1
|
Sang H, Li Y, Tan S, Gao P, Wang B, Guo S, Luo S, Sun C. Conservation genomics analysis reveals recent population decline and possible causes in bumblebee Bombus opulentus. INSECT SCIENCE 2024; 31:1631-1644. [PMID: 38297451 DOI: 10.1111/1744-7917.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Bumblebees are a genus of pollinators (Bombus) that play important roles in natural ecosystem and agricultural production. Several bumblebee species have been recorded as under population decline, and the proportion of species experiencing population decline within subgenus Thoracobombus is higher than average. Bombus opulentus is 1 species in Thoracobombus, but little is known about its recent population dynamics. Here, we employed conservation genomics methods to investigate the population dynamics of B. opulentus during the recent past and identify the likely environmental factors that may cause population decline. Firstly, we placed the scaffold-level of B. opulentus reference genome sequence onto chromosome-level using Hi-C technique. Then, based on this reference genome and whole-genome resequencing data for 51 B. opulentus samples, we reconstructed the population structure and effective population size (Ne) trajectories of B. opulentus and identified genes that were under positive selection. Our results revealed that the collected B. opulentus samples could be divided into 2 populations, and 1 of them experienced a recent population decline; the declining population also exhibited lower genetic diversity and higher inbreeding levels. Genes related to high-temperature tolerance, immune response, and detoxication showed signals of positive selection in the declining population, suggesting that climate warming and pathogen/pesticide exposures may contribute to the decline of this B. opulentus population. Taken together, our study provided insights into the demography of B. opulentus populations and highlighted that populations of the same bumblebee species could have contrasting Ne trajectories and population decline could be caused by a combination of various stressors.
Collapse
Affiliation(s)
- Huiling Sang
- College of Life Sciences, Capital Normal University, Beijing, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yancan Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Shuxin Tan
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Pu Gao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Bei Wang
- Yan'an Beekeeping Experimental Station, Yan'an, Shannxi, China
| | - Shengnan Guo
- Hengshui center for Disease Prevention and Control, Hengshui, Hebei, China
| | - Shudong Luo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
2
|
Backenstose NJC, MacGuigan DJ, Osborne CA, Bernal MA, Thomas EK, Normandeau E, Yule DL, Stott W, Ackiss AS, Albert VA, Bernatchez L, Krabbenhoft TJ. Origin of the Laurentian Great Lakes fish fauna through upward adaptive radiation cascade prior to the Last Glacial Maximum. Commun Biol 2024; 7:978. [PMID: 39134631 PMCID: PMC11319351 DOI: 10.1038/s42003-024-06503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
The evolutionary histories of adaptive radiations can be marked by dramatic demographic fluctuations. However, the demographic histories of ecologically-linked co-diversifying lineages remain understudied. The Laurentian Great Lakes provide a unique system of two such radiations that are dispersed across depth gradients with a predator-prey relationship. We show that the North American Coregonus species complex ("ciscoes") radiated rapidly prior to the Last Glacial Maximum (80-90 kya), a globally warm period, followed by rapid expansion in population size. Similar patterns of demographic expansion were observed in the predator species, Lake Charr (Salvelinus namaycush), following a brief time lag, which we hypothesize was driven by predator-prey dynamics. Diversification of prey into deep water created ecological opportunities for the predators, facilitating their demographic expansion, which is consistent with an upward adaptive radiation cascade. This study provides a new timeline and environmental context for the origin of the Laurentian Great Lakes fish fauna, and firmly establishes this system as drivers of ecological diversification and rapid speciation through cyclical glaciation.
