. C. King
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| |
Collapse
|
8
|
Sun SJ, Dziuba MK, Jaye RN, Duffy MA. Temperature modifies trait-mediated infection outcomes in a Daphnia-fungal parasite system. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220009. [PMID: 36744571 PMCID: PMC9900708 DOI: 10.1098/rstb.2022.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2023] Open
Abstract
One major concern related to climate change is that elevated temperatures will drive increases in parasite outbreaks. Increasing temperature is known to alter host traits and host-parasite interactions, but we know relatively little about how these are connected mechanistically-that is, about how warmer temperatures impact the relationship between epidemiologically relevant host traits and infection outcomes. Here, we used a zooplankton-fungus (Daphnia dentifera-Metschnikowia bicuspidata) disease system to experimentally investigate how temperature impacted physical barriers to infection and cellular immune responses. We found that Daphnia reared at warmer temperatures had more robust physical barriers to infection but decreased cellular immune responses during the initial infection process. Infected hosts at warmer temperatures also suffered greater reductions in fecundity and lifespan. Furthermore, the relationship between a key trait-gut epithelium thickness, a physical barrier-and the likelihood of terminal infection reversed at warmer temperatures. Together, our results highlight the complex ways that temperatures can modulate host-parasite interactions and show that different defense components can have qualitatively different responses to warmer temperatures, highlighting the importance of considering key host traits when predicting disease dynamics in a warmer world. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Syuan-Jyun Sun
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- International Degree Program in Climate Change and Sustainable Development, National Taiwan University, Taipei 10617, Taiwan
| | - Marcin K. Dziuba
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Riley N. Jaye
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Kirk D, O’Connor MI, Mordecai EA. Scaling effects of temperature on parasitism from individuals to populations. J Anim Ecol 2022; 91:2087-2102. [PMID: 35900837 PMCID: PMC9532350 DOI: 10.1111/1365-2656.13786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
Parasitism is expected to change in a warmer future, but whether warming leads to substantial increases in parasitism remains unclear. Understanding how warming effects on parasitism in individual hosts (e.g. parasite load) translate to effects on population-level parasitism (e.g. prevalence, R0 ) remains a major knowledge gap. We conducted a literature review and identified 24 host-parasite systems that had information on the temperature dependence of parasitism at both individual host and host population levels: 13 vector-borne systems and 11 environmentally transmitted systems. We found a strong positive correlation between the thermal optima of individual- and population-level parasitism, although several of the environmentally transmitted systems exhibited thermal optima >5°C apart between individual and population levels. Parasitism thermal optima were close to vector performance thermal optima in vector-borne systems but not hosts in environmentally transmitted systems, suggesting these thermal mismatches may be more common in certain types of host-parasite systems. We also adapted and simulated simple models for both types of transmission modes and found the same pattern across the two modes: thermal optima were more strongly correlated across scales when there were more traits linking individual- to population-level processes. Generally, our results suggest that information on the temperature dependence, and specifically the thermal optimum, at either the individual or population level should provide a useful-although not quantitatively exact-baseline for predicting temperature dependence at the other level, especially in vector-borne parasite systems. Environmentally transmitted parasitism may operate by a different set of rules, in which temperature dependence is decoupled in some systems, requiring the need for trait-based studies of temperature dependence at individual and population levels.
Collapse
Affiliation(s)
- Devin Kirk
- Department of Biology, Stanford University, Stanford, USA
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Mary I. O’Connor
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
10
|
Kunze C, Luijckx P, Jackson AL, Donohue I. Alternate patterns of temperature variation bring about very different disease outcomes at different mean temperatures. eLife 2022; 11:e72861. [PMID: 35164901 PMCID: PMC8846586 DOI: 10.7554/elife.72861] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
The dynamics of host-parasite interactions are highly temperature-dependent and may be modified by increasing frequency and intensity of climate-driven heat events. Here, we show that altered patterns of temperature variance lead to an almost order-of-magnitude shift in thermal performance of host and pathogen life-history traits over and above the effects of mean temperature and, moreover, that different temperature regimes affect these traits differently. We found that diurnal fluctuations of ±3°C lowered infection rates and reduced spore burden compared to constant temperatures in our focal host Daphnia magna exposed to the microsporidium parasite Ordospora colligata. In contrast, a 3-day heatwave (+6°C) did not affect infection rates, but increased spore burden (relative to constant temperatures with the same mean) at 16°C, while reducing burden at higher temperatures. We conclude that changing patterns of climate variation, superimposed on shifts in mean temperatures due to global warming, may have profound and unanticipated effects on disease dynamics.