Collapse
Affiliation(s)
| | - Daniel J MacGuigan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Moisés A Bernal
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | | - Eric Normandeau
- Plateforme de bio-informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, G1V 0A6, Canada
| | - Daniel L Yule
- US Geological Survey, Lake Superior Biological Station, Great Lakes Science Center, Ashland, WI, USA
| | - Wendylee Stott
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Amanda S Ackiss
- US Geological Survey, Great Lakes Science Center, Ann Arbor, MI, USA
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Trevor J Krabbenhoft
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
- RENEW Institute, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
3
|
Qin SY, Zuo ZY, Xu SX, Liu J, Yang FM, Luo YH, Ye JW, Zhao Y, Rong J, Liu B, Ma PF, Li DZ. Anthropogenic disturbance driving population decline of a dominant tree in East Asia evergreen broadleaved forests over the last 11,000 years. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14180. [PMID: 37700668 DOI: 10.1111/cobi.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 09/14/2023]
Abstract
Current biodiversity loss is generally considered to have been caused by anthropogenic disturbance, but it is unclear when anthropogenic activities began to affect biodiversity loss. One hypothesis suggests it began with the Industrial Revolution, whereas others propose that anthropogenic disturbance has been associated with biodiversity decline since the early Holocene. To test these hypotheses, we examined the unique vegetation of evergreen broadleaved forests (EBLFs) in East Asia, where humans have affected landscapes since the early Holocene. We adopted a genomic approach to infer the demographic history of a dominant tree (Litsea elongata) of EBLFs. We used Holocene temperature and anthropogenic disturbance factors to calculate the correlation between these variables and the historical effective population size of L. elongata with Spearman statistics and integrated the maximum-entropy niche model to determine the impact of climate change and anthropogenic disturbance on fluctuation in its effective population size. We identified 9 well-defined geographic clades for the populations of L. elongata. Based on the estimated historical population sizes of these clades, all the populations contracted, indicating persistent population decline over the last 11,000 years. Demographic history of L. elongata and human population change, change in cropland use, and change in irrigated rice area were significantly negatively correlated, whereas climate change in the Holocene was not correlated with demographic history. Our results support the early human impact hypothesis and provide comprehensive evidence that early anthropogenic disturbance may contribute to the current biodiversity crisis in East Asia.
Collapse
Affiliation(s)
- Sheng-Yuan Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zheng-Yu Zuo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Shuang-Xiu Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Feng-Mao Yang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jun-Wei Ye
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yao Zhao
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Jun Rong
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, China
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
4
|
Yang S, Liu Y, Zhao X, Chen J, Li H, Liang H, Fan J, Zhou M, Wang S, Zhang X, Shi M, Han L, Yu M, Lu Y, Liu B, Xu Y, Lan T, Hou Z. Genomic exploration of the endangered oriental stork, Ciconia boyciana, sheds light on migration adaptation and future conservation. Gigascience 2024; 13:giae081. [PMID: 39435574 PMCID: PMC11494145 DOI: 10.1093/gigascience/giae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/27/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND The oriental stork, Ciconia boyciana, is an endangered migratory bird listed on the International Union for Conservation of Nature's Red List. The bird population has experienced a rapid decline in the past decades, with nest locations and stop-over sites largely degraded due to human-bird conflicts. Multipronged conservation efforts are required to secure the future of oriental storks. We propose that a thorough understanding of the genome-wide genetic background of this threatened bird species is critical to make future conservation strategies. FINDINGS In this study, the first chromosome-scale reference genome was presented for the oriental stork with high quality, contiguity, and accuracy. The assembled genome size was 1.24 Gb with a scaffold N50 of 103 Mb, and 1.23 Gb contigs (99.32%) were anchored to 35 chromosomes. Population genomic analysis did not show a genetic structure in the wild population. Genome-wide genetic diversity (π = 0.0012) of the oriental stork was at a moderate to high level among threatened bird species, and the inbreeding risk was also not significant (FROH = 5.56% ± 5.30%). Reconstruction of demographic history indicated a rapid recent population decline likely driven by human activities. Genes that were under positive selection associated with the migratory trait were identified in relation to the long-term potentiation, photoreceptor cell organization, circadian rhythm, muscle development, and energy metabolism, indicating the essential interplay between genetic and ecological adaptation. CONCLUSIONS Our study presents the first chromosome-scale genome assembly of the oriental stork and provides a genomic basis for understanding a genetic background of the oriental stork, the population's extinction risks, and the migratory characteristics, which will facilitate the decision of future conservation plans for this species.
Collapse
Affiliation(s)
- Shangchen Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Liu
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, Inner Mongolia, China
- Key Laboratory of Black Soil Protection and Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot 010031, Inner Mongolia, China
| | - Jin Chen
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Haimeng Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin 150040, China
| | - Hongrui Liang
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Jiale Fan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Shiqing Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Xiaotian Zhang
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Minhui Shi
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Mingyuan Yu
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Boyang Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yu Xu
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Tianming Lan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin 150040, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
5
|
Li S, Yeh C, Jang‐Liaw N, Chang S, Lin Y, Tsai C, Chiu C, Chen C, Ke H, Wang Q, Lu Y, Zheng K, Fan P, Zhang L, Liu Y. Low but highly geographically structured genomic diversity of East Asian Eurasian otters and its conservation implications. Evol Appl 2024; 17:e13630. [PMID: 38288030 PMCID: PMC10824276 DOI: 10.1111/eva.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/06/2023] [Accepted: 11/28/2023] [Indexed: 01/31/2024] Open
Abstract
Populations of Eurasian otters Lutra lutra, one of the most widely distributed apex predators in Eurasia, have been depleted mainly since the 1950s. However, a lack of information about their genomic diversity and how they are organized geographically in East Asia severely impedes our ability to monitor and conserve them in particular management units. Here, we re-sequenced and analyzed 20 otter genomes spanning continental East Asia, including a population at Kinmen, a small island off the Fujian coast, China. The otters form three genetic clusters (one of L. l. lutra in the north and two of L. l. chinensis in the south), which have diverged in the Holocene. These three clusters should be recognized as three conservation management units to monitor and manage independently. The heterozygosity of the East Asian otters is as low as that of the threatened carnivores sequenced. Historical effective population size trajectories inferred from genomic variations suggest that their low genomic diversity could be partially attributed to changes in the climate since the mid-Pleistocene and anthropogenic intervention since the Holocene. However, no evidence of genetic erosion, mutation load, or high level of inbreeding was detected in the presumably isolated Kinmen Island population. Any future in situ conservation efforts should consider this information for the conservation management units.
Collapse
Affiliation(s)
- Shou‐Hsien Li
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chia‐fen Yeh
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | | | - Shih‐Wei Chang
- Division of ZoologyEndemic Species Research InstituteNantouTaiwan
| | - Yu‐Hsiu Lin
- Division of ZoologyEndemic Species Research InstituteNantouTaiwan
| | - Cheng‐En Tsai
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chi‐Cheng Chiu
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | | | - Hui‐Ru Ke
- Genomics BioSci & Tech Co., Ltd.New Taipei CityTaiwan
| | - Qiaoyun Wang
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yiwei Lu
- Zhejiang Museum of Natural HistoryZhejiang Biodiversity Research CenterHangzhouChina
| | - Kaidan Zheng
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Pengfei Fan
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Lu Zhang
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology/School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
6
|
Intarapat S, Sukparangsi W, Gusev O, Sheng G. A Bird's-Eye View of Endangered Species Conservation: Avian Genomics and Stem Cell Approaches for Green Peafowl ( Pavo muticus). Genes (Basel) 2023; 14:2040. [PMID: 38002983 PMCID: PMC10671381 DOI: 10.3390/genes14112040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Aves ranks among the top two classes for the highest number of endangered and extinct species in the kingdom Animalia. Notably, the IUCN Red List classified the green peafowl as endangered. This highlights promising strategies using genetics and reproductive technologies for avian wildlife conservation. These platforms provide the capacity to predict population trends and enable the practical breeding of such species. The conservation of endangered avian species is facilitated through the application of genomic data storage and analysis. Storing the sequence is a form of biobanking. An analysis of sequence can identify genetically distinct individuals for breeding. Here, we reviewed avian genomics and stem cell approaches which not only offer hope for saving endangered species, such as the green peafowl but also for other birds threatened with extinction.