Collapse
Affiliation(s)
- Charlotte Kunze
- Institute for Chemistry and Biology of the Marine Environment [ICBM], Carl von Ossietzky University of OldenburgOldenburgGermany
- Department of Zoology, School of Natural Sciences, Trinity College DublinDublinIreland
| | - Pepijn Luijckx
- Department of Zoology, School of Natural Sciences, Trinity College DublinDublinIreland
| | - Andrew L Jackson
- Department of Zoology, School of Natural Sciences, Trinity College DublinDublinIreland
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College DublinDublinIreland
| |
Collapse
|
11
|
Bruijning M, Fossen EIF, Jongejans E, Vanvelk H, Raeymaekers JAM, Govaert L, Brans KI, Einum S, De Meester L. Host–parasite dynamics shaped by temperature and genotype: Quantifying the role of underlying vital rates. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marjolein Bruijning
- Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA
- Department of Animal Ecology and Physiology Radboud University Nijmegen The Netherlands
| | - Erlend I. F. Fossen
- Centre for Biodiversity Dynamics Department of Biology NTNUNorwegian University of Science and Technology Trondheim Norway
- Animal Ecology Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Eelke Jongejans
- Department of Animal Ecology and Physiology Radboud University Nijmegen The Netherlands
- Animal Ecology NIOO‐KNAW Wageningen The Netherlands
| | - Héléne Vanvelk
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | | | - Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
- Department of Aquatic Ecology Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Kristien I. Brans
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Sigurd Einum
- Centre for Biodiversity Dynamics Department of Biology NTNUNorwegian University of Science and Technology Trondheim Norway
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Leibniz Institüt für Gewasserökologie und Binnenfischerei (IGB) Berlin Germany
- Institute of Biology Freie Universität Berlin Berlin Germany
| |
Collapse
|
12
|
Kirk D, Luijckx P, Jones N, Krichel L, Pencer C, Molnár P, Krkošek M. Experimental evidence of warming-induced disease emergence and its prediction by a trait-based mechanistic model. Proc Biol Sci 2020; 287:20201526. [PMID: 33049167 DOI: 10.1098/rspb.2020.1526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Predicting the effects of seasonality and climate change on the emergence and spread of infectious disease remains difficult, in part because of poorly understood connections between warming and the mechanisms driving disease. Trait-based mechanistic models combined with thermal performance curves arising from the metabolic theory of ecology (MTE) have been highlighted as a promising approach going forward; however, this framework has not been tested under controlled experimental conditions that isolate the role of gradual temporal warming on disease dynamics and emergence. Here, we provide experimental evidence that a slowly warming host-parasite system can be pushed through a critical transition into an epidemic state. We then show that a trait-based mechanistic model with MTE functional forms can predict the critical temperature for disease emergence, subsequent disease dynamics through time and final infection prevalence in an experimentally warmed system of Daphnia and a microsporidian parasite. Our results serve as a proof of principle that trait-based mechanistic models using MTE subfunctions can predict warming-induced disease emergence in data-rich systems-a critical step towards generalizing the approach to other systems.
Collapse
Affiliation(s)
- Devin Kirk
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Pepijn Luijckx
- School of Natural Sciences, Zoology Department, Trinity College Dublin, University of Dublin, Dublin, Republic of Ireland
| | - Natalie Jones
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Leila Krichel
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Clara Pencer
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Péter Molnár
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.,Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Martin Krkošek
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|