Collapse
Affiliation(s)
- Sittipon Intarapat
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, Chonburi 20131, Thailand;
| | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia;
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan;
| |
Collapse
|
7
|
Chakraborty A, Bisht MS, Saxena R, Mahajan S, Pulikkan J, Sharma VK. Genome sequencing and de novo and reference-based genome assemblies of Bos indicus breeds. Genes Genomics 2023; 45:1399-1408. [PMID: 37231295 DOI: 10.1007/s13258-023-01401-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Indian cattle breeds (Bos indicus) are known for their remarkable adaptability to hot and humid climates, higher nutritious quality of milk, better disease tolerance, and greater ability to perform in poor feed compared to taurine cattle (Bos taurus). Distinct phenotypic differences are observed among the B. indicus breeds; however, the whole genome sequences were unavailable for these indigenous breeds. OBJECTIVE We aimed to perform whole genome sequencing to construct the draft genome assemblies of four B. indicus breeds; Ongole, Kasargod Dwarf, Kasargod Kapila, and Vechur (the smallest cattle of the world). METHODS We sequenced the whole genomes using Illumina short-read technology, and constructed de novo and reference-based genome assemblies of these native B. indicus breeds for the first time. RESULTS The draft de novo genome assemblies of B. indicus breeds ranged from 1.98 to 3.42 Gbp. We also constructed the mitochondrial genome assemblies (~ 16.3 Kbp), and yet unavailable 18S rRNA marker gene sequences of these B. indicus breeds. The genome assemblies helped to identify the bovine genes related to distinct phenotypic characteristics and other biological processes for this species compared to B. taurus, which are plausibly responsible for providing better adaptive traits. We also identified the genes that showed sequence variation in dwarf and non-dwarf breeds of B. indicus compared to B. taurus. CONCLUSIONS The genome assemblies of these Indian cattle breeds, the 18S rRNA marker genes, and identification of the distinct genes in B. indicus breeds compared to B. taurus will help in future studies on these cattle species.
Collapse
Affiliation(s)
- Abhisek Chakraborty
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Manohar S Bisht
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Rituja Saxena
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Joby Pulikkan
- Department of Genomic Science, Central University of Kerala, Kasaragod, India
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
8
|
Chakraborty A, Mondal S, Mahajan S, Sharma VK. High-quality genome assemblies provide clues on the evolutionary advantage of blue peafowl over green peafowl. Heliyon 2023; 9:e18571. [PMID: 37576271 PMCID: PMC10412995 DOI: 10.1016/j.heliyon.2023.e18571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
An intriguing example of differential adaptability is the case of two Asian peafowl species, Pavo cristatus (blue peafowl) and Pavo muticus (green peafowl), where the former has a "Least Concern" conservation status and the latter is an "Endangered" species. To understand the genetic basis of this differential adaptability of the two peafowl species, a comparative analysis of these species is much needed to gain the genomic and evolutionary insights. Thus, we constructed a high-quality genome assembly of blue peafowl with an N50 value of 84.81 Mb (pseudochromosome-level assembly), and a high-confidence coding gene set to perform the genomic and evolutionary analyses of blue and green peafowls with 49 other avian species. The analyses revealed adaptive evolution of genes related to neuronal development, immunity, and skeletal muscle development in these peafowl species. Major genes related to axon guidance such as NEO1 and UNC5, semaphorin (SEMA), and ephrin receptor showed adaptive evolution in peafowl species. However, blue peafowl showed the presence of 42% more coding genes compared to the green peafowl along with a higher number of species-specific gene clusters, segmental duplicated genes and expanded gene families, and comparatively higher evolution in neuronal and developmental pathways. Blue peafowl also showed longer branch length compared to green peafowl in the species phylogenetic tree. These genomic insights obtained from the high-quality genome assembly of P. cristatus constructed in this study provide new clues on the superior adaptability of the blue peafowl over green peafowl despite having a recent species divergence time.
Collapse
Affiliation(s)
- Abhisek Chakraborty
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Samuel Mondal
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
9
|
Wang S, Li Y, Zhou J, Jiang K, Chen J, Ye Z, Xue H, Bu W. The anthropogenic effect of land use on population genetics of Malcus inconspicuus. Evol Appl 2023; 16:98-110. [PMID: 36699121 PMCID: PMC9850013 DOI: 10.1111/eva.13512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Since the beginning of the Holocene era, human activities have seriously impacted animal habitats and vegetative environments. Species that are dependent on natural habitats or with narrow niches might be more severely affected by habitat changes. Malcus inconspicuus is distributed in subtropical China and highly dependent on the mountain environment. Our study investigated the role of the mountainous landscape in the historical evolution of M. inconspicuus and the impact of Holocene human activities on it. A phylogeographical approach was implemented with integrative datasets including double-digest restriction site-associated DNA (ddRAD), mitochondrial data, and distribution data. Three obvious clades and an east-west phylogeographical pattern were found in subtropical China. Mountainous landscape has "multifaceted" effects on the evolutionary history of M. inconspicuus, it has contributed to population differentiation, provided glacial refuges, and provided population expansion corridors during the postglacial period. The effective population size (Ne) of M. inconspicuus showed a sharp decline during the Holocene era, which revealed a significantly negative correlation with the development of cropland in a hilly area at the same time and space. It supported that the species which are highly dependent on natural habitats might undergo greater impact when the habitat was damaged by agricultural activities and we should pay more attention to them, especially in the land development of their distribution areas.
Collapse
Affiliation(s)
- Shujing Wang
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Yanfei Li
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Jiayue Zhou
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Kun Jiang
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Juhong Chen
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Zhen Ye
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Huaijun Xue
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| | - Wenjun Bu
- Institute of Entomology, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
10
|
Dong F, Zhang Q, Chen YL, Lei FM, Li SH, Wu F, Yang XJ. Potential millennial-scale avian declines by humans in southern China. GLOBAL CHANGE BIOLOGY 2022; 28:5505-5513. [PMID: 35665575 DOI: 10.1111/gcb.16289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Mounting observational records demonstrate human-caused faunal decline in recent decades, while accumulating archaeological evidence suggests an early biodiversity impact of human activities during the Holocene. A fundamental question arises concerning whether modern wildlife population declines began during early human disturbance. Here, we performed a population genomic analysis of six common forest birds in East Asia to address this question. For five of them, demographic history inference based on 25-33 genomes of each species revealed dramatic population declines by 4- to 48-fold over millennia (e.g. 2000-5000 thousand years ago). Nevertheless, summary statistics detected nonsignificant correlations between these population size trajectories and Holocene temperature variations, and ecological niche models explicitly predicted extensive range persistence during the Holocene, implying limited demographic consequence of Holocene climate change. Further analyses suggest high negative correlations between the reconstructed population declines and human disturbance intensities and indicate a potential driver of human activities. These findings provide a deep-time and large-scale insight into the recently recognized avifaunal decline and support an early origin hypothesis of human effects on biodiversity. Overall, our study sheds light on the current biodiversity crisis in the context of long-term human-environment interactions and offers a multi-evidential framework for quantitatively assessing the ecological consequences of human disturbance.
Collapse
Affiliation(s)
- Feng Dong
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qiang Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yi-Lin Chen
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fu-Min Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shou-Hsien Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Fei Wu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Jun Yang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Wang Q, Lan T, Li H, Sahu SK, Shi M, Zhu Y, Han L, Yang S, Li Q, Zhang L, Deng Z, Liu H, Hua Y. Whole-genome resequencing of Chinese pangolins reveals a population structure and provides insights into their conservation. Commun Biol 2022; 5:821. [PMID: 36008681 PMCID: PMC9411537 DOI: 10.1038/s42003-022-03757-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Poaching and trafficking have a substantial negative impact on the population growth and range expansion of the Chinese pangolin (Manis pentadactyla). However, recently reported activities of Chinese pangolins in several sites of Guangdong province in China indicate a promising sign for the recovery of this threatened species. Here, we re-sequence genomes of 15 individuals and perform comprehensive population genomics analyses with previously published 22 individuals. These Chinese pangolins are found to be divided into three distinct populations. Multiple lines of evidence indicate the existence of a newly discovered population (CPA) comprises entirely of individuals from Guangdong province. The other two populations (CPB and CPC) have previously been documented. The genetic differentiation of the CPA and CPC is extremely large (FST = 0.541), which is larger than many subspecies-level differentiations. Even for the closer CPA and CPB, their differentiation (FST = 0.101) is still comparable with the population-level differentiation of many endangered species. Further analysis reveals that the CPA and CPB populations separate 2.5-4.0 thousand years ago (kya), and on the other hand, CPA and CPC diverge around 25-40 kya. The CPA population harbors more runs of homozygosity (ROHs) than the CPB and CPC populations, indicating that inbreeding is more prevalent in the CPA population. Although the CPC population has less mutational load than CPA and CPB populations, we predict that several Loss of Function (LoF) mutations will be translocated into the CPA or CPB populations by using the CPC as a donor population for genetic rescue. Our findings imply that the conservation of Chinese pangolins is challenging, and implementing genetic rescue among the three groups should be done with extreme caution.
Collapse
Affiliation(s)
- Qing Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Tianming Lan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China.
| | - Haimeng Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Minhui Shi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yixin Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shangchen Yang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Le Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zhangwen Deng
- Guangxi Forest Inventory and Planning Institute, Nanning, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China.
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
| |
Collapse
|
12
|
Iannucci A, Benazzo A, Natali C, Arida EA, Zein MSA, Jessop TS, Bertorelle G, Ciofi C. Population structure, genomic diversity and demographic history of Komodo dragons inferred from whole-genome sequencing. Mol Ecol 2021; 30:6309-6324. [PMID: 34390519 PMCID: PMC9292392 DOI: 10.1111/mec.16121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Population and conservation genetics studies have greatly benefited from the development of new techniques and bioinformatic tools associated with next-generation sequencing. Analysis of extensive data sets from whole-genome sequencing of even a few individuals allows the detection of patterns of fine-scale population structure and detailed reconstruction of demographic dynamics through time. In this study, we investigated the population structure, genomic diversity and demographic history of the Komodo dragon (Varanus komodoensis), the world's largest lizard, by sequencing the whole genomes of 24 individuals from the five main Indonesian islands comprising the entire range of the species. Three main genomic groups were observed. The populations of the Island of Komodo and the northern coast of Flores, in particular, were identified as two distinct conservation units. Degrees of genomic divergence among island populations were interpreted as a result of changes in sea level affecting connectivity across islands. Demographic inference suggested that Komodo dragons probably experienced a relatively steep population decline over the last million years, reaching a relatively stable Ne during the Saalian glacial cycle (400-150 thousand years ago) followed by a rapid Ne decrease. Genomic diversity of Komodo dragons was similar to that found in endangered or already extinct reptile species. Overall, this study provides an example of how whole-genome analysis of a few individuals per population can help define population structure and intraspecific demographic dynamics. This is particularly important when applying population genomics data to conservation of rare or elusive endangered species.
Collapse
Affiliation(s)
| | - Andrea Benazzo
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Chiara Natali
- Department of BiologyUniversity of FlorenceFirenzeItaly
| | - Evy Ayu Arida
- Research Center for BiologyThe Indonesian Institute of Sciences (LIPI)Cibinong Science CenterCibinongIndonesia
| | - Moch Samsul Arifin Zein
- Research Center for BiologyThe Indonesian Institute of Sciences (LIPI)Cibinong Science CenterCibinongIndonesia
| | - Tim S. Jessop
- School of Life and Environmental SciencesDeakin UniversityGeelongVic.Australia
| | - Giorgio Bertorelle
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Claudio Ciofi
- Department of BiologyUniversity of FlorenceFirenzeItaly
| |
Collapse
|
13
|
Lu CW, Yao CT, Hung CM. Domestication obscures genomic estimates of population history. Mol Ecol 2021; 31:752-766. [PMID: 34779057 DOI: 10.1111/mec.16277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
Domesticated species are valuable models to examine phenotypic evolution, and knowledge on domestication history is critical for understanding the trajectories of evolutionary changes. Sequentially Markov Coalescent models are often used to infer domestication history. However, domestication practices may obscure the signal left by population history, affecting demographic inference. Here we assembled the genomes of a recently domesticated species-the society finch-and its parent species-the white-rumped munia-to examine its domestication history. We applied genomic analyses to two society finch breeds and white-rumped munias to test whether domestication of the former resulted from inbreeding or hybridization. The society finch showed longer and more runs of homozygosity and lower genomic heterozygosity than the white-rumped munia, supporting an inbreeding origin in the former. Blocks of white-rumped munia and other ancestry in society finch genomes showed similar genetic distance between the two taxa, inconsistent with the hybridization origin hypothesis. We then applied two Sequentially Markov Coalescent models-psmc and smc++-to infer the demographic histories of both. Surprisingly, the two models did not reveal a recent population bottleneck, but instead the psmc model showed a specious, dramatic population increase in the society finch. Subsequently, we used simulated genomes based on an array of demographic scenarios to demonstrate that recent inbreeding, not hybridization, caused the distorted psmc population trajectory. Such analyses could have misled our understanding of the domestication process. Our findings stress caution when interpreting the histories of recently domesticated species inferred by psmc, arguing that these histories require multiple analyses to validate.
Collapse
Affiliation(s)
- Chia-Wei Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Te Yao
- Division of Zoology, Endemic Species Research Institute, Nantou, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Patil AB, Vijay N. Repetitive genomic regions and the inference of demographic history. Heredity (Edinb) 2021; 127:151-166. [PMID: 34002046 PMCID: PMC8322061 DOI: 10.1038/s41437-021-00443-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/03/2023] Open
Abstract
Inference of demographic histories using whole-genome datasets has provided insights into diversification, adaptation, hybridization, and plant-pathogen interactions, and stimulated debate on the impact of anthropogenic interventions and past climate on species demography. However, the impact of repetitive genomic regions on these inferences has mostly been ignored by masking of repeats. We use the Populus trichocarpa genome (Pop_tri_v3) to show that masking of repeat regions leads to lower estimates of effective population size (Ne) in the distant past in contrast to an increase in Ne estimates in recent times. However, in human datasets, masking of repeats resulted in lower estimates of Ne at all time points. We demonstrate that repeats affect demographic inferences using diverse methods like PSMC, MSMC, SMC++, and the Stairway plot. Our genomic analysis revealed that the biases in Ne estimates were dependent on the repeat class type and its abundance in each atomic interval. Notably, we observed a weak, yet consistently significant negative correlation between the repeat abundance of an atomic interval and the Ne estimates for that interval, which potentially reflects the recombination rate variation within the genome. The rationale for the masking of repeats has been that variants identified within these regions are erroneous. We find that polymorphisms in some repeat classes occur in callable regions and reflect reliable coalescence histories (e.g., LTR Gypsy, LTR Copia). The current demography inference methods do not handle repeats explicitly, and hence the effect of individual repeat classes needs careful consideration in comparative analysis. Deciphering the repeat demographic histories might provide a clear understanding of the processes involved in repeat accumulation.
Collapse
Affiliation(s)
- Ajinkya Bharatraj Patil
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
15
|
Dong F, Kuo HC, Chen GL, Wu F, Shan PF, Wang J, Chen D, Lei FM, Hung CM, Liu Y, Yang XJ. Population genomic, climatic and anthropogenic evidence suggest the role of human forces in endangerment of green peafowl ( Pavo muticus). Proc Biol Sci 2021; 288:20210073. [PMID: 33823666 DOI: 10.1098/rspb.2021.0073] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Both anthropogenic impacts and historical climate change could contribute to population decline and species extinction, but their relative importance is still unclear. Emerging approaches based on genomic, climatic and anthropogenic data provide a promising analytical framework to address this question. This study applied such an integrative approach to examine potential drivers for the endangerment of the green peafowl (Pavo muticus). Several demographic reconstructions based on population genomes congruently retrieved a drastic population declination since the mid-Holocene. Furthermore, a comparison between historical and modern genomes suggested genetic diversity decrease during the last 50 years. However, climate-based ecological niche models predicted stationary general range during these periods and imply the little impact of climate change. Further analyses suggested that human disturbance intensities were negatively correlated with the green peafowl's effective population sizes and significantly associated with its survival status (extirpation or persistence). Archaeological and historical records corroborate the critical role of humans, leaving the footprint of low genomic diversity and high inbreeding in the survival populations. This study sheds light on the potential deep-time effects of human disturbance on species endangerment and offers a multi-evidential approach in examining underlying forces for population declines.
Collapse
Affiliation(s)
- Feng Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Hao-Chih Kuo
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Guo-Ling Chen
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Fei Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Peng-Fei Shan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Jie Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - De Chen
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Fu-Min Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xiao-Jun Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| |
Collapse
|